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1  | INTRODUC TION

Lipid oxidation and auto- oxidation as two major issues could in-
duce deteriorative changes regarding the quality and safety of food  
products (Hashemi et al., 2016, 2017a,b; Morrissey, Sheehy, Galvin, 
Kerry, & Buckley, 1998). Synthetic antioxidants such as butylated hy-
droxytoluene, butylated hydroxyanisole, and tertiary butylhydroqui-
none have been used to control the lipid oxidation process (Maqsood, 
Benjakul, Abushelaibi, & Alam, 2014). However, due to potential tox-
icity and adverse effects on human health, their incorporation in the 
formulation of food raised notable concerns (Pateiro et al., 2018). 
In this regard, different sources including animal species and plant 
sources were investigated to discover new natural preservatives.

Quinoa as a flowering plant with high nutritious value belongs 
to the amaranth family (Nongonierma, Le Maux, Dubrulle, Barre, & 

FitzGerald, 2015). It has been traditionally cultivated in the Andean 
region of northwestern South America since thousands of years ago 
(Vilcacundo, Martínez- Villaluenga, & Hernández- Ledesma, 2017). 
Quinoa and its derived products contain both macronutrients and 
micronutrients, for example, protein, polysaccharides, fatty acids, 
fiber, polyphenols, vitamins, and minerals (Park, Lee, Kim, & Yoon, 
2017). The higher protein concentrations of quinoa as a gluten- free 
grain while compared with other dietary grains such as wheat, rice, 
maize, oat, and barley are well documented (Calderelli, Benassi, 
Visentainer, & Matioli, 2010; Comai et al., 2007; Nongonierma et al., 
2015). Several investigations were carried out to evaluate the func-
tional properties of quinoa, including treatment of hypertension, 
diabetes, hypercholesterolemia, and celiac disease (CD) (Asao & 
Watanabe, 2010; Vilcacundo et al., 2017; Zevallosm, Herencia, & 
Ciclitira, 2013). In this regard, according to Food and Agriculture 
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Organization (FAO), quinoa is an ancient crop with notable contribu-
tion in world food security (Rizzello et al., 2017).

Over the last few years, the use of natural antioxidants has 
attracted particular attention, and in this regard, the application 
of peptides derived from hydrolyzed proteins obtained from soy, 
wheat, milk casein, and fish due to their antioxidant activities at-
tracted notable attention (Calderelli et al., 2010; Rizzello et al., 
2017). The antioxidants could be obtained via a wide spectrum of 
biological techniques such as protein hydrolysis, as a highly qualified 
technology used to produce high- quality products (Samaranayaka 
& Li- Chan, 2011; Sarmadi & Ismail, 2010). According to the liter-
ature, the biologically active peptides with potential antioxidant 
activity can be derived from a variety of animal-  or plant- derived 
protein sources, including rice bran, sunflower protein, corn gluten 
meal, egg- yolk protein, mushroom, peanut kernels, buckwheat pro-
tein, milk kefir, and soy milk kefir (Rizzello et al., 2017; Sarmadi & 
Ismail, 2010). Among the produced antioxidant agents, the antiox-
idant and antimicrobial activities of Quinoa compounds have been 
investigated in some studies (Gorinstein et al., 2008; Miranda et al., 
2014; Park et al., 2017; Tang et al., 2015). However, quinoa proteins 
as a source of bioactive peptides were mentioned in few of them. 
In this context, the bioactive peptides are defined as specific amino 
acid sequences which enhance some useful biological activities (de 
Castro & Sato, 2014). Bioactive peptides can be defined as specific 
protein fragments with potential biological activities. Based on their 
structure, composition, and sequence, they may demonstrate anti-
oxidative, antihypertensive, and antibacterial bioactivities and even 
reduce the cholesterol levels (Harnedy & FitzGerald, 2012; Nasri 
et al., 2014).

Trypsin, chymotrypsin, pepsin, and alcalase as proteolytic plant/
microbe- derived enzymes are used in the food industry for proteins 
hydroxylation (Sumantha, Larroche, & Pandey, 2006; Tavano, 2013). 
Protein hydrolysis with the aid of these enzymes is the most broadly 
used method in the production of biologically active peptides. Based 
on our knowledge, no investigation was conducted regarding the ap-
plication of proteolytic enzymes in the production of protein hydro-
lyzates from quinoa. Therefore, the current study was undertaken 
to produce protein hydrolyzates from the Quinoa by using pepsin 
and alcalase and also the antioxidant activity of protein produced of 
hydrolyzates from quinoa was evaluated.

2  | MATERIAL S AND METHODS

2.1 | Sample preparation

The quinoa seeds (Santa Maria variety) were obtained from The 
Karaj Seed and Plant Improvement Institute, Karaj, Iran, in autumn 
of 2017. Grain mill was produced out at the Karaj seed and Plant 
Improvement Institute using a hammer mill (screen sizes 3.18 mm, 
GIDC, Ahmedabad, Gujarat, India), and a Whole- quinoa flour with 
a degree of extraction of 96% was obtained. In order to extract of 
quinoa fat, the produced flour was mixed with hexane as solvent in 
a ratio of 1:5 among 24 hr with the aid of a fattened shaker (Fisher 

Scientific Ltd, cat. no.14- 285- 729). Afterward, the fat- free flour 
was placed for 24 hr in an oven at 40°C, to isolate the residues of 
solvent, and to obtain a good powdered flour. The resulting flour 
was sieved using 0.25-mm mesh and then was kept in polyethyl-
ene bags in a freezer at −18°C until the time of the experiment 
(Nongonierma et al., 2015).

2.2 | Extraction of Quinoa protein

The recommended method by Chauhan, Cui, and Eskin (1999) with 
some modifications was used to extract the protein concentrate 
from the quinoa seed flour. Accordingly, the flour of quinoa was 
dispersed in a solution of sodium hydroxide (0.015 M). The re-
sulting slurry was kept for 24 hr at 4°C to improve the clarity of 
supernatant and then was centrifuged (Sigma, 6k15, Germany) at 
10,000 g, 10°C for 30 min. After that, the supernatant was filtered 
using a Whatman paper (Whatman No. 1), and the pH value of the 
filtrate was adjusted to 4.5 by addition of 0.1 N HCl for precipi-
tating the proteins. The precipitated part of the proteins was iso-
lated through the 30- min centrifugation (Sigma, 6k15) at 10,000 g, 
10°C. After that, it was washed with distilled water and then was 
lyophilized (freeze dryer, alpha 2, Christ- Germany) to produce qui-
noa protein concentrate. The analysis of quinoa protein concen-
trate was carried out according to American Association of Cereal 
Chemists (Method 46- 19, AACC 1983). The nitrogen amount was 
converted to protein content by a factor of 5.7 according to the 
previous studies (Fujihara, Kasuga, & Aoyagi, 2001; Mariotti, Tomé, 
& Mirand, 2008).

2.3 | Protein hydrolysis

The proteins extracted from quinoa were digested using pepsin and 
alcalase enzymes in a glass container with the aid of a magnetic agita-
tor. The slurry of protein concentrates with the concentration of 5% 
in distilled water w/v (based on the protein content) was prepared, 
and the pH of solution was set as 8.0 using NaOH 2 M (The appropri-
ate temperature for alcalase enzyme activity). Subsequently, the pro-
tein slurry was heated to 50°C and then was charged with enzyme 
alcalase at a concentration of 4% (w/w, quinoa protein basis) under 
a mild condition of stirring. The samples were hydrolyzed at 50°C 
for 4 hr while the pH value was kept constant by adding the sodium 
hydroxide solution (2 M). Then, pH of the mixture was reached to 2.5 
and the solution was uploaded to be digested with pepsin enzyme. 
After digestion, they were boiled in water for 15 min to discover the 
optimized hydrolysis optimization condition. Afterward, the samples  
were cooled to the room temperature using cold water and centri-
fuged (Sigma, 6k15) at 10,000 g, 10°C for 15 min, and a portion of 
the supernatant (protein hydrolyzates) was lyophilized by freeze 
dryer (freeze dryer, alpha 2, Christ- Germany) (Toapanta, Carpio, 
Vilcacundo, & Wilman, 2016).

The method which was described by Nongonierma et al. (2015) 
was utilized to determine the degree of hydrolysis (DH %). The re-
sidual portion of the protein hydrolyzates was passed over Amicon 
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stirred cell ultrafiltration setup (Fisher Scientific, ON, Canada) 
with the aid of a membrane (molecular weight cutoff of 10,000 or 
5000 Da). In each step, a semi quantitative separation column C- 18 
was used to perform the chromatogram analysis on the hydrolyzate. 
The permeate obtained from each membrane was lyophilized and 
kept at −20°C until day of the experiment.

The method of Le Maux, Nongonierma, Murray, Kelly, and 
FitzGerald (2015) was employed to measure the protein content of 
permeates and hydrolyzates. To find the appropriate range of hy-
drolysis optimization conditions, the pretreatments were performed 
at 40, 45, 50, 55°C, 60, 90, 150, 180, and 210 min and 30, 60, and 
90 Anson unit/kg protein.

2.4 | DPPH radical scavenging test

The capacity of the samples to scavenge the DPPH- free radicals was 
measured using a previously ascribed technique (Bey, Louaileche, & 
Zemouri, 2013). In this context, 500 μl of each sample was charged 
with 500 μl of ethanol (99.5%) and 25 μl of DPPH (0.22%) in etha-
nol (99.5%), then vigorously mixed, and then was stored for 30 min 
at a dark place. The sample- free reagent was also used as the con-
trol. The absorbance was determined spectrophotometrically at 
517 nm with a UV–vis spectrophotometer (DR 5 000™ UV–Vis 
Spectrophotometer). Finally, the DPPH radical scavenging capac-
ity of the specimens was calculated with the help of the following 
equation.

2.5 | The degree of hydrolysis (DH) measurement

The DH was measured based on the previously conducted method 
(Lambers et al., 2015), to measure the percentages of soluble pro-
teins in 10% trichloroacetic acid to the total proteins in the sample. 
In this regard, 5 ml of the sample was mixed with 5 ml of trichlo-
roacetic acid (10%) followed byentrifuging at 10,000 g, 10°C for 
20 min. Then, the concentration of protein was measured by Kjeldahl 
method, and the degree of hydrolysis was determined according to 
the following equation (Lambers et al., 2015).

2.6 | Statistical analysis

SPSS software (ver. 19.0) was employed in this study. All the experi-
ments were repeated in triplicate. Data of study were analyzed using 
two- way analysis of variance (ANOVA), and results were expressed as 
mean ± standard deviation. Differences were considered significant 
at p < 0.05.

3  | RESULTS AND DISCUSSION

3.1 | Evaluate progress of hydrolysis

Further control in the rate of hydrolysis during the hydrolysis pro-
cess is crucial due to its effects on the properties of the hydrolyzed 
protein, including free amino acids, the solubility, the molecular 
weight of the resulting peptides, and even the oxidative properties 
of the protein produced (Šližytė, Daukšas, Falch, Storrø, & Rustad, 
2005). The influence of the enzyme activity and hydrolysis tempera-
ture on the degree of hydrolysis is documented through Figures 1–3.

Moreover, the factor of time has a significant effect on the DH 
(p < 0.05). In general, with increasing in hydrolysis time, the DH was 
increased. The highest value of DH among all temperatures and en-
zyme activity was achieved at 210 min. However, it was noted that 
hydrolysis degree obtained in treatments of 180 and 210 min was 
not significantly different. The lowest degree of hydrolysis was nom-
inated to time of 60 min.

The highest DH (24.65%) was obtained at the temperature of 
55°C, with hydrolysis time of 210 min, while the enzyme ratio was 
adjusted as 60 (Anson unit/kg protein). In this context, the tempera-
ture factor also showed a significant effect on the DH (p < 0.05). 
However, no significant difference was observed between 45 and 
50°C due to higher mean hydrolysis rates at 55°C, and the tempera-
ture of 55°C was determined as optimized temperature. According 
to Ovissipour, Taghiof, Motamedzadegan, Rasco, and Molla (2009) 
with increasing in the time and the concentration of enzyme, the DH 
value was increased.

Enzyme activity also showed a significant effect on the degree 
of hydrolysis (p < 0.05). Considering to findings, a notable increase in 
the degree of hydrolysis was achieved by increasing in the enzyme 
activity from 30 to 90 (Anson unit/kg protein). The difference in 

(1)DPPH radical scavenging activity (%)=
Absorb blank sample−Absorb control

Absorb control
×100

(2)The degree of hydrolysis (DH%)=
Nitrogen soluble in trichloroacetic acid 10%

Total nitrogen of sample
×100

F IGURE  1 DE values: in the ratio of enzyme to substrate 
(30 Anson unit/kg protein) (alcalase–pepsin) at different times and 
temperatures
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degrees of hydrolysis between enzyme activities 60 and 90 (Anson 
unit/kg protein) was less than the difference observed among in-
creasing in 30–60. However, no significant difference between 
enzyme activity of 60 and 90 (Anson unit/kg protein) at 50°C was 
noted which might be correlated with the saturation between en-
zyme concentration and substrate. Probably the higher degree of 
hydrolysis by increasing in the enzyme concentration can be at-
tributed to higher activity of enzyme and consequently the break-
down of more peptide bands (Ambigaipalan, Al- Khalifa, & Shahidi, 
2015; Bougatef et al., 2010).

Generally, the denaturation of proteins can be used as an effi-
cient pretreatment to enhance the performance of enzymatic cleav-
age. Nevertheless, the breaking of more peptide bonds results in 
the destabilization of the protein molecule, and as a consequence, 
smaller peptide units are produced. It was well documented that the 
difference in the rate of the peptide cleavage was associated with 
hydrolysis factors such as temperature, time, pH value, and the con-
centration of enzyme (Kristinsson & Rasco, 2000; Saidi, Belleville, 
Deratani, & Amar, 2013; See, Hoo, & Babji, 2011). Accordingly, va-
riety of optimum hydrolysis conditions can be proposed for vari-
ous substrates based on the type of the substrate, particularly the 
amount and reactivity of any endogenous proteases. In this regard, 
according to Bhaskar and Mahendrakar (2008), the optimum con-
ditions for producing hydrolyzates with a high degree of hydrolysis 
(about 50%) with the action of alcalase were ascribed as follow-
ing: the enzyme- to- substrate ratio of 1.5% (v/w), the temperature 
of 50°C, and the hydrolysis time of 135 min. However, Guerard, 
Guimas, and Binet (2002) suggested that the decrease in the hydro-
lysis degree by increasing the time of hydrolysis can be correlated 
with further limitations in enzyme activity through the genera-
tion of reaction products at high degree of hydrolysis, reduction 

in peptide bond concentration available for the hydrolysis, enzyme 
inhabitation, and deactivation of the enzyme. Therefore, it can 
be concluded that the polypeptide chains of quinoa protein were 
highly available for enzymatic cleaving at the higher hydrolysis time 
(210 min) and temperature (55°C). Concerning enzyme concentra-
tion, the DH value was increased by increasing the concentrations 
(60 and 90 Anson unit) due to the availability of higher enzyme 
molecules.

3.2 | Inhibition of DPPH- free radicals

The variation in inhibitory characteristics of DPPH free radicals 
in different times, temperatures, and enzymes concentration is 
shown in Figures 4–6. Table 1 is also presented for comparison be-
tween study groups (DPPH- DH). The highest activity of inhibiting 
DPPH radicals (35.44) was achieved after 150 min, at 50°C, and 
the ratio of enzyme to the substrate of 60 (Anson unit/kg pro-
tein). However, there was no significant difference in the DH be-
tween different time, temperature, and ratios of enzyme; 60 and 
90 (Anson unit/kg protein); and the activity of inhibition of DPPH- 
free radicals was observed (p > 0.05).

As shown in Figure 5, with increasing in hydrolysis time in all ac-
tivities of the enzyme 30, 60, and 90 (Anson unit/kg protein), the 
antioxidant activity increased at 120 and 150 min and then followed 
a downward trend. Reducing the amount of inhibitory activity of 
hydrolyzed protein by increasing in the hydrolysis time can be cor-
related with the progression of the amount of hydrolysis and the 
higher effects of the enzyme on the protein substance, and also 
breaking in some of the antioxidant peptides formed in the early 
stages of hydrolysis.

F IGURE  2 DE values: in the ratio of enzyme to substrate 
(60 Anson unit/kg protein) (alcalase–pepsin) at different times and 
temperatures

17

18

19

20

21

22

23

24

25

26

0 50 100 150 200 250

Hy
dr

ol
ys

is
 d

eg
re

e

Hydrolysis time (min)

40 C

45 C

50 C

55 C

F IGURE  3 DE values: in the ratio of enzyme to substrate 
(90 Anson unit/kg protein) (alcalase–pepsin) at different times and 
temperatures
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The differences in the size and amount as well as the structure of 
peptides and amino acids during hydrolysis could influence the anti-
oxidant activities (Wu, Chen, & Shiau, 2003), while the quenching of 

the free radicals was suggested as the main mechanism for this prop-
erty (Peng, Xiong, & Kong, 2009). Zhidong et al. (2013) stated that 
by increasing in the hydrolysis time and enzyme ratio, the antioxi-
dant capacity showed an increasing trend following with a decline. 
According to their findings, the optimized condition of hydrolysis for 
whey protein isolate was summarized as enzyme- to- substrate ratio 
of 2.22% (W/W), hydrolysis time of 3.60 hr, and the temperature of 
45.70°C. Also, increasing in the time of hydrolysis caused the grad-
ual improvement in DPPH- free radical scavenging ability (Wu et al., 
2003). Moreover, the antioxidant capacity of the hydrolyzates pre-
pared from camel milk caseins significantly improved by increasing 
in the hydrolysis time and also the DH value (Kumar, Chatli, Singh, 
Mehta, & Kumar, 2016). Likewise, the activity to scavenge the DPPH 
radicals of yak milk protein hydrolyzates (produced by Alcalase) was 
enhanced with the progressive increase in the hydrolysis process 
up to 7 hr (Mao, Cheng, Wang, & Wu, 2011). Also, the antioxidant 
activity of the enzymatic hydrolyzates produced from round scad 
muscle protein (by alcalase) and brown stripe red snapper muscle 
(by the action of flavourzyme) was improved by increasing in the 
DH value (Khantaphant, Benjakul, & Kishimura, 2011; Thiansilakul, 
Benjakul, & Shahidi, 2007). In the contrast, it was reported that the 

F IGURE  4 DPPH values: in the ratio of enzyme to substrate 
(30 Anson unit/kg protein) (alcalase–pepsin) at different times and 
temperatures
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F IGURE  5 DPPH values: in the ratio of enzyme to substrate 
(60 Anson unit/kg protein) (alcalase–pepsin) at different times and 
temperatures
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F IGURE  6 DPPH values: in the ratio of enzyme to substrate 
(90 Anson unit/kg protein) (alcalase–pepsin) at different times and 
temperatures
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Differences Low limit High limit p- Value*

DPPH- DH (ratio of alcalase enzyme: 
30 Anson unit/kg protein)

12.3 2.46 24.02 <0.05

DPPH- DH (ratio of alcalase enzyme: 
60 Anson unit/kg protein)

10.4 0.98 23.14 <0.05

DPPH- DH (ratio of alcalase enzyme: 
90 Anson unit/kg protein)

8.7 0.46 14.76 <0.05

aMultiple Tokyo HSD comparison test. *Significant difference at 5% error level. 

TABLE  1 Comparing the study groups 
in multiple aspectsa
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DPPH radical scavenging activity of the bovine casein hydrolyzates 
(produced with different proteolytic enzymes) was lower compared 
to the native parental proteins (Rival, Boeriu, & Wichers, 2001).

4  | CONCLUSION

The results of an investigation of the antioxidant properties of hydro-
genated proteins from quinoa showed the production of this product 
is effectively influenced by the reaction conditions, namely, tempera-
ture, hydrolysis time, and enzyme activity. In fact, each of the factors 
had an impact on the antioxidant features of the peptides. Finally, it 
can be said that quinoa can be used as a suitable source for the pro-
duction of active antioxidant peptides as a natural preservative in food 
formulations.
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