
ARTICLE

Single-cell RNA sequencing highlights the role of
inflammatory cancer-associated fibroblasts in
bladder urothelial carcinoma
Zhaohui Chen1,4, Lijie Zhou1,2,4, Lilong Liu1,2, Yaxin Hou1,2, Ming Xiong1, Yu Yang3, Junyi Hu1,2✉ &

Ke Chen 1,2✉

Although substantial progress has been made in cancer biology and treatment, clinical

outcomes of bladder carcinoma (BC) patients are still not satisfactory. The tumor micro-

environment (TME) is a potential target. Here, by single-cell RNA sequencing on 8 BC tumor

samples and 3 para tumor samples, we identify 19 different cell types in the BC micro-

environment, indicating high intra-tumoral heterogeneity. We find that tumor cells down

regulated MHC-II molecules, suggesting that the downregulated immunogenicity of cancer

cells may contribute to the formation of an immunosuppressive microenvironment. We also

find that monocytes undergo M2 polarization in the tumor region and differentiate. Fur-

thermore, the LAMP3+DC subgroup may be able to recruit regulatory T cells, potentially

taking part in the formation of an immunosuppressive TME. Through correlation analysis

using public datasets containing over 3000 BC samples, we identify a role for inflammatory

cancer-associated fibroblasts (iCAFs) in tumor progression, which is significantly related to

poor prognosis. Additionally, we characterize a regulatory network depending on iCAFs.

These results could help elucidate the protumor mechanisms of iCAFs. Our results provide

deep insight into cancer immunology and provide an essential resource for drug discovery in

the future.
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B ladder carcinoma (BC) is one of the most prevalent uro-
genital malignant diseases around the world, with
approximately 430,000 new cases diagnosed and over

165,000 deaths caused per year1. Although substantial progress
has been made in cancer biology and treatment, clinical outcomes
of bladder carcinoma patients are still not satisfactory2.

In the last decade, the tumor microenvironment (TME) has
been a popular area of cancer biology research in relation to
therapeutic targets for drug discovery. Notably, BC is one of the
least immune infiltrated cancers3, which may account for the
poor response to anti-PD1 therapy. Since then, designing new
treatment strategies for BC has continued to be an arduous task.

Previously, molecular subtypes of BC have been reported to
show different cell type-specific expression patterns4, which
indicates that the heterogeneity of BC at least partly results from
different cell type fractions inside the microenvironment. How-
ever, relevant studies have been rare until recently.

In the current study, we profile the transcriptome of
52721 single cells from bladder urothelial carcinoma or para-
tumor mucosa samples and produce an atlas of the whole TME
inside bladder cancer tissues. Our work highlights the role of one
cancer-associated fibroblast (CAF) subset, named inflammatory
cancer-associated fibroblasts (iCAFs), in BC and discovers pos-
sible therapeutic targets for BC treatment. In addition, we
investigate the relation between TME and molecular subtypes of
BC by correlating scRNA-seq data to over 3500 bulk RNA
sequencing or microarray profiles in public datasets. These results
promote the understanding of heterogeneity between patients and
provide a basis for individualized treatment for bladder urothelial
carcinoma.

Results
Single-cell sequencing and cell type identification. After quality
control and removal of the batch effect between batches (Sup-
plementary Fig. 1, see “Methods”), 52721 single cells were clus-
tered into eight major clusters. Cluster-specific genes were used to
annotate cell types with classic markers described in previous
studies5: epithelial (EPCAM+) cells; endothelial (CD31+) cells;
two types of fibroblasts (COL1A1+)—iCAFs (PDGFRA+) and
myo-CAFs (mCAFs) (RGS5+); B cells (CD79A+); myeloid cells
(LYZ+); T cells (CD3D+); and mast cells (TPSAB1+) (Fig. 1a, b,
Supplementary Fig. 2A–D).

Cancer cells show high heterogeneity due to CNV patterns.
EPCAM+ epithelial cells (EPCs) were reclustered to produce 17
clusters (Fig. 1c, d). Interestingly, although the batch effect has
been previously removed, cancer cells still showed a patient-
specific expression pattern, which indicated extremely high het-
erogeneity that was probably caused by copy number variations
(CNVs)6; this assumption was confirmed by InferCNV (Fig. 1c,
Supplementary Fig. 3A). As shown in Supplementary Fig. 3A,
CNVs accumulated in most high-grade tumor-derived EPCs and
showed high heterogeneity among clusters. Despite the hetero-
geneity, almost all high-grade cancer cells possessed deletions
from chromosomes 9 and 11 and amplifications in chromosomes
19 and 20. In addition, some cells from tumor tissue possessed
almost no CNV and showed a similar expression pattern to
normal EPCs (Fig. 1d), which indicated that these cells may be
non-malignant EPCs. Therefore, EPCs were divided into 4 groups
based on CNVs: low, high, control, and undetected in this
investigation.

When comparing the transcriptomes, we noticed that a series
of genes was especially expressed in the control and CNV
undetected groups but almost absent in tumor cells (Fig. 1d, red
blank). Gene Ontology enrichment analysis revealed that these

genes were enriched in immune-related pathways, especially B
cell-related pathways (Fig. 1e). Comparing to normal epithelial
cells, cancer cells almost lost the ability to produce immunoglo-
bulin, and they expressed lower levels of MHC-II molecules,
which was validated by immunofluorescence (Fig. 1f, g). These
results indicated that bladder cancer cells might downregulate
immunogenicity to escape immune detection. In addition, we
noticed that cancer cells possessing more CNVs seemed to
express higher levels of IGF2 (Supplementary Fig. 3B, C). In the
TCGA BLCA cohort, a high level of IGF2 was significantly related
to poor prognosis (Supplementary Fig. 3C). Pathway analysis
with gene set variation analysis (GSVA) revealed that E2F targets,
MYC targets and the G2M checkpoint pathway were enriched in
the CNV high group, while inflammatory and other immune-
related pathways were downregulated (Fig. 1h). These results
further confirmed that cancer cells in the advanced stage of BC
downregulated immunogenicity and displayed high proliferation
ability.

Monocytes recruited into the tumor region experience M2
polarization. Reclustering of myeloid cells identified seven cell
types: tumor-associated macrophages (TAMs, MRC1+C1high);
CD1C+ dendritic cells (CD1C+ DCs, CD1C+CLEC10A+);
monocytes (S100A8+S100A9+); proliferating myeloid cells
(TOP2A+); cross-presenting DCs (CLEC9A+); follicular B cells
(CD79A+MS4A1+); and LAMP3+ DCs (LAMP3+CCR7+).
These cell subgroups were confirmed by flow cytometry (Sup-
plementary Fig. 4A). Two cell clusters expressed both myeloid
markers, and epithelial or endothelial markers, and they were
considered doublets (Fig. 2a, Supplementary Fig. 5A–C). Differ-
ences between cell types could also be identified by the activity of
TF motifs (Supplementary Fig. 5D). Notably, monocytes mostly
originated from normal mucosal tissues, while TAMs were enri-
ched in BC tissues. In addition, it seems that the transcriptomes
of these two cell types exhibited continual changes (Fig. 2b,
Supplementary Fig. 5B, red blank), indicating that monocytes
recruited into the tumor region were reprogrammed into TAMs,
which has been previously reported in a murine breast cancer
model7. To further investigate this ongoing process, we per-
formed trajectory analysis and RNA velocity analysis on mono-
cytes and TAMs8,9. Similar phenomenon was observed in both
two computational pipelines (Fig. 2c and Supplementary Fig. 6B).
Combined with the key motifs identified by SCENIC, we recog-
nized that the activity of three motifs, BACH1, MAFG, and NFE2,
was downregulated, while activation of the MAF, STAT1 and
STAT2 motifs led to this M2-polarization process (Fig. 2c, d,
Supplementary Fig. 6A). These results provide potential targets
for inhibiting or reversing the formation of the immunosup-
pressive microenvironment. In addition, we noticed that the co-
inhibitors CD274, LGALS9, CD276, TIGIT, and PDCD1LG2
were all upregulated in this differentiation process, while co-
activators were downregulated (Fig. 2e).

LAMP3+ DCs recruit Tregs into the tumor region via cytokines.
Among the 3 DC subgroups, LAMP3+ DCs expressed various
genes encoding cytokines, including CCL17, CCL19, and CCL22
(Fig. 2f). Strikingly, these cytokines originated almost entirely from
LAMP3+ DCs in BC (Fig. 2g). As discussed in a previous study,
CCL17 and CCL22 have strong chemotaxis towards Tregs via
binding to CCR4 expressed on the membrane of Tregs10,11. In the
TCGA BLCA cohort, the LAMP3+ DC signature was highly
positively correlated with the Treg signature and Th2 signature,
which were both CCR4+, but there was not a high correlation with
the CTL signature (Fig. 2h). LAMP3+ DCs were significantly
enriched in tumor tissues (Supplementary Fig. 5A). Additionally,
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Fig. 1 Identifying infiltrated cell types in BC and non-malignant tissues. a, b Identifying infiltrated cell types in BC and non-malignant tissues. aWorkflow
of the sample preparation, sequencing and bioinformatic analysis. b tSNE plot of single cells profiled in the presenting work colored by major cell types,
tumor grade and patient. c–h Reclustering of EPCAM+ cells. c UMAP plot EPCAM+ cells (epithelial marker) colored by cluster, patient, grade and CNV
level. d Heatmap of differentially expressed genes (DEGs) of every CNV group. e Enriched GO functions of downregulated genes in malignant cells.
f Expression levels of MHC-II molecules and CD74. g Immunofluorescence (IF) staining of MHC-II molecules and EPCAM. Scale bar represents 50 μm.
h Heatmap shows difference in pathway activities scored by GSVA per cell between different CNV groups. Shown are t-values from a lineal model.
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LAMP3+ DCs showed the highest level of CD274 (Fig. 2f), which
was even higher than what was observed in Tregs from BC tissues,
indicating that this DC subgroup could inhibit CD8+ T cells
directly or via recruiting Tregs into the tumor region. SCENIC
analysis revealed that RELB and KDM2B motifs were highly
activated in LAMP3+ DCs (Supplementary Fig. 5E–G).

Two different fibroblast subtypes are identified in BC. Fibro-
blasts (COL1A1+) were clustered into two different types:
PDGFRA+ fibroblasts exhibit strong expression of various
cytokines and chemokines, including CXCL12, IL6, CXCL14,

CXCL1, and CXCL2, which is similar to iCAFs described by
Öhlund D et al. in a pancreatic cancer model12; RGS5+ fibro-
blasts have characteristics that are similar to myo-cancer-
associated fibroblasts (mCAFs) (Fig. 3a, b). Existing iCAFs and
mCAFs were assessed in tumor and non-malignant bladder
stroma tissue by immunofluorescence (Fig. 3c). The results
demonstrated that CAFs possess analogous subgroups across
cancer types12,13.

To investigate the function of each subgroup, we performed
GO enrichment analysis on the DEGs of iCAFs and mCAFs. As
shown in Fig. 3d, iCAFs were related to extracellular matrix
organization, regulation of cell migration, and angiogenesis,
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whereas the muscle system process, focal adhesion, and
extracellular matrix-associated pathways were significantly
enriched in mCAFs. GSEA similarly revealed that iCAFs were
associated with extracellular matrix degradation, indicating a
potential role in tumor metastasis. The cytokine–cytokine
receptor interaction pathway was also enriched in iCAFs. In
contrast, muscle contraction and the PGC1A pathway were
enriched in mCAFs, corresponding to a previous in vitro12 study
(Fig. 3e, f).

Since the cytokine–cytokine receptor interaction was enriched
in iCAFs, we investigated the expression level of cytokines in the
BC TME. Dramatically, iCAF was the major source of CXCL12,
which is related to the accumulation of TAMs via CXCL12/
CXCR4 interactions14. Notably, CXCL12 was positively corre-
lated with the TAM signature in the TCGA BLCA cohort. A
higher level of CXCL12 was significantly associated with a poor
prognosis. Immunofluorescence staining confirmed that CXCL12
was expressed by iCAFs in BC tissues (Fig. 3g–j).

Via SCENIC analysis, we identified essential motifs in both
CAF subgroups. MEF2D and MEF2C are mCAF-specific motifs
that have profound roles in the transcriptional regulation of
muscle lineages15. TCF21 and TWIST2 motifs were highly
activated in iCAFs (Fig. 4a, b). In a previous study, TCF21 was
found to be associated with coronary heart disease, enhancing the
“fibromyocyte” phenotype of smooth muscle cells16. TWIST2 is a
driver of epithelial–mechanism transition (EMT). However, their
roles in CAF are still unknown.

iCAFs have a pro-proliferation effect in BC. iCAFs were pre-
dicted to have growth factor activity by GO enrichment. To
confirm this hypothesis, we analyzed the expression levels of
VEGF, FGF and IGF families in the BC TME (Fig. 4c). Drama-
tically, iCAFs are the major source of various growth factors.
Among these growth factors, IGF1, an iCAF-specific group factor,
was related to poor overall survival (Fig. 4d, e).

To validate its pro-proliferation effect, we sorted iCAFs by flow
cytometry and co-cultured them with bladder urothelial carci-
noma cell lines in vitro. Significantly, the co-culture group
showed higher proliferation ability, which confirmed the
protumor role of iCAFs in BC (Fig. 4f, g).

Correlating scRNA-seq to public datasets. To investigate the
clinical role of the cell types identified in the present study, we
evaluated the fraction of every cell type in samples from the
TCGA BLCA cohort with CIBERSORTx17 (Supplementary
Fig. 7A–C, see “Methods”). Strikingly, only the accumulation of
iCAFs and mCAFs was related to poorer overall survival (OS)
(Fig. 5a, b). When correlating the cell fraction data with clinical
information, we noticed that the cell type abundance was altered
greatly across the molecular subtypes described in a previous
study4 (Fig. 5c, d). Luminal papillary, with the highest tumor
purity, had the best prognosis, while the OS of the other four
groups did not show a significant difference. Basal squamous
showed the lowest tumor purity, as almost all cell types identified
in our work occurred in this group. Notably, T cells were also
enriched in this group, indicating that anti-immune checkpoint
therapy may be suitable for these patients. In contrast to other cell
types, mCAFs and iCAFs were enriched in four groups, with the
exception of the luminal-papillary group. Since the luminal-
papillary group contained mostly early stage samples, these
results demonstrated that CAFs were closely related to the tumor
progression of BC. In addition, we noticed that fibroblast markers
were significantly downregulated in tumor tissues, while epithelial
markers were upregulated. This could explain why downregulated
DEGs were enriched in the extracellular region18. Since normal

bladder mucosa mainly contains EPCs, while fibroblasts are
mainly located in stromal tissues, this phenomenon is probably a
result of sampling depth. This could obscure the identification of
real DEGs between normal epithelial and tumor cells (Supple-
mentary Fig. 7D, E).

Subsequently, we expanded the clinical cohort, collecting over
3000 microarray profiled BC and non-malignant mucosa samples
from the GEO and ArrayExpress databases (see “Methods”). A
possible batch effect was eliminated with Combat function, and
then 2959 tumor samples were clustered into five major groups by
ConsensusClusterPlus19 (Supplementary Fig. 8A–C). Four major
clusters revealed similar characteristics to the luminal-papillary,
luminal, luminal-infiltrated, and basal-squamous clusters.
Another cluster, which was unlike Neural group in TCGA BLCA,
showed both luminal-squamous and Luminal characteristics, so it
was named as Luminal transition. As shown in Fig. 5e–h, OS in
this meta cohort highly corresponded to that of TCGA,
demonstrating the important role of CAFs in BC progression.
iCAF and mCAF have many similar features, which may make
the result of CIBERSORTx insufficient. In the cohort from
TCGA, the iCAF-specific marker PDGFRA was significantly
related to poor OS in BC patients, while the mCAF marker RGS5
was not, indicating that iCAF may have a more important role
than mCAF (Supplementary Fig. 7F).

Constructing an iCAF-based regulatory network for BC. Using
CellphoneDB220, we investigated the cell–cell interaction network
among the cell types identified in our present work. Notably,
iCAFs showed the most interactions with other cell types, and
they showed especially strong interactions with ECs (Fig. 6a).
Considering the results of GO analysis and GSEA and the
expression abundance in our data, we collected data on interac-
tion pairs including growth factors, CCL and CXCL families
(Supplementary Fig. 9A).

iCAFs express higher levels of CXCL12, the receptors of which
includes DPP4, CXCR3, CXCR4, and ACKR3 (CXCR7). As
CXCR4 and CXCR3 are widely expressed on immune cells,
secretion of CXCL12 by iCAFs is responsible for the immune
infiltration status of BC. CCL2 and CXCL1 secreted by iCAFs
could interact with ACKR1, which is highly expressed on the
surface of ECs. These cytokines were previously reported to be
associated with metastasis of BC21,22, and we pinpointed their
origin to iCAFs (Fig. 6b, d).

We also suggested that iCAFs produce VEGF, including
VEGFA and VEGFB, which bind to VEGF receptors (FLT1, KDR,
MET, and FLT4) on ECs to promote angiogenesis. In addition,
FGFR1 was expressed on iCAFs and ECs, while FGFR3 was
expressed on tumor cells. These receptors could bind to FGF,
including FGF2 and FGF7 derived from iCAFs, and show pro-
proliferation effects. IGF1R, a receptor for IGF1, was expressed
on tumor cells and stroma cells, which suggested that iCAF could
also factor into resistance to cisplatin23. Notably, tumor cells
express high levels of VEGFA, which has the strongest
proangiogenic ability. In addition, high-grade tumor cells highly
express IGF2, interact with IGF2R on iCAFs, and promote tumor
progression24 (Fig. 6c, e). Together, our results predicted that
iCAFs could promote the proliferation of tumor cells and stromal
cells and potentially be able to recruit immune cells into the
tumor stage.

Discussion
Treatment of bladder urothelial carcinoma, especially muscle
invasive bladder urothelial carcinoma is still a big problem until
now. Anti-immune checkpoint therapy, including PD1/PD-L1,
benefits only nearly 30% of patients with advanced disease.
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New targets or combined therapy strategies are still waiting to
be discovered, and such discoveries could be hastened by a
better understanding of the TME of bladder urothelial carci-
noma. Here, we generated a single-cell transcriptome atlas and
revealed the components of the microenvironment inside BC
tissues.

In the present study, we identified 19 different cell types in the
BC microenvironment. We suggest that the downregulated
immunogenicity of cancer cells potentially contributes to the
formation of an immunosuppressive microenvironment. We
found that LAMP3+ DCs were related to the recruitment of
Tregs and other CCR4+ immune cells. Since blocking of CCR4
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could significantly reduce Tregs recruited in the tumor stage in a
canine model, LAMP3+ DCs may also be a potential target for
immune therapy25. Furthermore, we also suggested that stromal
cells, especially iCAFs, have strong pro-proliferation properties,
which has rarely been discussed in BC models. We also produced
a regulatory network based on iCAFs in a bioinformatic way.
These results will help elucidate the role of stomal cells in BC. In
the future, more function assay may help further understand the
underline mechanism.

By correlating our results with those from public databases, we
demonstrated that CAFs, especially one subset of them, iCAFs,
were the key factor in tumor progression in BC. At present,
immune therapy mainly targets T cells (PD1/PD-L1, CTLA-4)26

or TAMs (CSF1R)27. However, these immune cells almost do not
exist in a substantial number of BC patients, which may cause
there to be no response for such patients to immune checkpoint
inhibition therapy. Since CAFs were detected in almost all BC
patients in an advanced stage, and since they were the major
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source of various validated protumor growth factors in the TME,
targeting CAFs may be an optimal choice for BC treatment.

Although we highlighted the role of iCAFs in this pipeline
instead of mCAFs, the role of mCAFs in progression of cancer
still could not be excluded. Limited by the deconvoluting algo-
rithm, it’s still difficult to identify accurate proportion of iCAFs
and mCAFs in bulk sequencing data, which have highly similar
features in transcriptome. More proofs are needed to be validate
the role of mCAFs in BC.

Since fresh samples are needed in current single-cell sequen-
cing strategy, batch effect could be involved between samples
loaded in batches, which is still a big problem in bioinformatic
analysis of single-cell sequencing data. Previously, Tran et al. has
systemically compared the efficacy of the most prevalent tools for
eliminating batch effects of single-cell profiling data28. Hence,
Seurat V3 and Harmony are the most efficient tools. Since

then, batch derived difference was removed with Seurat V3 in
this study.

In summary, we identified the expression profiles of subsets of
cell in bladder urothelial carcinoma and confirmed the char-
acteristics of these tumor-associated subsets. This cell atlas pro-
vides deep insight into cancer immunology and is an essential
resource for drug discovery in the future.

Methods
Patients and samples. All samples were obtained from the Union Hospital of
Tongji Medical College, Huazhong University of Science and Technology, Wuhan,
China. Eight primary bladder tumor tissues (2 low-grade bladder urothelial tumors,
6 high-grade bladder urothelial tumors) along with 3 adjacent normal mucosae,
were involved in this cohort. Patients provided informed consent for this work. All
experimental procedures were approved by the Institutional Review Board of
Tongji Medical College, Huazhong University of Science and Technology
(IRB: S116).
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Single-cell suspension preparation. Bladder tumors and adjacent normal mucosa
were processed immediately after being obtained from bladder cancer patients.
Every sample was cut into small pieces (<1 mm in diameter) and then was incu-
bated with 2 ml of trypsin (Gibco, Cat: R001100), 1 ml of collagenase II (Biofrox,
Cat: 2275MG100) and 100 µl of DNase (Servicebio, Cat: 1121MG010) for 1 h on a
37 °C shaker. Subsequently, 4 ml DMEM was added to dilute the suspension, and
then a 40-μm cell mesh was used to filter the suspension. After centrifugation at
250g for 5 min, the supernatant was discarded, and then the cells were washed with
PBS twice. Then, the cell pellet was resuspended in 1 mL of ice cold red blood cell
lysis buffer and were incubated at 4 °C for 10 min. Next, 10 ml of ice-cold PBS was
added to the tube, and it was then centrifuged at 250g for 10 min. After decanting
the supernatant, the pellet was resuspended in 5 ml of calcium- and magnesium-
free PBS containing 0.04% weight/volume BSA. Finally, 10 µl of suspension was
counted under an inverted microscope with a hemocytometer. Trypan blue was
used to quantify live cells.

Droplet-based single-cell sequencing. According to the manufacturer’s protocol,
Chromium Single cell 3′ Reagent v3 kits were used to prepare barcoded scRNA-seq
libraries. Single-cell suspensions were loaded onto a Chromium Single-Cell Con-
troller Instrument (10 × Genomics) to generate single-cell gel beads in emulsions
(GEMs). To capture 8000 cells per library, approximately 12,000 cells were added
to each channel. After generation of GEMs, reverse transcription reactions were
engaged to generate barcoded full-length cDNA, which was followed by disruption
of emulsions using the recovery agent, and then cDNA clean-up was performed
with DynaBeads Myone Silane Beads (Thermo Fisher Scientific). Next, cDNA was
amplified by PCR for the appropriate number of cycles, which depended on the
number of recovered cells. Subsequently, the amplified cDNA was fragmented,
end-repaired, A-tailed, and ligated to an index adaptor, and then the library was
amplified. Every library was sequenced on a HiSeq X Ten platform (Illumina), and
150 bp paired-end reads were generated.

Raw data processing and quality control. Cell Ranger (version 2.2.0) was used to
process the raw data, demultiplex cellular barcodes, map reads to the tran-
scriptome, and down-sample reads (as required to generate normalized aggregate
data across samples). These process produced a raw unique molecular identifier
(UMI) count matrix, which was converted into a Seurat object by the R package
Seurat29 (version 3.0.0). Cells with UMI numbers <1000 or with over 10%
mitochondrial-derived UMI counts were considered low-quality cells and were
removed. In order to eliminate potential doublets, single cells with over 6000 genes
detected were also filtered out. Finally, 52721 single cells remained, and they were
applied in downstream analyses.

After quality control, the UMI count matrix was log normalized. Since sample
from eight patients were processed and sequenced in batches, patient number was
used to remove potential batch effect. In this process, top 3000 variable genes were
used to create potential Anchors with FindIntegrationAnchors function of Seurat.
Subsequently, IntegrateData function was used to integrate data and create a new
matrix with 3000 features, in which potential batch effect was regressed out.

To reduce the dimensionality of the scRNA-Seq dataset, principal component
analysis (PCA) was performed on an integrated data matrix. With Elbowplot
function of Seurat, top 30 PCs were used to perform the downstream analysis. The
main cell clusters were identified with the FindClusters function offered by Seurat,
with resolution set as default (res = 0.8). And then they were visualized with 2D
tSNE or UMAP plots. Conventional markers described in a previous study were
used to categorize every cell into a known biological cell type. Firstly, 52721 cells
were clustered into seven major cell types. Subsequently, every major cell type was
subset and further clustered into subclusters to detect heterogeneity within every
cell type, respectively. The Seurat Findallmarker function was performed to identify
preferentially expressed genes in clusters or differentially expressed genes between
tumor- and normal-derived cells. Rds of total dataset, myeloid lineage and
fibroblast have been uploaded as Supplementary Software 1, which could be read in
R environment by Shiny R package.

Estimation of CNVs in cancer cells. The InferCNV package was used to detect the
CNVs in EPCAM+ cells and to recognize real cancer cells with default parameters.
Two clusters mainly containing non-malignant derived cells were used as the
control group.

Trajectory and RNA velocity analysis. To map differentiation in the TME,
pseudotime analysis was performed with Monocle28 to determine the dramatic
translational relationships among cell types and clusters. Further detection with the
Monocle2 plot_pseudotime_heatmap function revealed the key role of a series of
genes in the differentiation progress. Signifcantly changed genes were identified by
the differential GeneTest function in Monocle2 with a q-value < 0.01.

RNA velocity was performed to investigate potential inter-relationship of
myeloid lineage. BAM file containing all the myeloid cells was used in this pipeline.
All the parameters were set as default. he result was visualized into UMAP plot.

Simultaneous gene regulatory network analysis. CENIC30 is a new computa-
tional method used in the construction of regulatory networks and in the

identification of different cell states from scRNA-seq data. To measure the dif-
ference between cell clusters based on transcription factors or their target genes,
SCENIC was performed on all single cells, and the preferentially expressed reg-
ulons were calculated by the Limma package31. Only regulons significantly upre-
gulated or downregulated in at least one cluster, with adj. p-value < 0.05, were
involved in further analysis.

Cell–cell communication analysis with CellPhoneDB 2. CellPhoneDB 2 is a
Python-based computational analysis tool developed by Roser Vento-Tormo et al
20, which enables analysis of cell–cell communication at the molecular level. A
website version was also provided for analysis of a relatively small dataset (http://
www.cellphonedb.org/). As described above, 52721 single cells that were clustered
into 19 cell types were investigated using the software to determine interaction
networks. Interaction pairs whose ligands belong to the VEGF, FGF, CCL, or
CXCL families and have P-values < 0.05 returned by CellPhoneDB, were selected
for the evaluation of relationships between cell types.

Correlation to public datasets. Transcriptome data from The Cancer Genome
Atlas (TCGA) BLCA datasets were obtained from UCSC XENA (https://xena.ucsc.
edu/). Clinical information was presented by Robertson et al.4 in their supple-
mentary materials.

For cell subgroups, genes with FC >2 were considered as marker genes, Mean
TPM level of marker genes were log2 transformed and used as gene signature.
Spearman correlation analysis was used to estimate correlation between specific
cell types.

A microarray-based study of bladder urothelial carcinoma containing over 15
tumor samples in the GEO or ArrayExpress databases was downloaded and
normalized into a meta-cohort. Batch effects between cohorts based on the same
platform were initially removed by the Combat function of the sva package32.
Subsequently, batch effects between different platforms were also removed. 3D
PCA was performed to confirm the efficiency of Combat. ConsensuClusterPlus19

was used to detect major molecular clusters in the meta-cohort.
To evaluate the relative abundance of each cell type identified in the present

study, cibersortx17 was performed with default parameters. Subsequently, the
relative cell abundance was divided into high 50% and low 50%. Kaplan–Meier
analysis was performed to evaluate the prognostic value of cell clusters and detect
the role that these cell clusters play in bladder cancer progression. All these
analyses were performed in R (3.6.0).

Pathway analysis. Differentially expressed genes (DEGs) of cell subgroups were
recognized by the findmarker function provided by Seurat. |FC| > 2 and adj.p.val <
0.05 were used as the cut-off criteria. GO enrichment analysis was performed on
these DEGs with clusterProfiler33. GSEA was performed on a matrix of all genes
detected by the desktop tool downloaded from http://software.broadinstitute.org/
gsea/index.jsp. GSVA was conducted with the GSVA package34. Differences
between different cell groups were calculated with a linear model offered by the
Limma package.

Immunofluorescence staining. A tissue chip, HBla-U060CS-01, which consists of
30 paired tumor and paratumor samples, was purchased from Shanghai Outdo
Biotech. To ensure the consistency of the analysis, all immunofluorescence analyses
were performed using the same type of tissue chip.

The following antibodies were used to detect specific proteins: anti-HLA-DRA
(rabbit, 1:50, Proteintech, Cat. No. 11221-1-AP), anti-EPCAM (rabbit, 1:50,
Proteintech, Cat. No. 21050-1-AP), anti-RGS5 (rabbit, 1:50, Proteintech, Cat. No.
11590-1-AP), anti-PDGFRA (rabbit, 1:200, Abcam, ab203491), and anti-CXCL12
(rabbit, 1:100, Abcam, ab155090).

Flow cytometry experiments. Tissue samples were disassociated as described
above. CD31-CD45lowPDGFRA+ iCAFs were collected by flow cytometry. The
following antibodies were used: anti-CD31 (mouse, 1:300, BD, 566563), anti-CD45
(mouse, 1:100, BD, 555482), and anti-PDGFRA (mouse, 1:500, BD, 562799). Anti-
CD45 (mouse, 1:100, BD, 555482), anti-CD3 (BD, 1:200, 555335), anti-CD14 (BD,
1:200, 563079), anti-CCR7 (BD, 1:200, 557734), anti-CLEC9A (BD, 1:200, 564266)
and anti-CD1c (BD, 1:200, 564900) were used to confirm the subgroups of myeloid
lineage. Data analysis was performed in FlowJo (V10).

Co-culture colony formation experiments. T24 and EJ bladder urothelial carci-
noma cell lines were obtained from American Type Culture Collection (ATCC)
and were cultured according to standard protocols. A co-culture experiment was
performed by seeding bladder cancer cells (2 × 103) in the lower chamber and
iCAFs (1 × 105) in the upper chamber of a 6-well transwell apparatus with a 0.4 µm
pore size (Corning Incorporated, NY, USA), and the cells were cultured together
for 7 days. Subsequently, colonies were fixed with 4% paraformaldehyde and then
were stained with crystal violet. The areas of the colonies were estimated by ImageJ.
Student’s t tests were used to detect differences between the control and co-culture
groups.
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Statistical analysis. All statistical analyses and graph generation were performed
in R (version 3.6.0) and GraphPad Prism (version 7.0).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The single-cell RNA sequencing data generated in this paper is available in GSA-Human
under the accession code HRA000212 and in SRA datasets under BioProject
PRJNA662018. Affymetrix microarray datasets including GSE8358635, GSE8730436,
GSE3168437, GSE10492238, GSE12430539, GSE3901640, GSE7157641, GSE5793342,
GSE3826443, GSE3118944, GSE316745, GSE3731746, GSE528747 from GEO and E-
MTAB-180348, E-MTAB-194049 from ArrayExpress, along with Illumina microarray
datasets, including GSE4807550, GSE3289451, GSE1350752, GSE4827650, GSE6979553,
GSE7069153, GSE12073654, GSE8641155, GSE5781356, GSE3254857, GSE5221950,
GSE5232950 were combined to construct the meta-cohort dataset. TCGA BLCA datasets
from UCSC XENA (http://xena.ucsc.edu/) were also used in this study. All remaining
relevant data are available in the article, supplementary information, or from the
corresponding author upon reasonable request.

Code availability
R scripts to read in R environment by Shiny R package, the Rds files of total dataset,
myeloid lineage and fibroblast have been uploaded as Supplementary Software 1 as part
of the Supplementary Information associated with this article. Other R scripts used to
analyze data and generate figures are available upon request to the corresponding author.
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