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Introduction: Most diseases involve a complex interplay between multiple biological processes at the cel-
lular, tissue, organ, and systemic levels. Clinical tests and biomarkers based on the measurement of a sin-
gle or few analytes may not be able to capture the complexity of a patient’s disease. Novel approaches for
comprehensively assessing biological processes from easily obtained samples could help in the monitor-
ing, treatment, and understanding of many conditions.
Objectives: We propose a method of creating scores associated with specific biological processes from
mass spectral analysis of serum samples.
Methods: A score for a process of interest is created by: (i) identifying mass spectral features associated
with the process using set enrichment analysis methods, and (ii) combining these features into a score
using a principal component analysis-based approach. We investigate the creation of scores using cohorts
of patients with non-small cell lung cancer, melanoma, and ovarian cancer. Since the circulating pro-
teome is amenable to the study of immune responses, which play a critical role in cancer development
and progression, we focus on functions related to the host response to disease.
Results: We demonstrate the feasibility of generating scores, their reproducibility, and their associations
with clinical outcomes. Once the scores are constructed, only 3 mL of serum is required for the assessment
of multiple biological functions from the circulating proteome.
Conclusion: These mass spectrometry-based scores could be useful for future multivariate biomarker or
test development studies for informing treatment, disease monitoring and improving understanding of
the roles of various biological functions in multiple disease settings.

� 2020 The Authors. Published by Elsevier B.V. on behalf of The Association for Mass Spectrometry:
Applications to the Clinical Lab (MSACL). This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction tissues and the organism as a whole. A method that can assess
Complex diseases, such as cancer, are characterized by
numerous gene-environment interactions and perturbations on
genetic, epigenetic and physiological levels, involving affected
levels of, and changes in, related biological functions from
simple blood-based measurements, and that can be repeated
over time, would be of great utility for understanding human
disease.
1, Breast
n; EGFR,
ling and
rometry;
cell lung
; PD-L1,

essen.de

http://crossmark.crossref.org/dialog/?doi=10.1016/j.clinms.2020.09.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.clinms.2020.09.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:joanna.roder@biodesix.com
mailto:lelia.net@biodesix.com
mailto:senait.asmellash@biodesix.com
mailto:sabine.kasimir-bauer@uk-essen.de
mailto:Harvey.pass@nyulangone.org
mailto:Jeffrey.weber@nyumc.org
mailto:heinrich.roder@biodesix.com
https://doi.org/10.1016/j.clinms.2020.09.001
http://www.sciencedirect.com/science/journal/23769998
http://www.elsevier.com/locate/clinms


J. Roder et al. Clinical Mass Spectrometry 18 (2020) 13–26
Measuring univariate biomarkers, or a linear combination of a
limited number of analytes, to characterize a disease trait or a par-
ticular aspect of the physiological state of a patient has shown sig-
nificant utility: several gene alterations predicting predisposition
to a disease (e.g., BRCA1 and BRCA2 mutations for breast and ovar-
ian cancers [1]) or response to targeted therapy (e.g., EGFR muta-
tions or ALK rearrangements in lung cancer [2], or BRAF
mutations in melanoma [3]) are broadly used in clinical practice.
There are also a number of protein biomarkers, such as glycated
hemoglobin (HbA1c), fructosamine, and glycated albumin for
detecting and monitoring pre-diabetes [4], or expression of PD-
L1, which is associated with response to PD-1 blockade in various
cancers [5] that have demonstrated important clinical value. How-
ever, there is a growing understanding that combinations of
biomarkers can contain more information than a single biomarker
[6,7]. For complex diseases, such as cancer, where outcomes are
defined by the interplay between immune response and tumor
biology, the likelihood that a single biomarker will be sufficient
to predict clinical outcomes in response to immune-targeted ther-
apy is low [8].

The application of modern data analysis methods to multiple
measurements, simultaneously, may result in the creation of qual-
itatively different, more powerful, biomarkers for disease progno-
sis and treatment optimization. Despite these expectations, this
approach has thus far seen limited success: only a small number
of -omics tests have passed rigorous independent validation and
demonstrated satisfactory levels of reproducibility [9]. Examples
of the few validated multivariate biomarkers in clinical use
include: the VeriStrat� proteomic test (Biodesix, Boulder, CO) for
lung cancer [10], the FDA_cleared 70-gene MammaPrint� assay
(Agendia, Irvine, CA) for breast cancer [11], and the OVA1� test
(Vermillion, Austin, TX) to predict ovarian malignancy [12]. These
tests provide binary results: VeriStrat Good or Poor, related to
prognosis in NSCLC; MammaPrint High Risk or Low Risk, associ-
ated with breast cancer recurrence, and high or low risk of ovarian
cancer for OVA1. While these binary classifications are useful in
the specific indications in which they are employed, a more gran-
ular approach that could be extended across multiple disease set-
tings would be of use when measuring levels of fundamental
biological processes. Taking into account potentially broad applica-
tions of assessing one or more processes of interest in an individual
sample, we sought to explore the possibility of development of
related biological scores.

Availability of a biological sample is of paramount importance
in clinical practice. Analysis of blood samples remains a mainstay
of medical testing and provides ready access to the circulating pro-
teome – a rich source of biological information. The abundance of
proteins in blood-based samples spans more than 10 orders of
magnitude and can reflect various aspects of the physiological
state of an organism [13]. Measurement of the circulating pro-
teome is especially suitable for analyzing interactions between
host and disease on a systemic level, as it can assess both inflam-
mation and immune responses [14,15]. Matrix-Assisted Laser
Desorption/Ionization Time-of-Flight (MALDI-TOF) mass spec-
trometry is a highly reproducible method for the high-
throughput measurement of the protein content of serum or
plasma that requires small sample volumes [16,17]. Although the
utility of conventional MALDI mass spectrometry for biomarker
research was limited by its low sensitivity, the Deep MALDI�

method has enabled a dramatic increase in the number of mass
spectral (MS) features (peaks) that can be quantified [17]. This
advance has extended the information content of MALDI spectra
and permitted the development and validation of multiple MALDI
mass spectrometry-based serum proteomic tests [18,19].

Several methods have been used to identify associations
between multiple MS features and biological processes [20–22].
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These approaches are based on the principles of set enrichment
analysis [23,24]. Instead of analyzing expression differences in a
univariate manner, one protein or gene at a time, enrichment anal-
ysis assesses expression differences consistent across a set of genes
or proteins related to a specific biological function. Hence, it is pos-
sible to associate the measurement of a feature in a mass spectrum
not just with a specific protein, but directly with a particular bio-
logical process. In prior work, we have shown that MS features
measured in MALDI mass spectra are associated with many biolog-
ical processes of interest, such as immune response and inflamma-
tion [22]. Furthermore, we demonstrated that for many processes
we could identify multiple associated MS features that could con-
tain information about the activation of the specific process. Here,
we further develop these ideas to describe a method which allows
MS data to be combined into scores that can quantify the level of
biological processes. These scores could be used to characterize
the level of specific biological processes, possibly as a function of
time, for an individual patient or used in the development of uni-
variate or multivariate tests to classify patients into different
molecular phenotypes. Taking cancer as the disease of interest,
we generate scores associated with biological functions related to
cancer development and prognosis using data derived from the
serum of cancer patients via MALDI mass spectrometry. We then
analyze the reproducibility of these scores and explore their poten-
tial biological relevance and potential association with clinical
variables using serum samples collected from multiple cohorts of
cancer patients. We demonstrate the potential viability and utility
of this biological score approach for future multivariate biomarker
and molecular diagnostic test development studies in complex dis-
ease settings when the serum proteome is expected to contain
information relevant for diagnosis, prognosis, and treatment
decisions.
2. Methods

2.1. Samples

All serum samples used in this study were collected under
Ethics Committee/Institutional Review Board-approved protocols
according to the requirements of the relevant commercial or aca-
demic biobank, clinical trial, or observational study.

2.1.1. Sample sets for score development and validation
Four sample sets were used for the development and validation

of the scores.

a. Reference Set 1 consisted of 100 serum samples from
patients diagnosed with non-small cell lung cancer (NSCLC);
46 patients were female, 54 male. Samples were obtained
from the commercial biobanks Conversant Bio (Huntsville,
AL) and Oncology Metrics (Fort Worth, TX).

b. Reference Set 2 consisted of 49 serum samples from lung
cancer and cancer-free patients. They were purchased from
commercial biobanks, including Conversant Bio (Huntsville,
AL), AdeptBio (Memphis, TN), and ProMedDx (Norton, MA).

c. The Score Development Set consisted of 85 serum samples
collected prior to second-line therapy from patients with
advanced NSCLC who were subsequently treated with erloti-
nib as part of a randomized clinical trial [10].

d. The Score Validation Set consisted of 123 serum samples col-
lected prior to second-line therapy from patients with
advanced NSCLC who were subsequently treated with
chemotherapy as part of the same clinical trial as the
patients whose samples constituted the Score Development
Set [10]. Patients from that trial were randomly allocated to
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receive either chemotherapy or erlotinib, and, hence, the
patient populations associated with the Score Development
Set and the Score Validation Set should be similar, although
serum samples were available for only 208 of the 263
patients enrolled in the study.

2.1.2. Sample sets for demonstration of score utility
The following sample sets were used for demonstration of score

utility.

a. The Melanoma Set consisted of pretreatment serum samples
from 118 patients treated with nivolumab as second or later
line therapy in a phase II clinical study, NCT01176461 [18].

b. The Ovarian Cancer Set consisted of 102 serum samples col-
lected at the time of surgery, prior to subsequent
chemotherapy, from patients with ovarian cancer [25].

c. The Early Stage Lung Cancer Set consisted of serum samples
collected prior to surgery from 117 patients with Stage I
NSCLC.

The Score Validation Set was also used in this setting.

2.1.3. Sample sets for reproducibility assessment

a. The Quality Control Reference Sample, created by pooling
serum for five healthy subjects (purchased from ProMedDx
LLC (Norton, MA, USA)) for quality control and batch correc-
tion during spectral preprocessing, was used to assess
within-batch reproducibility.

b. The Machine Qualification Set of 40 samples collected from
patients with lung cancer or colorectal cancer (purchased
from Oncology Metrics (Fort Worth, TX, USA)), created for
use in mass spectrometer qualification, was used to assess
between-batch reproducibility.

The Early Stage Lung Cancer Set was also used as a population-
representative cohort for the assessment of score reproducibility.

2.2. Data acquisition

2.2.1. Protein expression
An aptamer-based approach was used to obtain protein expres-

sion measurements for the two Reference Sets of samples [26]. The
1.3 k SOMAscan� assay (Somalogic, Boulder, CO) was used to
assess 1305 proteins in the serum samples of Reference Set 1,
while 1129 analytes had been measured using a prior version of
the assay (the 1.1 k SOMAscan assay). The list of proteins contained
in each SOMAscan panel is provided in the supplementary
materials.

2.2.2. MS acquisition
Serum samples were processed using a standard operating pro-

cedure that has been described previously [18]. Mass spectra were
obtained using a MALDI-TOF mass spectrometer (SimulTOF Sys-
tems, Marlborough, MA). The Deep MALDI� methodology [17]
was used to generate spectra from 3 mL of serum. The Deep MALDI
approach allows the detection and quantitation of MS features in
serum across a wider range of abundances than standard MALDI.
This is achieved by exposing samples to 400,000 MALDI laser
‘‘shots” rather than the several thousand ‘‘shots” used in standard
MALDI applications.

Independent sample preparation and spectral acquisition were
performed twice for each serum sample in Reference Set 1. Sample
volume only allowed one collection of mass spectra from Reference
Set 2. Sample preparation and spectral acquisition was carried out
three times for the Early Stage Lung Cancer Set. The Quality Control
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Reference Sample was prepared 14 times and spotted onto one
MALDI plate (i.e., run in one batch) to allow assessment of
within-batch reproducibility. The Machine Qualification Set of 40
samples were prepared and spotted onto one MALDI plate. This
process was repeated nine times for the evaluation of between-
batch reproducibility. The Score Development Set was run in three
batches, separately from the three batches of the Score Validation
Set.

2.3. Spectral processing

The spectra were processed to render them comparable
between samples. Spectral processing, including background esti-
mation and subtraction, normalization, alignment, and batch cor-
rection to reference spectra, followed methods previously
described [18]. Parameters specific to processing for this study
are provided in the supplementary materials. A pre-defined set of
274 MS features, with mass(m)/charge(Z) ratios between 3 kDa
and 30 kDa, were used in this study. These features were selected
because they are commonly found in spectra generated from
human serum and are known to be reproducible. Each MS feature
was defined as an m/Z range defined by two bounding m/Z values.
The feature value of a feature for a particular spectrumwas defined
as the sum of intensities of the processed spectrum within the m/Z
range of the feature. The definitions of the 274 features can be
found in the supplementary materials.

2.4. Construction of a biological score

The method used to construct a score for a particular biological
process of interest is outlined in Fig. 1 and described in detail in the
sections below.

2.4.1. Definition of the protein set
A set of proteins related to a biological process of interest was

generated by querying the GeneOntology database [27,49] using
AmiGO [50] and EMBL-EBI QuickGO [51] web applications. Evi-
dence was filtered to exclude automatic electronic annotations
and allow all manual assignment codes. This resulted in a list of
relevant gene products. The intersection of this list with the pro-
teins measured in the SOMAscan panels defined the Protein Set
for the specific biological process. For use with the Reference Set
1, we took the intersection of this list with the larger SOMAscan
panel; for use with Reference Set 2, we took the intersection of this
list with the proteins common to the two SOMAscan panels, (see
Fig. 1). The Protein Sets associated with each process included in
this study are available in the supplementary materials.

When selecting biological processes for this study, we focused
on those related to hallmarks of cancer [28] that have prominent
molecular representation in the circulating proteome. In particular,
we considered various aspects of inflammation, interferon signal-
ing and response, complement activation, and wound healing
[28–30]. We also explored extracellular matrix organization,
angiogenesis, and glycolysis.

2.4.2. Identification of MS features associated with the biological
process using set enrichment analysis

MS features associated with the biological process of interest
were identified using set enrichment analysis methods. The speci-
fic method used was based on the approach of Subramanian et al.
[23], but included an extension designed to increase its power to
detect associations in larger sample sets [31]. This approach has
previously been successfully employed in this setting [22]. In addi-
tion, this method provided a natural framework for the combina-
tion of set enrichment analysis data from both Reference Set 1
and Reference Set 2. (Raw protein expression data from Reference
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Fig. 1. Flowchart of the score creation process.
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Set 1 and 2 were not combined directly due to batch effects
between the two datasets and differences in the proteins contained
in the two panels.)
16
In detail, the standard method was applied to Reference Set 2,
due to its relatively small size [23]. The alternative method, which
used an alternate enrichment metric averaged over multiple splits
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of the dataset into halves [31], was applied to the larger Reference
Set 1. The two metrics assessing enrichment generated for Refer-
ence Set 1 and Reference Set 2 were then normalized, to ensure
they were comparable [23,52], and averaged to yield an assess-
ment of association of a specific MS feature with the biological pro-
cess in question across both Reference Sets. The significance of this
association was evaluated by comparing it with the null distribu-
tion created via random permutation of the MS feature values over
the samples. This approach generated a p value of association for
each MS feature with the biological process of interest.

This entire process was carried out independently for each of
the two MS acquisitions for Reference Set 1. A MS feature was
deemed associated with the biological process of interest if the p
value of association was below a chosen threshold for the analyses
for both independent acquisitions. In general, a threshold of 0.05
was taken. However, for biological processes where many MS fea-
tures were associated at this level of significance, a lower threshold
was applied to allow a more reliable identification of associated
features. Table 1 summarizes the significance level used and the
number of associated features identified for the biological pro-
cesses considered, as well as the number of proteins contained in
the corresponding Protein Sets. We define the number of MS fea-
tures associated with the biological process q to be the integer,
Kq. Lists of the MS features identified as associated with each pro-
cess are contained in the supplementary materials. In this study,
we only considered constructing biological scores for processes
for which we identified at least eight associated MS features. How-
ever, this threshold is arbitrary and, in principle, could be reduced
to allow the combination of smaller numbers of MS features.
2.4.3. Creation of the score from the MS feature values using principal
component analysis

The score for the biological process of interest was created using
MS data from the Score Development Set. Feature values for each
Table 1
Biological processes investigated with the number of associated MS features, the
threshold used to determine association, and the number of associated proteins in the
1.3 k SOMAscan assay. * For angiogenesis, the number of MS features identified was
18, but only 15 were used in score generation to provide a more angiogenesis-specific
score (see details in Section 2.4.3).

Biological processes Significance
Level

Number of
associated MS
features identified

Number of
proteins in the
Protein Set

Acute inflammatory
response

1.E-04 57 13

Acute phase reaction 1.E-04 91 14
Angiogenesis 0.05 15* 109
Complement

activation
1.E-04 68 35

Extracellular matrix
organization
(ECM)

0.05 11 97

Glycolysis 0.05 14 20
Immune tolerance 0.01 50 10
Interferon type 1

signaling/
response (IFN
type 1)

0.01 41 31

Interferon c
signaling/
response (IFN c)

0.05 32 68

Type 1 immune
response

0.05 32 24

Type 17 immune
response

0.05 34 13

Type 2 immune
response

0.05 9 11

Wound healing 1.E-05 10 49
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of the 274 features were available for each of the 85 samples. As
described below, an ensemble-averaged [32] or bagged (‘‘bootstrap
aggregated”) version [33] of principal component analysis (PCA)
[34] was carried out to minimize the tendency of PCA to overfit
when there are more attributes (MS features) than instances
(samples).

As many of the MS features have tails in their distributions, the
logarithm of the feature values was taken to bring the distributions
closer to normality. The mean and standard deviation of each MS
feature was calculated for the Score Development Set (N = 85).
These values were then used to center and scale each feature in a
simple z-score normalization.

Fifty-six samples from the dataset were randomly selected; this
subset constitutes one bag. PCA was performed on this subset of
samples using the MS data for the features that had been deter-
mined as associated with the biological process. This process gen-
erated a number of principal component (PC) directions, NPC, equal
to the minimum of the number of features used, Nf, and the num-
ber of samples in the subset (i.e., NPC = 56 if Nf > 56 and NPC = Nf if
Nf � 56). This was repeated many (217) times for different ran-
domly selected subsets of 56 samples (bags) from the Score Devel-
opment Set. The set of PC directions was averaged pairwise over
the multiple subset realizations, these combined pairwise, and so
on, until all had been averaged together to yield ensemble-
averaged PC directions. To check that the ensemble average was
producing a meaningful average, we inspected the distribution of
the angles between the ensemble-averaged PC vector and the PC
vector calculated for each subset realization [35]. Histograms of
these distributions are shown in the Supplementary Materials,
together with similar plots showing the distributions of angles
between the ensemble-averaged first PC vector and higher PC vec-
tors per bag, the distributions of angles between the ensemble-
average second PC vector and the third PC vector per bag, for pro-
cesses in which the third PC was used for a score, and the distribu-
tion of the proportion of variation explained by PCs used for scores
as determined for each bag. (Supplementary Figs. 1a-c, 2, and 3).
The distributions of angle between the ensemble-averaged PC
and the PCs calculated per bag were generally quite narrow
(95th percentile <12� for 10 of the scores, Supplementary Table 8)
and there was little overlap of the angular distributions between
one PC and another relative to the ensemble averaged first PC.

Only the first three ensemble-averaged PC directions (vectors),
PC1(q), PC2(q), PC3(q), were considered for score creation for each
biological process q, although higher PCs could be considered in
future studies. Each PC vector for biological process q has Kq = Nf

components, PCmi
(q), where m = 1,2,3 and 1 � i � Kq. The three can-

didate scores for a sample were defined as the projections of the
feature value vector of the sample on to these PC vectors. More pre-
cisely, if the sample had feature values FVi (1 � i � Kq) for the Kq

features associated with biological process q, we defined 3 candi-
date scores, S1(q), S2 (q), S3 (q) for process q for the sample via

Sm (q) =R i=1,Kq PCmi
(q) FVi for m = 1,2,3.

To determine that the scores created with this method were
useful as assessments of the particular biological processes, they
had to satisfy several criteria. First, the score for process q had to
be associated with process q. Even though the scores Sm(q) were
generated as linear combinations of feature values of features asso-
ciated with the biological process q, it does not necessarily follow
that the scores themselves were associated with this biological
process. Hence, to investigate which of Sm(q) had utility in assess-
ing the biological process q, set enrichment analysis was per-
formed for each score. Scores were generated for each sample in
Reference Set 1 and Reference Set 2 and the association of each
of the candidate scores with the process was assessed using the
set enrichment analysis process. Scores that were not found to be
associated with the biological process considered in their creation
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were discarded. Second, we further demanded that the score or
scores created for a particular process were more strongly associ-
ated with that process than scores created using sets of MS fea-
tures deemed as associated with other biological processes, i.e.,
the score(s) made using the sets of MS features deemed associated
with a biological process q had to be more strongly associated with
process q than scores made using sets of MS features for processes
other than q. In one instance (Angiogenesis), to produce a score sat-
isfying this criterion, we discarded three of the 18 features, which
were associated not just with this function, but also with IFN c sig-
naling and response.

The scores meeting these criteria were generated for all samples
in the Score Development Set and the Score Validation Set. The dis-
tributions of the scores were compared between Development Set
and Validation Set to check for any overfitting to the Score Devel-
opment Set. Good generalization of the score distribution was
found between the sets, as shown in Fig. 2. (The corresponding
plots for the other biological process/principal component scores
considered are included in the supplementary materials. In addi-
tion, Mann-Whitney p values for comparison of medians and
Brown-Forsythe p values for comparison of variance about the
median are provided for all scores.)

The scores were then standardized by centering the median at 0
and scaling by the difference between the 84th and 16th percentile
(so that the variance of the distribution was around 1). This was
carried out on the pooled Score Development and Score Validation
Set population. In addition, the ‘‘direction” of the score was deter-
mined, i.e., the standardized score was multiplied by 1 or �1 so
that higher score values corresponded to higher levels or higher
activation of the biological process. This latter step was necessary
as PCA determines the PCs to within an arbitrary multiplicative
factor of 1 or �1; without this adjustment, higher or lower scores
could correspond to higher levels of activation of the biological
process. The direction was determined by examining the correla-
tion of each score with the protein expression values within Refer-
ence Set 1 for proteins known to be relevant to the biological
process in question. For example, relevant proteins measured in
the panel known to be elevated for high levels of the biological pro-
cess had to be associated with high scores. If correlations between
proteins important for a process and the score for that process
were very weak or gave conflicting information on score direction,
the score was rejected; unambiguous determination of the score
direction was a third criterion for a score to be considered useful.

In summary, each retained candidate score is completely
defined by: the feature value normalization factors, its PC vector,
PCm(q), the score normalization factors, and any required direction
correction. Once these parameters have been determined, the score
can be generated for any sample for which processed mass spectra
are available.
3. Results

3.1. Reproducibility of scores

The reproducibility of the scores was assessed within and
between batches and studied separately for a population-
representative cohort.

The Quality Control Reference Sample was prepared from
scratch 14 times and each preparation spotted onto a single MALDI
plate. Biological scores were generated from each of the 14 result-
ing Deep MALDI spectra. The standard deviation across the 14
preparations were calculated to assess within batch reproducibil-
ity. The standard deviations for the Complement Activation Score,
Glycolysis Score, Wound Healing Score and Type 17 Immune
Response Score (from third principal component) were 0.12, 0.14,
18
0.19, and 0.16, respectively. Across all 17 scores created, the stan-
dard deviations ranged from 0.09 for the ECM score created from
the third principal component to 0.22 for the third principal com-
ponent score for Interferon c, with a median of 0.16. (Note that
each score was scaled so that its distribution had a standard devi-
ation across a clinical population of 1.)

Between batch reproducibility was assessed using the Deep
MALDI spectra obtained from nine runs of the Machine Qualifica-
tion Set. This set of 40 serum samples can be spotted onto a single
MALDI plate. This process was repeated nine times across a time
span of 31 months; each time all samples were prepared from
scratch. The standard deviation across batches for Complement
Activation Score ranged from 0.07 to 0.30 (median 0.14), depend-
ing on sample. The corresponding results for Glycolysis Score,
Wound Healing Score, and Type 17 Immune Response Score
(PC3) were 0.11–0.50 (median 0.28), 0.13–0.60 (median 0.29),
and 0.14–0.43 (median 0.29). Plots of the mean score against the
standard deviation of the score across batches for all 40 samples
and histograms of the standard deviations across batches for all
40 samples are provided for all 17 scores in the supplementary
materials. While score reproducibility was clearly sample depen-
dent, the standard deviation across batches did not show any
marked dependence on the mean score value of the sample.

The Machine Qualification Set had been assembled to provide a
good coverage of MS feature values within the 40 sample set. It
was not designed to be representative of a clinical patient popula-
tion. In order to provide an assessment of score reproducibility on a
clinical population representative sample set, the scores were gen-
erated for multiple, independent, MS generations from the Early
Stage Lung Cancer Set. Spectra were acquired for each of the 117
samples in this set from scratch three times over a period of more
than two months. Fig. 3 illustrates reproducibility by showing con-
cordance plots of Complement Activation Score, Glycolysis Score,
Wound Healing Score (all from PC1) and Type 17 Immune
Response Score (from PC3) for the three sets of spectra generated.

Corresponding plots for the other scores are shown in the Sup-
plementary Materials. Coefficients of determination (r2) for con-
cordance between Run 2 and Run 1 or Run 3 and Run 1 varied
between 0.79 and 0.97 across all 17 scores, with median being
0.87. Slopes of the least squared fit lines for the concordance plots
varied between 0.87 and 1.03 across all 17 scores, with median
0.94. The reasonable concordance demonstrated between the
scores produced by repeat measurements on the same samples is
a necessary condition for practical application of the scores.

3.2. Correlations between scores for different biological processes

The biological processes included in this study have varying
levels of correlations with each other. Some aspects of host
response to cancer are intrinsically related. For example, reaction
of the innate immune system to the disease includes various fea-
tures of acute response and inflammation [36,37], while activation
of the complement cascade impacts both adaptive and innate
aspects of the cancer immunity cycle [38]. Other processes, such
as glycolysis, changes in angiogenesis, or alterations of extracellu-
lar matrix, are related to different hallmarks of cancer [28], and
they may be less correlated. These relationships are reflected in
the heatmaps of the correlation matrix between scores shown in
Fig. 4.

Fig. 4 confirms that the scores display the inter-process correla-
tions that are expected. For example, the scores for the closely
related processes of acute inflammatory response, complement
activation, and acute phase reactions, show strong correlations
with each other in all four cohorts. Scores for processes that would
be considered as less related, such as acute inflammatory response
and extracellular matrix organization, show low levels of correla-



Fig. 2. Histograms showing score distributions for the Score Development Set (‘‘DEVELOPMENT”) and the Score Validation Set (‘‘VALIDATION”), with inset percentiles, for the
biological processes: complement activation, glycolysis, wound healing (all from PC1) and type 17 immune response (from PC3).
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Fig. 3. Concordance plots showing the reproducibility of the scores generated from three independent spectral acquisitions (Run 1, Run 2, and Run 3) for samples in the Early
Stage Lung Cancer Set. Scores shown are A – Complement Activation, B – Glycolysis, C – Wound Healing, (all from first principal component) and D – Type 17 Immune
Response (from third principal component (PC3)). The corresponding least squares regression lines and statistics are shown for Run 2 vs Run 1 (in red) and Run 3 vs Run 1 (in
blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

J. Roder et al. Clinical Mass Spectrometry 18 (2020) 13–26
tion in all four cohorts. While overall the correlation structure is
very similar between the four cohorts, the Early Stage Lung Cancer
Set is somewhat different from the other three cohorts, with
slightly less correlation between both IFN type 1 and IFN c signal-
ing and response and most of the other processes.
3.3. Applications of scores

3.3.1. Differences in score distribution across populations
Fig. 5 shows the distributions of scores for complement activa-

tion, type 17 immune response, wound healing, and glycolysis in
three different tumor types (ovarian cancer, lung cancer, and mel-
anoma) and two stages of lung cancer: early stage, pre-surgery and
late stage, metastatic. The results illustrate that the distribution of
each score can differ depending on the clinical indication and that
the nature of differences in distribution across indications depends
on which score one is interested in. As an example of differences
across indication, the center of the Glycolysis Score distribution
varies with indication. The Mann-Whitney test p values for ovarian
vs advanced stage lung, advanced stage lung vs melanoma, and
melanoma vs early stage lung are <0.001, 0.016, and <0.001,
respectively. Interestingly, the center of the distribution differs
between early and late stage lung cohorts for both Glycolysis Score
(p < 0.001) and Wound Healing Score (p < 0.001), while it is similar
for the Complement Activation score (p = 0.432). While the center
of the Complement Activation Score distribution is similar for both
lung cancer cohorts, its width is clearly broader in the advanced
stage lung cancer cohort than in the early stage lung cancer cohort
(Brown-Forsythe p < 0.001). Mann-Whitney and Brown-Forsythe p
values are provided for all six pairwise comparisons of the scores in
the Supplementary Materials (Supplementary Tables 8 and 9). Note
that these kinds of differences were not observed when the score
distribution was compared between the Score Development Set
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and Score Validation Set, which were drawn from the same patient
population (see Fig. 2 and Supplementary Materials).

Tumor development and progression are associated with com-
plex pathophysiological changes that are reflected in the circulat-
ing proteome. Specific characteristics of these changes depend on
tumor site and cell origin, tumor microenvironment, host age, hor-
monal, and immune status, and reflect the immense heterogeneity
of cancer [39]. Our observations comparing score distributions
across indications support the notion that proteomic-based scores
can reflect nuanced distinctions between disease states. Further
validation in additional cohorts will be required to confirm the
observed differences in score distribution.
3.3.2. Scores as predictors of outcome
One possible utility of the scores in medical applications is

related to their associations with clinical outcomes. We evaluated
these relationships in two ways using the scores created for the 13
biological processes in Table 1 that passed the score creation crite-
ria. First, the association of each score, as a continuous variable,
with overall survival (OS) was assessed within a Cox proportional
hazard (CPH) model. Calculations were performed for advanced
stage lung cancer patients treated with single agent chemotherapy
(Score Validation Set, N = 123), ovarian cancer patients pre-surgery
who subsequently received adjuvant chemotherapy (Ovarian Can-
cer Set, N = 102) and advanced melanoma patients who received
immunotherapy (Melanoma Set, N = 118). The results are shown
in Table 2. Second, each cohort was stratified into two subgroups
by score above the cohort median (‘‘score high”) or below the
cohort median (‘‘score low”). Overall survival was then compared
between the ‘‘score high” and ‘‘score low” subgroups using the
Kaplan-Meier method and CPH models. Plots for four scores for
the three patient cohorts analyzed are shown in Fig. 6.



Fig. 4. Heatmaps of correlation matrix between pairs of scores for different biological processes across samples from different cohorts: Late Stage Lung Cancer (Score
Validation Set), Early Stage Lung Cancer Set, Melanoma Set, Ovarian Cancer Set. The biological processes are abbreviated as AIR: Acute inflammatory response, ANG:
Angiogenesis, APR: Acute phase reaction, CA: Complement activation, ECM: Extracellular matrix organization, GLY: Glycolysis, IFNg: Interferon c signaling and response,
IFN1: Interferon type 1, IT: Immune tolerance, WH: Wound healing, IR1: Type 1 immune response, IR2: Type 2 immune response, IR17: Type 17 immune response.
Correlation matrix elements <0.5 are shown in dark blue. All scores are derived from the first principal component vector, apart from IR17, which is from the third principal
component vector. Only one score per process (lowest PC) is illustrated. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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From Table 2 it is clear that many scores were associated with
overall survival in all evaluated indications (e.g., Acute Inflamma-
tory Response Score, Complement Activation Score, and Immune
Tolerance Score), while other scores, such as that for angiogenesis,
showed no sign of association with survival. Further, some pro-
cesses (e.g., glycolysis, extracellular matrix organization, or type
17 immune response) seemed to impact outcome only in one indi-
cation (ovarian cancer) and not in the others. These observations
are also reflected in Fig. 6, where impact of scores was studied
based on threshold definitions.

The results are of interest in the context of comparative proper-
ties of cancers of different origins. All three tumor types demon-
strated consistent correlations between survival and various
aspects of innate immunity and inflammation (acute immune
response, activation of complement system, acute phase reaction,
interferon gamma-signaling and responses). This observation is
in line with the general understanding of inflammation as an
enabling characteristic of cancer [29,40] and supports previous
results on association of prognostic and predictive multivariate
proteomic tests with systemic host response to the disease
[22,18,19,41]; this behavior should be expected if the scores pro-
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vide information on levels of inflammation and the state of the
innate immune system. However, differences were also observed
between tumor types. The Ovarian Cancer Set demonstrated asso-
ciations of OS with Extracellular Matrix Organization Score and
Glycolysis Score, as well as a correlation of OS with one specific
type of immune response (Type 17 Immune Response Score),
which were not observed in the other two indications. Addition-
ally, patients with melanoma or lung cancer, but not ovarian can-
cer, demonstrated association of OS with type 1 immune response,
signaling and response to IFN type 1, and a correlation of OS (in
melanoma) or a trend to correlation (lung cancer) with wound
healing.

Investigation of association of scores with outcome can be use-
ful to assess the information that is contained in multiple scores
constructed using different principal component vectors for a par-
ticular biological process. For example, we were able to create
scores for the first and third principal components for IFN c signal-
ing and response. While the score from the first principal compo-
nent showed a significant univariate association with survival for
patients with melanoma (p = 0.001), the score from the third com-
ponent had p = 0.225. However, when incorporated simultane-



Fig. 5. Histograms of distributions of Complement Activation Score, Glycolysis Score, Wound Healing Score, and Type 17 Immune Response Score for four indications: ovarian
cancer patients (Ovarian Cancer Set), advanced melanoma patients (Melanoma Set), early stage lung cancer patients (Early Stage Lung Cancer Set), late stage lung cancer
patients (Score Validation Set).

Table 2
Univariate Cox proportional hazard ratios and p values for the scores built for the 13 biological processes of Table 1 for the Score Validation Set, the Ovarian Cancer Set and the
Melanoma Set. Scores are created from the first principal component, unless indicated by the PCn suffix (n = 2 or 3 for second or third principal component, respectively). P values
have not been corrected for multiple comparisons.

Ovarian Cancer Set Melanoma Set Score Validation Set (Late Stage
Lung Cancer)

Scores P HR (95% CI) P HR (95% CI) P HR (95% CI)

Acute inflammatory response 0.031 1.53 (1.04–2.26) <0.001 1.78 (1.33–2.38) 0.002 1.31 (1.10–1.56)
Complement activation 0.034 1.52 (1.03–2.24) <0.001 1.75 (1.31–2.34) 0.004 1.30 (1.09–1.55)
Acute phase reaction 0.045 1.51 (1.01–2.26) <0.001 1.76 (1.30–2.39) 0.007 1.29 (1.07–1.54)
IFN c 0.022 1.56 (1.07–2.28) 0.001 1.71 (1.25–2.33) 0.008 1.27 (1.06–1.51)
Immune tolerance 0.047 1.47 (1.01–2.16) <0.001 1.71 (1.27–2.31) 0.011 1.26 (1.05–1.51)
IFN type 1 0.086 1.42 (0.95–2.12) 0.001 1.67 (1.25–2.22) 0.023 1.23 (1.03–1.47)
Type 1 immune response 0.212 1.23 (0.86–1.96) 0.001 1.63 (1.22–2.17) 0.029 1.23 (1.02–1.47)
Wound healing 0.195 0.74 (0.47–1.17) 0.013 0.69 (0.52–0.93) 0.078 1.19 (0.98–1.44)
ECM_PC3 0.019 0.77 (0.61–0.96) 0.623 1.06 (0.85–1.32) 0.208 0.89 (0.74–1.07)
ECM_PC2 0.068 1.36 (0.98–1.88) 0.382 0.89 (0.69–1.15) 0.478 1.07 (0.89–1.29)
Type 2 immune response 0.036 1.40 (1.02–1.92) 0.249 0.87 (0.68–1.11) 0.482 1.07 (0.88–1.31)
ECM 0.006 1.48 (1.12–1.96) 0.578 1.07 (0.84–1.38) 0.524 1.07 (0.87–1.30)
Angiogenesis 0.696 1.09 (0.72–1.64) 0.220 1.20 (0.90–1.59) 0.857 1.02 (0.84–1.24)
Glycolysis 0.045 0.72 (0.52–0.99) 0.539 0.92 (0.72–1.19) 0.857 1.02 (0.83–1.25)
Type 17 immune response_PC3 0.038 1.49 (1.02–2.18) 0.464 1.13 (0.82–1.56) 0.897 1.01 (0.83–1.25)
Glycolysis_PC3 0.099 0.74 (0.52–1.06) 0.698 1.07 (0.77–1.49) 0.957 0.99 (0.80–1.23)
IFN c _PC3 0.691 1.07 (0.77–1.50) 0.225 0.84 (0.64–1.11) 0.989 1.00 (0.82–1.23)
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Fig. 6. Kaplan-Meier plots of overall survival for the Ovarian Cancer Set, the Melanoma Set, and the Score Validation Set (advanced stage NSCLC) stratified by score high
(above median for cohort) and score low (below median for cohort) for Complement Activation Score, Glycolysis Score, Wound Healing Score (all from first PC) and Type 17
Immune Response (Type 17 IR) Score (from third PC).
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ously into a multivariate Cox model, both scores were independent
predictors of survival (p < 0.001 and 0.034 for first and third PC
scores, respectively). Hence, they provided independent informa-
tion about the survival of melanoma patients treated with immune
checkpoint inhibitors. While both scores were associated with IFN
c and were constructed from MS features associated with IFN c,
the information that they provided was complementary, possibly
relating to different aspects of IFN c signaling. Elucidation of the
biological significance of the ability of scores to predict outcome
and the differences between indications (tumor types and thera-
pies) requires further investigation and validation in independent
23
patient cohorts. However, these observations are consistent with
the notion that scores are related to relevant biological processes
and may reflect different aspects of the disease state. The results
also indicate that the scores contain information with potential
utility in clinical and research settings, and that they may assist
in monitoring and better understanding of the biological processes.

3.3.3. Scores as engineered features
In addition to using the scores as continuous measures of bio-

logical processes of interest, the scores can be thought of as a
method of feature reduction or feature engineering [42]. Modern
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machine learning methods are now able to efficiently and robustly
combine many attributes to generate tests able to predict patient
outcomes [18,19,43]. However, in some settings it may still be
advantageous to reduce the number of variables used for test
development or to focus on certain processes of interest.

To demonstrate the potential utility of the biological scores in
this setting, we developed a test able to stratify patients with mel-
anoma into two groups with better and worse outcomes when
treated with an immune checkpoint inhibitor. For this purpose,
we used all 17 scores presented in this manuscript. The Melanoma
Set was used as the classifier development set. We used a hierar-
chical, dropout-regularized classifier architecture and an approach
in which training class labels and classifier are iteratively refined to
reveal the molecular structure consistent with the endpoint of
interest [44]. More details are provided in the Supplementary
Materials. A test was created for which patients classified as Good
Prognosis had better overall survival compared with those classi-
fied as Poor Prognosis: the hazard ratio (HR) for survival between
Good and Poor prognosis groups (95% confidence interval (CI))
was 0.60 (95% confidence inteval (CI) 0.35–1.04). The test validated
well on an independent cohort of patients with advanced mela-
noma treated with checkpoint inhibition (see [19] for validation
cohort details, HR (95% CI) = 0.60 (0.33–1.09)). This example illus-
trates the potential of the scores as engineered or meta-features for
multivariate test development.
4. Discussion

We have demonstrated that, after using set enrichment analysis
methods to identify MS features associated with biological pro-
cesses of interest, it is possible to combine these features into a
score characterizing a specific biological process. Such scores
allowed the assessment of various biological processes within a
patient based on the evaluation of the patient’s serum proteome
by mass spectrometry. We showed that these scores have potential
for both monitoring of levels of specific biological processes, possi-
bly longitudinally, for an individual patient and for use in multi-
variate tests that classify patients according to their molecular
phenotype.

This current study has some limitations. We can only make
scores for a particular biological process if the protein panels used
to assess the Reference Sets contain proteins relevant for this pro-
cess. If the protein panel does not include enough relevant pro-
teins, it will not be possible to identify associated MS features. It
would be of interest to extend protein expression measurements
to larger panels to provide better coverage of biological processes
of interest and increase the statistical power with which they
can be investigated. The accuracy and reproducibility of the protein
expression measurements are also key – with improved measure-
ment precision providing greater power to identify associations.
For similar reasons, the quality of MS data is very important. Here,
we have used the Deep MALDI mass spectrometry method at a
level of 400,000 laser shots. This provides us with a median CV
across these MS features of around 5% [17]. Improving spectral
quality by averaging over more laser shots could reduce CVs for
these features and allow consideration of more MS features.
Increasing the reproducibility of our MS acquisition would poten-
tially enable us to identify more features associated with some pro-
cesses than we can detect currently. In addition, increased
precision of measurement could improve the reproducibility pro-
file of the generated scores. We have employed multiple levels of
quality control (QC) in our data acquisition and processing proce-
dures to maintain data quality and reproducibility. In particular,
we have implemented multiple automated QC checks in our spec-
tral processing to detect degraded and oxidized samples, contam-
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inated samples, and samples yielding spectra with MS peaks
inconsistent with those typically found in human serum. In addi-
tion, all batches undergo batch QC checks using spectra from refer-
ence samples that are plated on each batch of experimental
samples. As for other data acquisition modalities, a multilayered
QC system is essential for ensuring data integrity and
reproducibility.

In this study we have used MALDI mass spectrometry to survey
the serum proteome. MALDI mass spectrometry has the advan-
tages of being a high throughput, reproducible method which
requires only small volumes (3 mL) of serum. The recognized disad-
vantages of MALDI include its semi-quantitative nature, its inabil-
ity to detect the lowest abundance components of a complex
mixture such as serum, and the fact that some proteins are not
amenable to ionization under its soft ionization method. However,
the approach that we have taken to score development, which does
not rely on identification of the proteins constituting individual MS
peaks or the ability to measure abundance (absolute or relative) of
specific named proteins, largely circumvents these limitations. It is
still possible, though, that the inability of MALDI to assess proteins
with the lowest serum abundances and those not undergoing soft
ionization could prevent creation of scores if these factors lead to
the lack of detectable MS features associated with a biological pro-
cess of interest.

It should be possible to create biological scores from serum pro-
teomic data obtained from other platforms. For example, from an
antibody-based protein panel, one has abundance measurements
of many known proteins. It would theoretically be possible to
use PCA or a different bioinformatics tool to combine the abun-
dances of proteins known to be relevant for a particular biological
process to create a score. Association of the resulting score with
that biological process could again be verified using set enrichment
analysis methods. Alternatively, data from other types of mass
spectrometry, such as LC MS-MS or MRM could be employed. For
methods where the (relative) abundances of known proteins are
obtained, these could be combined as for the antibody-based panel
data; for methods where the measured MS features are not known
to directly represent (relative) abundances of known protein enti-
ties, a method parallel to the one we have presented here could be
applied. Some of these methods require larger volumes of serum
than we needed for our Deep MALDI sample characterization
(e.g., SOMAscan requires at least 150 mL per sample and LC MS-
MS studies typically report volume requirements of around 80 mL
to allow for the depletion or fractionation of serum samples) and
we were not able to test other methods due to sample volume lim-
itations for our cohorts. MRM methods could be viable, as it has
been reported that it is possible to measure 80 relatively high
abundance proteins from 5 mL of serum [45]. However, these pro-
teins would have to be prespecified and relevant to the biological
process for which a score is required. If employing a different pro-
tein measurement technique, it would be necessary to adopt
appropriate quality control and batch correction processes and to
carry out a separate assessment of the reproducibility of the scores,
once they had been generated and passed the relevant checks in
the score creation workflow (Fig. 1).

We used ensemble-averaged PCA to combine the MS features
associated with a particular biological process into a score. We
then applied a series of checks (test of association of score with
the process of interest, identification of direction of score from pro-
tein expression data, and validation of score distribution in a sep-
arate sample set) to test that the PCA process had produced a score
with minimal required properties. This method had the advantage
of being easy to implement and interpret and not requiring any
choice of additional parameters or functions. The latter is an
important consideration when working in high dimensional fea-
ture space with relatively few samples, where some algorithmic
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approaches fail. For some processes where we could identify asso-
ciated MS features, we were unable to make scores that met our
criteria. One reason for this could be the limitations of standard lin-
ear PCA, which can only identify directions of variability in the data
set that are rotations of our feature space axes. It would be of inter-
est to investigate other methods of combining the MS features that
might produce useful scores where linear PCA fails or could pro-
duce scores more strongly associated with the process of interest
than those from linear PCA. Kernel PCA [46] is one obvious exten-
sion that could be explored.

There may also be some limitations to the use and applicability
of the scores based on blood-based testing. While, theoretically,
the serum proteome contains molecules representative of all pro-
cesses in the organism, in practice some biological processes, such
as those happening at the cellular level within small tumors, may
be hard to assess. We have concentrated on the cancer disease
state and relevant biological processes, which, as we anticipated
from previous work, would be amenable to study from serum.
While we expect that many other disease states, including those
where inflammation and the immune system play key roles, will
be good candidates for use of scores derived from mass spectrom-
etry of blood-based samples, such scores may not be useful for
some other biological processes and conditions.

The preliminary applications of scores, described herein, have
demonstrated consistency with expected behavior in terms of
association with outcomes, correlation between processes, and
correlations across indications. We have also shown that scores
can be used as engineered features for multivariate test develop-
ment. It should be noted that these observations and related
hypotheses are exploratory in nature and require independent val-
idation. We expect that this biological score approach may be
potentially useful in other applications, for example, monitoring
of changes in biological processes during the course of disease or
during treatment via longitudinal serum sampling. For example,
recent work has used biological scores to investigate the mecha-
nisms of early progression and immune-related adverse events
for patients with non-small cell lung cancer treated with
immunotherapy [47,48]. Complement, interferon gamma, and
immune tolerance scores after three weeks on therapy, but not
before treatment initiation, were associated with early disease pro-
gression. These scores, as well as extracellular matrix organization
score, at three weeks were also associated with adverse events,
which all occurred later, with median onset time of 105 days after
therapy initiation. These observations provide hypotheses of
underlying biological mechanisms that require validation in future
studies and confirmation with alternative molecular approaches.

5. Conclusions

In summary, we have shown that it is possible to create scores
to characterize biological processes using MS data generated from
serum samples. The advantage of this approach lies in its ability to
provide information on complex biological processes using MALDI-
TOF mass spectrometry of easily available blood samples, which do
not require invasive procedures and require only small sample vol-
umes. The scores demonstrated acceptable levels of reproducibility
between independent spectral acquisitions and have the potential
for clinical relevance across different types of cancer. Serum sam-
ples assess properties of the whole organism, not just tumor, so
the application of these scores could extend well beyond oncology.
In particular, it would be of interest to evaluate the utility of this
approach in other inflammatory and immune-related diseases
and in settings, such as longitudinal monitoring, where the ease
of sample collection would be important.
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