$0.04 \times 0.02 \times 0.02 \text{ mm}$

6805 measured reflections

735 independent reflections

623 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 50.42 \text{ mm}^{-1}$

T = 200 K

 $R_{\rm int} = 0.090$

35 parameters

 $\Delta \rho_{\rm max} = 2.10 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -2.86~{\rm e}~{\rm \AA}^{-3}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diytterbium(II) lithium indium(III) digermanide, Yb₂LiInGe₂

Tae-Soo You and Svilen Bobev*

Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA

Correspondence e-mail: sbobev@mail.chem.udel.edu

Received 14 April 2010; accepted 20 April 2010

Key indicators: single-crystal X-ray study; T = 200 K; mean $\sigma(In-Ge) = 0.002$ Å; R factor = 0.029; wR factor = 0.059; data-to-parameter ratio = 21.0.

The title compound, Yb₂LiInGe₂, a new ordered quaternary intermetallic phase, crystallizes with the orthorhombic Ca₂LiInGe₂ type (Pearson code *oP*24). The crystal structure contains six crystallographically unique sites in the asymmetric unit, all in special positions with site symmetry *.m.*. The structure is complex and based on [InGe₄] tetrahedra, which share corners in two directions, forming layers parallel to (001). Yb atoms fill square-pyramidal (Yb1) and octahedral (Yb2) interstices between the [InGe_{4/2}] layers, while the small Li⁺ atoms fill tetrahedral sites.

Related literature

Isotypic Ae_2 LiInGe₂ (Ae = Ca, Sr) compounds have been reported by Mao *et al.* (2001). Other related structures include Ca₂CdSb₂ and Yb₂CdSb₂ (Xia & Bobev, 2007), SrInGe and EuInGe (Mao *et al.*, 2002), (Eu_{1-x}Ca_x)₃In₂Ge₃ and (Eu_{1-x}Ca_x)₄-In₃Ge₄ (You *et al.*, 2010), and (Sr_{1-x}Ca_x)₅In₃Ge₆ (You & Bobev, 2010). *STRUCTURE TIDY* (Gelato & Parthé, 1987) was used for standardization of the atomic coordinates.

Experimental

Crystal data Yb₂LiInGe₂ $M_r = 613.02$

Orthorhombic, *Pnma* a = 7.182 (3) Å

b = 4.3899 (18) Å
c = 16.758 (7) Å
$V = 528.3 (4) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{\rm min} = 0.258, T_{\rm max} = 0.365$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.059$ S = 1.11735 reflections

Table 1	
Selected	bond lengths (Å).

In-Ge1 ⁱ	2.7803 (13)	In-Ge2 ⁱⁱⁱ	2.809 (2)
In-Ge1 ⁱⁱ	2.7803 (13)	In-Ge2	2.8203 (19)
Symmetry codes: (i)	$-x+\frac{1}{2}, -y+1, z+\frac{1}{2};$ (i	i) $-x + \frac{1}{2}, -y, z + \frac{1}{2}$	$\frac{1}{2}$; (iii) $x - \frac{1}{2}, y, -z + \frac{3}{2}$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support from the University of Delaware Research Foundation – Strategic Initiative Grants (UDRF).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2327).

References

- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
- Mao, J.-G., Goodey, J. & Guloy, A. M. (2002). Inorg. Chem. 41, 931–937.
- Mao, J.-G., Xu, Z. & Guloy, A. M. (2001). Inorg. Chem. 40, 4472–4477.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Xia, S.-Q. & Bobev, S. (2007). J. Am. Chem. Soc. 129, 4049-4057.
- You, T.-S. & Bobev, S. (2010). J. Solid State Chem. doi:10.1016/ j.jssc.2010.03.036.
- You, T.-S., Tobash, P. & Bobev, S. (2010). Inorg. Chem. 49, 1773–1783.

supplementary materials

Acta Cryst. (2010). E66, i43 [doi:10.1107/81600536810014595]

Diytterbium(II) lithium indium(III) digermanide, Yb2LiInGe2

T.-S. You and S. Bobev

Comment

During our exploratory investigations of lithium-containing germanides using molten indium as a metal flux, the quaternary compound Yb₂LiInGe₂ was obtained for the first time. It crystallizes in space group *Pnma* and is isostructural with Ae_2 LiInGe₂ (Ae = Ca and Sr) compounds which were reported previously by Mao *et al.* (2001). This finding implies that this series can probably be extended towards other lanthanide metals, which likewise exhibit a stable oxidation state of +II, such as Eu for example.

The crystal structure of the title compound can be readily described as consisting of puckered polyanionic layers of corner-shared [InGe₄] tetrahedra, running parallel to the *ab* plane and alternately stacked along the *c* axis (Figure 1). Yb and Li atoms, in turn, can be viewed simply as "electron donors", which provide the electrons to fill the valence shells of In and Ge, as well as "spacers" that separate the $[InGe_{4/2}]^{5-}$ polyanionic layers.

The In—Ge bond distances observed within the [InGe₄] tetrahedron range from 2.7803 (13) to 2.8203 (13) Å, and are comparable to those in other indium germanides such as Ca₂LiInGe₂ (2.806 (1) - 2.838 (1)Å; Mao *et al.*, 2001), Sr₂LiInGe₂ (2.885 (1) - 2.926 (1) Å; Mao *et al.*, 2001), EuInGe (2.751 (1) Å; Mao *et al.*, 2002), SrInGe (2.780 Å; Mao *et al.*, 2002), as well as the recently reported (Eu_{1-x}Ca_x)₃In₂Ge₃ (2.760 (2) - 2.869 (1) Å), (Eu_{1-x}Ca_x)₄In₃Ge₄ (2.755 (2) - 2.887 (1) Å; You *et al.*, 2010), and (Sr_{1-x}Ca_x)₅In₃Ge₆ (2.672 (2) - 2.877 (3) Å; You & Bobev, 2010). In the absence of direct In—In or Ge—Ge bonding, the formula of the title compound can be rationalized as follows: $[(Yb^{2+})_2(Li^+)][(4b-In^-) (2b-Ge^{2-})_2]$. Here, the In atom is tetrahedrally surrounded by four Ge atoms (Ge1 × 2 and Ge2 × 2) and is therefore assigned a formal charge of "-1", while the Ge atoms are 2-bonded, carrying a formal charge of "-2" each (4-bonded and 2-bonded atoms are denoted as 4*b*- and 2*b*-, respectively).

Interestingly, the structure of the title compound closely resembles the structure of one of our previously reported antimonides, *viz*. Ca_2CdSb_2 (Xia & Bobev, 2007). The latter structure is also made up of corrugated layers of corner-shared [CdSb4] tetrahedra, with Ca^{2+} cations filling the space between them. The obvious difference between these two structure types is the addition of Li atoms in Yb₂LiInGe₂, filling small tetrahedral holes between the layers (Figure 1).

Experimental

The flux reaction was carried out in a 2 cm³ alumina crucible, using a total *ca* 500 mg mixture of the elements (Yb and Ge from Alfa, Li from Sigma-Aldrich), which was then topped off with *ca* 2 grams of In (Alfa, shots) acting as a metal flux. The crucible was subsequently enclosed and flame-sealed in an evacuated fused silica ampoule, and then was heated at 120 Kh⁻¹ to 1223 K, kept there for 10 h, cooled to 573 K, where the excess In was removed by centrifugation.

Refinement

Displacement parameters for all atoms were refined anisotropically except those of Li. The maximum residual electron density lies 0.87 Å from Yb1, and the minimum residual electron density lies 1.97 Å from Ge2. The atomic coordinates have been standardized with the aid of STRUCTURE TIDY (Gelato & Parthé, 1987).

Figures

Fig. 1. Combined ellipsoid and polyhedral representations of the crystal structure of orthorhombic Yb₂LiInGe₂, viewed along [010]. Color code: Yb - light grey, Li - dark yellow, In - light blue, and Ge - magenta. Ellipsoids are drawn at the 90% probability level.

Diytterbium(II) lithium indium(III) digermanide

Crystal data

Yb ₂ LiInGe ₂	F(000) = 1024
$M_r = 613.02$	$D_{\rm x} = 7.707 {\rm Mg m}^{-3}$
Orthorhombic, Pnma	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2n	Cell parameters from 735 reflections
a = 7.182 (3) Å	$\theta = 2.4 - 28.2^{\circ}$
b = 4.3899 (18) Å	$\mu = 50.42 \text{ mm}^{-1}$
c = 16.758 (7) Å	T = 200 K
$V = 528.3 (4) \text{ Å}^3$	Needle, grey-silver
Z = 4	$0.04 \times 0.02 \times 0.02 \text{ mm}$

Data collection

Bruker SMART APEX diffractometer	735 independent reflections
Radiation source: fine-focus sealed tube	623 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.090$
ω scans	$\theta_{\text{max}} = 28.2^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2002)	$h = -9 \rightarrow 9$
$T_{\min} = 0.258, T_{\max} = 0.365$	$k = -5 \rightarrow 5$
6805 measured reflections	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2

Primary atom site location: structure-invariant direct methods

Least-squares matrix: full

$R[F^2 > 2\sigma(F^2)] = 0.029$	$w = 1/[\sigma^2(F_o^2) + (0.P)^2 + 1.4209P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.059$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.11	$\Delta \rho_{max} = 2.10 \text{ e} \text{ Å}^{-3}$
735 reflections	$\Delta \rho_{min} = -2.86 \text{ e } \text{\AA}^{-3}$
35 parameters	Extinction correction: SHELXTL (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}
0 restraints	Extinction coefficient: 0.00117 (14)

Special details

Experimental. Selected in the glove box, crystals were put in a Paratone N oil and cut to the desired dimensions. The chosen crystal was mounted on a tip of a glass fiber and quickly transferred onto the goniometer. The crystal was kept under a cold nitrogen stream to protect from the ambient air and moisture.

Secondary atom site location: difference Fourier map

Data collection is performed with four batch runs at $\varphi = 0.00^{\circ}$ (607 frames), at $\varphi = 90.00^{\circ}$ (607 frames), at $\varphi = 180.00^{\circ}$ (607 frames), and at $\varphi = 270.00$ (607 frames). Frame width = 0.30 ° in ω . Data are merged and treated with multi-scan absorption corrections.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Yb1	0.01067 (8)	0.2500	0.27892 (3)	0.00935 (17)
Yb2	0.15804 (9)	0.2500	0.06161 (3)	0.01085 (17)
In	0.15783 (13)	0.2500	0.84697 (5)	0.0079 (2)
Ge1	0.22805 (19)	0.2500	0.43629 (8)	0.0078 (3)
Ge2	0.27452 (18)	0.2500	0.68627 (8)	0.0065 (3)
Li1	0.011 (4)	0.2500	0.5672 (16)	0.023 (6)*

Atomic displace	ement parameter	rs (Å ²)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Yb1	0.0083 (3)	0.0110 (3)	0.0088 (3)	0.000	0.0001 (2)	0.000
Yb2	0.0116 (3)	0.0121 (3)	0.0089 (3)	0.000	-0.0001 (2)	0.000
In	0.0076 (5)	0.0102 (4)	0.0060 (5)	0.000	-0.0004 (3)	0.000
Ge1	0.0094 (7)	0.0087 (6)	0.0052 (7)	0.000	0.0004 (5)	0.000
Ge2	0.0058 (7)	0.0083 (6)	0.0054 (7)	0.000	0.0002 (5)	0.000

Geometric parameters (Å, °)

Yb1—Ge2 ⁱ	3.0583 (13)	In—Yb1 ^{viii}	3.4331 (12)
Yb1—Ge2 ⁱⁱ	3.0583 (13)	In—Yb1 ^{ix}	3.4331 (12)
Yb1—Ge1	3.0646 (18)	In—Yb2 ⁱ	3.5087 (12)
Yb1—Ge2 ⁱⁱⁱ	3.0997 (13)	In—Yb2 ⁱⁱ	3.5087 (12)
Yb1—Ge2 ^{iv}	3.0997 (13)	In—Yb2 ^{xii}	3.5969 (18)
Yb1—In ⁱ	3.2760 (12)	Ge1—Li1	2.69 (3)
Yb1—In ⁱⁱ	3.2760 (12)	Ge1—In ^{iv}	2.7803 (13)
Yb1—Li1 ⁱⁱ	3.39 (2)	Ge1—In ⁱⁱⁱ	2.7803 (13)
Yb1—Li1 ⁱ	3.39 (2)	Ge1—Li1 ⁱ	2.786 (17)
Yb1—In ⁱⁱⁱ	3.4331 (12)	Ge1—Li1 ⁱⁱ	2.786 (17)
Yb1—In ^{iv}	3.4331 (12)	Ge1—Yb2 ^{vi}	3.0883 (19)
Yb1—Yb2 ^v	3.6817 (13)	Ge1—Yb2 ^{viii}	3.1460 (13)
Yb2—Ge2 ⁱⁱⁱ	3.0686 (13)	Ge1—Yb2 ^{ix}	3.1460 (13)
Yb2—Ge2 ^{iv}	3.0686 (13)	Ge2—Li1	2.75 (3)
Yb2—Ge1 ^v	3.088 (2)	Ge2—In ^{xi}	2.809 (2)
Yb2—Ge1 ^{iv}	3.1460 (13)	Ge2—Yb1 ⁱ	3.0583 (13)
Yb2—Ge1 ⁱⁱⁱ	3.1460 (13)	Ge2—Yb1 ⁱⁱ	3.0583 (13)
Yb2—Li1 ⁱⁱⁱ	3.24 (2)	Ge2—Yb2 ^{ix}	3.0686 (13)
Yb2—Li1 ^{iv}	3.24 (2)	Ge2—Yb2 ^{viii}	3.0686 (13)
Yb2—Li1 ^{vi}	3.33 (3)	Ge2—Yb1 ^{viii}	3.0997 (13)
Yb2—In ⁱ	3.5087 (12)	Ge2—Yb1 ^{ix}	3.0997 (13)
Yb2—In ⁱⁱ	3.5087 (12)	Li1—Ge1 ⁱ	2.786 (17)
Yb2—In ^{vii}	3.5969 (18)	Li1—Ge1 ⁱⁱ	2.786 (17)
Yb2—Yb1 ^{vi}	3.6817 (13)	Li1—In ^x	2.91 (3)
In—Ge1 ^{viii}	2.7803 (13)	Li1—Li1 ⁱ	3.15 (4)
In—Ge1 ^{ix}	2.7803 (13)	Li1—Li1 ⁱⁱ	3.15 (4)
In—Ge2 ^x	2.809 (2)	Li1—Yb2 ^{viii}	3.24 (2)
In—Ge2	2.8203 (19)	Li1—Yb2 ^{ix}	3.24 (2)
In—Li1 ^{xi}	2.91 (3)	Li1—Yb2 ^v	3.33 (3)
In—Yb1 ⁱ	3.2760 (12)	Li1—Yb1 ⁱⁱ	3.39 (2)
In—Yb1 ⁱⁱ	3.2760 (12)	Li1—Yb1 ⁱ	3.39 (2)
Ge2 ⁱ —Yb1—Ge2 ⁱⁱ	91.73 (5)	Ge1 ^{viii} —In—Yb2 ⁱ	116.71 (5)
Ge2 ⁱ —Yb1—Ge1	100.19 (4)	Gel ^{ix} —In—Yb2 ⁱ	57.43 (4)
Ge2 ⁱⁱ —Yb1—Ge1	100.19 (4)	Ge2 ^x —In—Yb2 ⁱ	56.83 (3)
Ge2 ⁱ —Yb1—Ge2 ⁱⁱⁱ	159.57 (3)	Ge2—In—Yb2 ⁱ	127.52 (3)
Ge2 ⁱⁱ —Yb1—Ge2 ⁱⁱⁱ	85.45 (3)	Li1 ^{xi} —In—Yb2 ⁱ	110.3 (4)
Ge1—Yb1—Ge2 ⁱⁱⁱ	100.22 (4)	Yb1 ⁱ —In—Yb2 ⁱ	67.86 (3)
Ge2 ⁱ —Yb1—Ge2 ^{iv}	85.45 (3)	Yb1 ⁱⁱ —In—Yb2 ⁱ	117.48 (4)

Ge2 ⁱⁱ —Yb1—Ge2 ^{iv}	159.57 (3)	Yb1 ^{viii} —In—Yb2 ⁱ	173.39 (3)
Ge1—Yb1—Ge2 ^{iv}	100.22 (4)	Yb1 ^{ix} —In—Yb2 ⁱ	101.15 (3)
Ge2 ⁱⁱⁱ —Yb1—Ge2 ^{iv}	90.16 (5)	Ge1 ^{viii} —In—Yb2 ⁱⁱ	57.43 (4)
Ge2 ⁱ —Yb1—In ⁱ	52.74 (3)	Ge1 ^{ix} —In—Yb2 ⁱⁱ	116.71 (4)
Ge2 ⁱⁱ —Yb1—In ⁱ	110.87 (4)	Ge2 ^x —In—Yb2 ⁱⁱ	56.83 (3)
Ge1—Yb1—In ⁱ	137.93 (2)	Ge2—In—Yb2 ⁱⁱ	127.52 (3)
Ge2 ⁱⁱⁱ —Yb1—In ⁱ	109.62 (4)	Li1 ^{xi} —In—Yb2 ⁱⁱ	110.3 (4)
Ge2 ^{iv} —Yb1—In ⁱ	52.18 (4)	Yb1 ⁱ —In—Yb2 ⁱⁱ	117.48 (4)
Ge2 ⁱ —Yb1—In ⁱⁱ	110.87 (4)	Yb1 ⁱⁱ —In—Yb2 ⁱⁱ	67.86 (3)
Ge2 ⁱⁱ —Yb1—In ⁱⁱ	52.74 (3)	Yb1 ^{viii} —In—Yb2 ⁱⁱ	101.15 (3)
Ge1—Yb1—In ⁱⁱ	137.93 (2)	Yb1 ^{ix} —In—Yb2 ⁱⁱ	173.39 (3)
Ge2 ⁱⁱⁱ —Yb1—In ⁱⁱ	52.18 (4)	Yb2 ⁱ —In—Yb2 ⁱⁱ	77.45 (4)
Ge2 ^{iv} —Yb1—In ⁱⁱ	109.62 (4)	Ge1 ^{viii} —In—Yb2 ^{xii}	57.42 (3)
In ⁱ —Yb1—In ⁱⁱ	84.13 (4)	Ge1 ^{ix} —In—Yb2 ^{xii}	57.42 (3)
Ge2 ⁱ —Yb1—Li1 ⁱⁱ	106.8 (4)	Ge2 ^x —In—Yb2 ^{xii}	101.46 (4)
Ge2 ⁱⁱ —Yb1—Li1 ⁱⁱ	50.2 (4)	Ge2—In—Yb2 ^{xii}	162.69 (4)
Ge1—Yb1—Li1 ⁱⁱ	50.8 (4)	Li1 ^{xi} —In—Yb2 ^{xii}	60.4 (5)
Ge2 ⁱⁱⁱ —Yb1—Li1 ⁱⁱ	86.9 (3)	Yb1 ⁱ —In—Yb2 ^{xii}	130.10 (2)
Ge2 ^{iv} —Yb1—Li1 ⁱⁱ	149.6 (4)	Yb1 ⁱⁱ —In—Yb2 ^{xii}	130.10 (2)
In ⁱ —Yb1—Li1 ⁱⁱ	155.1 (4)	Yb1 ^{viii} —In—Yb2 ^{xii}	109.38 (3)
In ⁱⁱ —Yb1—Li1 ⁱⁱ	92.3 (3)	Yb1 ^{ix} —In—Yb2 ^{xii}	109.38 (3)
Ge2 ⁱ —Yb1—Li1 ⁱ	50.2 (4)	Yb2 ⁱ —In—Yb2 ^{xii}	64.13 (2)
Ge2 ⁱⁱ —Yb1—Li1 ⁱ	106.8 (4)	Yb2 ⁱⁱ —In—Yb2 ^{xii}	64.13 (2)
Ge1—Yb1—Li1 ⁱ	50.8 (4)	Li1—Ge1—In ^{iv}	127.56 (6)
Ge2 ⁱⁱⁱ —Yb1—Li1 ⁱ	149.6 (4)	Li1—Ge1—In ⁱⁱⁱ	127.56 (6)
Ge2 ^{iv} —Yb1—Li1 ⁱ	86.9 (3)	In ^{iv} —Ge1—In ⁱⁱⁱ	104.27 (6)
In ⁱ —Yb1—Li1 ⁱ	92.3 (3)	Li1—Ge1—Li1 ⁱ	70.1 (7)
In ⁱⁱ —Yb1—Li1 ⁱ	155.1 (4)	In ^{iv} —Ge1—Li1 ⁱ	63.1 (5)
Li1 ⁱⁱ —Yb1—Li1 ⁱ	80.7 (6)	In ⁱⁱⁱ —Ge1—Li1 ⁱ	142.4 (5)
Ge2 ⁱ —Yb1—In ⁱⁱⁱ	149.31 (4)	Li1—Ge1—Li1 ⁱⁱ	70.1 (7)
Ge2 ⁱⁱ —Yb1—In ⁱⁱⁱ	86.68 (4)	In ^{iv} —Ge1—Li1 ⁱⁱ	142.4 (5)
Ge1—Yb1—In ⁱⁱⁱ	50.28 (2)	In ⁱⁱⁱ —Ge1—Li1 ⁱⁱ	63.1 (5)
Ge2 ⁱⁱⁱ —Yb1—In ⁱⁱⁱ	50.84 (3)	Li1 ⁱ —Ge1—Li1 ⁱⁱ	104.0 (9)
Ge2 ^{iv} —Yb1—In ⁱⁱⁱ	105.90 (4)	Li1—Ge1—Yb1	113.9 (6)
In ⁱ —Yb1—In ⁱⁱⁱ	153.95 (3)	In ^{iv} —Ge1—Yb1	71.75 (4)
In ⁱⁱ —Yb1—In ⁱⁱⁱ	92.39 (3)	In ⁱⁱⁱ —Ge1—Yb1	71.75 (4)
Li1 ⁱⁱ —Yb1—In ⁱⁱⁱ	50.6 (4)	Lil ⁱ —Ge1—Yb1	70.6 (5)
Li1 ⁱ —Yb1—In ⁱⁱⁱ	101.1 (4)	Li1 ⁱⁱ —Ge1—Yb1	70.6 (5)
Ge2 ⁱ —Yb1—In ^{iv}	86.68 (4)	Li1—Ge1—Yb2 ^{vi}	124.8 (6)
Ge2 ⁱⁱ —Yb1—In ^{iv}	149.31 (4)	In ^{iv} —Ge1—Yb2 ^{vi}	73.22 (3)
Ge1—Yb1—In ^{iv}	50.28 (2)	In ⁱⁱⁱ —Ge1—Yb2 ^{vi}	73.22 (3)

supplementary materials

Ge2 ⁱⁱⁱ —Yb1—In ^{iv}	105.90 (4)	Li1 ⁱ —Ge1—Yb2 ^{vi}	128.0 (4)
Ge2 ^{iv} —Yb1—In ^{iv}	50.84 (3)	Li1 ⁱⁱ —Ge1—Yb2 ^{vi}	128.0 (4)
In ⁱ —Yb1—In ^{iv}	92.39 (3)	Yb1—Ge1—Yb2 ^{vi}	121.28 (5)
In ⁱⁱ —Yb1—In ^{iv}	153.95 (3)	Li1—Ge1—Yb2 ^{viii}	66.8 (4)
Li1 ⁱⁱ —Yb1—In ^{iv}	101.1 (4)	In ^{iv} —Ge1—Yb2 ^{viii}	146.46 (6)
Li1 ⁱ —Yb1—In ^{iv}	50.6 (4)	In ⁱⁱⁱ —Ge1—Yb2 ^{viii}	74.45 (4)
In ⁱⁱⁱ —Yb1—In ^{iv}	79.49 (4)	Li1 ⁱ —Ge1—Yb2 ^{viii}	136.4 (5)
Ge2 ⁱ —Yb1—Yb2 ^v	53.19 (3)	Li1 ⁱⁱ —Ge1—Yb2 ^{viii}	67.9 (5)
Ge2 ⁱⁱ —Yb1—Yb2 ^v	53.19 (3)	Yb1—Ge1—Yb2 ^{viii}	134.98 (3)
Gel—Ybl—Yb2 ^v	74.08 (4)	Yb2 ^{vi} —Ge1—Yb2 ^{viiii}	74.48 (3)
Ge2 ⁱⁱⁱ —Yb1—Yb2 ^v	134.90 (2)	Li1—Ge1—Yb2 ^{ix}	66.8 (4)
Ge2 ^{iv} —Yb1—Yb2 ^v	134.90 (2)	In ^{iv} —Ge1—Yb2 ^{ix}	74.45 (4)
In ⁱ —Yb1—Yb2 ^v	102.32 (3)	In ⁱⁱⁱ —Ge1—Yb2 ^{ix}	146.46 (6)
In ⁱⁱ —Yb1—Yb2 ^v	102.32 (3)	Li1 ⁱ —Ge1—Yb2 ^{ix}	67.9 (5)
Li1 ⁱⁱ —Yb1—Yb2 ^v	54.3 (4)	Li1 ⁱⁱ —Ge1—Yb2 ^{ix}	136.4 (5)
Li1 ⁱ —Yb1—Yb2 ^v	54.3 (4)	Yb1—Ge1—Yb2 ^{ix}	134.98 (3)
In ⁱⁱⁱ —Yb1—Yb2 ^v	103.64 (3)	Yb2 ^{vi} —Ge1—Yb2 ^{ix}	74.48 (3)
In ^{iv} —Yb1—Yb2 ^v	103.64 (3)	Yb2 ^{viii} —Ge1—Yb2 ^{ix}	88.48 (5)
Ge2 ⁱⁱⁱ —Yb2—Ge2 ^{iv}	91.33 (5)	Li1—Ge2—In ^{xi}	122.1 (6)
Ge2 ⁱⁱⁱ —Yb2—Ge1 ^v	98.63 (3)	Li1—Ge2—In	119.2 (6)
Ge2 ^{iv} —Yb2—Ge1 ^v	98.63 (3)	In ^{xi} —Ge2—In	118.72 (5)
Ge2 ⁱⁱⁱ —Yb2—Ge1 ^{iv}	155.85 (4)	Li1—Ge2—Yb1 ⁱ	71.2 (4)
Ge2 ^{iv} —Yb2—Ge1 ^{iv}	85.09 (4)	In ^{xi} —Ge2—Yb1 ⁱ	133.97 (2)
Ge1 ^v —Yb2—Ge1 ^{iv}	105.52 (3)	In—Ge2—Yb1 ⁱ	67.60 (3)
Ge2 ⁱⁱⁱ —Yb2—Ge1 ⁱⁱⁱ	85.09 (4)	Li1—Ge2—Yb1 ⁱⁱ	71.2 (4)
Ge2 ^{iv} —Yb2—Ge1 ⁱⁱⁱ	155.85 (4)	In ^{xi} —Ge2—Yb1 ⁱⁱ	133.97 (2)
Ge1 ^v —Yb2—Ge1 ⁱⁱⁱ	105.52 (3)	In—Ge2—Yb1 ⁱⁱ	67.60 (3)
Gel ^{iv} —Yb2—Gel ⁱⁱⁱ	88.48 (5)	Yb1 ⁱ —Ge2—Yb1 ⁱⁱ	91.73 (5)
Ge2 ⁱⁱⁱ —Yb2—Li1 ⁱⁱⁱ	51.6 (4)	Li1—Ge2—Yb2 ^{ix}	67.4 (4)
Ge2 ^{iv} —Yb2—Li1 ⁱⁱⁱ	110.4 (4)	In ^{xi} —Ge2—Yb2 ^{ix}	73.16 (3)
Ge1 ^v —Yb2—Li1 ⁱⁱⁱ	137.2 (3)	In—Ge2—Yb2 ^{ix}	134.18 (3)
Gel ^{iv} —Yb2—Li1 ⁱⁱⁱ	107.5 (4)	Yb1 ⁱ —Ge2—Yb2 ^{ix}	73.87 (3)
Ge1 ⁱⁱⁱ —Yb2—Li1 ⁱⁱⁱ	49.9 (4)	Yb1 ⁱⁱ —Ge2—Yb2 ^{ix}	138.50 (5)
Ge2 ⁱⁱⁱ —Yb2—Li1 ^{iv}	110.4 (4)	Li1—Ge2—Yb2 ^{viii}	67.4 (4)
Ge2 ^{iv} —Yb2—Li1 ^{iv}	51.6 (4)	In ^{xi} —Ge2—Yb2 ^{viii}	73.16 (3)
Ge1 ^v —Yb2—Li1 ^{iv}	137.2 (3)	In—Ge2—Yb2 ^{viii}	134.18 (3)
Ge1 ^{iv} —Yb2—Li1 ^{iv}	49.9 (4)	Yb1 ⁱ —Ge2—Yb2 ^{viii}	138.50 (5)
Ge1 ⁱⁱⁱ —Yb2—Li1 ^{iv}	107.5 (4)	Yb1 ⁱⁱ —Ge2—Yb2 ^{viii}	73.87 (3)
Li1 ⁱⁱⁱ —Yb2—Li1 ^{iv}	85.4 (7)	Yb2 ^{ix} —Ge2—Yb2 ^{viii}	91.33 (5)
Ge2 ⁱⁱⁱ —Yb2—Li1 ^{vi}	108.7 (3)	Li1—Ge2—Yb1 ^{viii}	134.90 (3)
Ge2 ^{iv} —Yb2—Li1 ^{vi}	108.7 (3)	In ^{xi} —Ge2—Yb1 ^{viiii}	67.14 (3)

$Ge1^{V}$ Vb2 $Li1^{Vi}$	140.2(5)	In Ge2 Vh1 ^{viii}	70.71 (3)
$Ge1^{iv}$ _Yb2—Li1 ^{vi}	50.9 (2)	Yh1 ⁱ —Ge2—Yh1 ^{viii}	138.24 (5)
$Ge1^{iii}$ —Yb2—Li1 ^{vi}	50.9 (2)	$Yb1^{ii}$ —Ge2—Yb1 ^{viii}	74.31 (3)
$Li1^{iii}$ —Yb2—Li1 ^{vi}	57.3 (6)	Yb2 ^{ix} —Ge2—Yb1 ^{viii}	140.26 (5)
$Li1^{iv}$ —Yb2—Li1 ^{vi}	57.3 (6)	$Yb2^{viii}$ —Ge2—Yb1 viii	75.87 (3)
Ge2 ⁱⁱⁱ —Yb2—In ⁱ	104.61 (4)	Li1—Ge2—Yb1 ^{ix}	134.90 (3)
Ge2 ^{iv} —Yb2—In ⁱ	50.01 (3)	In ^{xi} —Ge2—Yb1 ^{ix}	67.14 (3)
Ge1 ^v —Yb2—In ⁱ	49.35 (3)	In—Ge2—Yb1 ^{ix}	70.71 (3)
Ge1 ^{iv} —Yb2—In ⁱ	91.33 (3)	Yb1 ⁱ —Ge2—Yb1 ^{ix}	74.31 (3)
Ge1 ⁱⁱⁱ —Yb2—In ⁱ	153.64 (4)	Yb1 ⁱⁱ —Ge2—Yb1 ^{ix}	138.24 (5)
Li1 ⁱⁱⁱ —Yb2—In ⁱ	152.4 (5)	Yb2 ^{ix} —Ge2—Yb1 ^{ix}	75.87 (3)
Li1 ^{iv} —Yb2—In ⁱ	92.2 (4)	Yb2 ^{viii} —Ge2—Yb1 ^{ix}	140.26 (5)
Li1 ^{vi} —Yb2—In ⁱ	140.83 (7)	Yb1 ^{viii} —Ge2—Yb1 ^{ix}	90.16 (5)
Ge2 ⁱⁱⁱ —Yb2—In ⁱⁱ	50.01 (3)	Ge1—Li1—Ge2	101.1 (9)
Ge2 ^{iv} —Yb2—In ⁱⁱ	104.61 (4)	Ge1—Li1—Ge1 ⁱ	109.9 (7)
Ge1 ^v —Yb2—In ⁱⁱ	49.35 (3)	Ge2—Li1—Ge1 ⁱ	116.0 (6)
Ge1 ^{iv} —Yb2—In ⁱⁱ	153.64 (4)	Ge1—Li1—Ge1 ⁱⁱ	109.9 (7)
Ge1 ⁱⁱⁱ —Yb2—In ⁱⁱ	91.33 (3)	Ge2—Li1—Ge1 ⁱⁱ	116.0 (6)
Li1 ⁱⁱⁱ —Yb2—In ⁱⁱ	92.2 (4)	Gel ⁱ —Li1—Gel ⁱⁱ	104.0 (9)
Li1 ^{iv} —Yb2—In ⁱⁱ	152.4 (5)	Ge1—Li1—In ^x	155.0 (11)
Li1 ^{vi} —Yb2—In ⁱⁱ	140.83 (7)	Ge2—Li1—In ^x	103.9 (8)
In ⁱ —Yb2—In ⁱⁱ	77.45 (4)	Gel ⁱ —Li1—In ^x	58.3 (5)
Ge2 ⁱⁱⁱ —Yb2—In ^{vii}	132.91 (3)	Ge1 ⁱⁱ —Li1—In ^x	58.3 (5)
Ge2 ^{iv} —Yb2—In ^{vii}	132.91 (3)	Ge1—Li1—Li1 ⁱ	56.3 (8)
Ge1 ^v —Yb2—In ^{vii}	90.63 (3)	Ge2—Li1—Li1 ⁱ	123.5 (10)
Ge1 ^{iv} —Yb2—In ^{vii}	48.13 (3)	Gel ⁱ —Li1—Li1 ⁱ	53.5 (5)
Ge1 ⁱⁱⁱ —Yb2—In ^{vii}	48.13 (3)	Gel ⁱⁱ —Li1—Li1 ⁱ	120.3 (13)
Li1 ⁱⁱⁱ —Yb2—In ^{vii}	91.7 (5)	In ^x —Li1—Li1 ⁱ	108.1 (11)
Li1 ^{iv} —Yb2—In ^{vii}	91.7 (5)	Ge1—Li1—Li1 ⁱⁱ	56.3 (8)
Li1 ^{vi} —Yb2—In ^{vii}	49.6 (5)	Ge2—Li1—Li1 ⁱⁱ	123.5 (10)
In ⁱ —Yb2—In ^{vii}	115.87 (2)	Ge1 ⁱ —Li1—Li1 ⁱⁱ	120.3 (13)
In ⁱⁱ —Yb2—In ^{vii}	115.87 (2)	Gel ⁱⁱ —Li1—Li1 ⁱⁱ	53.5 (5)
Ge2 ⁱⁱⁱ —Yb2—Yb1 ^{vi}	52.94 (3)	In ^x —Li1—Li1 ⁱⁱ	108.1 (11)
Ge2 ^{iv} —Yb2—Yb1 ^{vi}	52.94 (3)	Li1 ⁱ —Li1—Li1 ⁱⁱ	88.4 (13)
Ge1 ^v —Yb2—Yb1 ^{vi}	132.81 (4)	Ge1—Li1—Yb2 ^{viii}	63.3 (5)
Ge1 ^{iv} —Yb2—Yb1 ^{vi}	107.80 (4)	Ge2—Li1—Yb2 ^{viii}	61.0 (5)
Ge1 ⁱⁱⁱ —Yb2—Yb1 ^{vi}	107.80 (4)	Gel ⁱ —Li1—Yb2 ^{viii}	170.3 (8)
Li1 ⁱⁱⁱ —Yb2—Yb1 ^{vi}	58.2 (4)	Ge1 ⁱⁱ —Li1—Yb2 ^{viii}	85.27 (12)
Li1 ^{iv} —Yb2—Yb1 ^{vi}	58.2 (4)	In ^x —Li1—Yb2 ^{viii}	130.8 (5)
Li1 ^{vi} —Yb2—Yb1 ^{vi}	87.0 (5)	Li1 ⁱ —Li1—Yb2 ^{viii}	119.2 (13)
In ⁱ —Yb2—Yb1 ^{vi}	97.34 (3)	Li1 ⁱⁱ —Li1—Yb2 ^{viii}	62.8 (6)

supplementary materials

In ⁱⁱ —Yb2—Yb1 ^{vi}	97.34 (3)	Ge1—Li1—Yb2 ^{ix}	63.3 (5)
In ^{vii} —Yb2—Yb1 ^{vi}	136.56 (3)	Ge2—Li1—Yb2 ^{ix}	61.0 (5)
Gel ^{viii} —In—Gel ^{ix}	104.27 (6)	Gel ⁱ —Li1—Yb2 ^{ix}	85.27 (12)
Ge1 ^{viii} —In—Ge2 ^x	113.31 (4)	Ge1 ⁱⁱ —Li1—Yb2 ^{ix}	170.3 (8)
Ge1 ^{ix} —In—Ge2 ^x	113.31 (4)	In ^x —Li1—Yb2 ^{ix}	130.8 (5)
Ge1 ^{viii} —In—Ge2	115.24 (4)	Li1 ⁱ —Li1—Yb2 ^{ix}	62.8 (6)
Ge1 ^{ix} —In—Ge2	115.24 (4)	Li1 ⁱⁱ —Li1—Yb2 ^{ix}	119.2 (13)
Ge2 ^x —In—Ge2	95.85 (4)	Yb2 ^{viii} —Li1—Yb2 ^{ix}	85.4 (6)
Ge1 ^{viii} —In—Li1 ^{xi}	58.5 (2)	Ge1—Li1—Yb2 ^v	85.0 (7)
Ge1 ^{ix} —In—Li1 ^{xi}	58.5 (2)	Ge2—Li1—Yb2 ^v	173.9 (10)
Ge2 ^x —In—Li1 ^{xi}	161.9 (5)	Gel ⁱ —Li1—Yb2 ^v	61.2 (5)
Ge2—In—Li1 ^{xi}	102.3 (5)	Ge1 ⁱⁱ —Li1—Yb2 ^v	61.2 (5)
Ge1 ^{viii} —In—Yb1 ⁱ	169.90 (3)	In ^x —Li1—Yb2 ^v	70.0 (6)
Gel ^{ix} —In—Ybl ⁱ	85.79 (4)	Li1 ⁱ —Li1—Yb2 ^v	59.9 (8)
Ge2 ^x —In—Yb1 ⁱ	60.68 (3)	Li1 ⁱⁱ —Li1—Yb2 ^v	59.9 (9)
Ge2—In—Yb1 ⁱ	59.66 (3)	Yb2 ^{viii} —Li1—Yb2 ^v	122.7 (6)
Li1 ^{xi} —In—Yb1 ⁱ	129.7 (3)	Yb2 ^{ix} —Li1—Yb2 ^v	122.7 (6)
Ge1 ^{viii} —In—Yb1 ⁱⁱ	85.79 (4)	Ge1—Li1—Yb1 ⁱⁱ	130.3 (6)
Ge1 ^{ix} —In—Yb1 ⁱⁱ	169.90 (3)	Ge2—Li1—Yb1 ⁱⁱ	58.6 (4)
Ge2 ^x —In—Yb1 ⁱⁱ	60.68 (3)	Gel ⁱ —Li1—Yb1 ⁱⁱ	119.9 (9)
Ge2—In—Yb1 ⁱⁱ	59.66 (3)	Ge1 ⁱⁱ —Li1—Yb1 ⁱⁱ	58.5 (3)
Li1 ^{xi} —In—Yb1 ⁱⁱ	129.7 (3)	In ^x —Li1—Yb1 ⁱⁱ	65.5 (5)
Yb1 ⁱ —In—Yb1 ⁱⁱ	84.13 (4)	Li1 ⁱ —Li1—Yb1 ⁱⁱ	173.3 (13)
Ge1 ^{viii} —In—Yb1 ^{viii}	57.97 (4)	Li1 ⁱⁱ —Li1—Yb1 ⁱⁱ	95.2 (4)
Ge1 ^{ix} —In—Yb1 ^{viii}	118.63 (5)	Yb2 ^{viii} —Li1—Yb1 ⁱⁱ	67.4 (3)
Ge2 ^x —In—Yb1 ^{viii}	127.87 (3)	Yb2 ^{ix} —Li1—Yb1 ⁱⁱ	119.6 (8)
Ge2—In—Yb1 ^{viii}	58.45 (3)	Yb2 ^v —Li1—Yb1 ⁱⁱ	117.3 (6)
Li1 ^{xi} —In—Yb1 ^{viii}	64.0 (4)	Ge1—Li1—Yb1 ⁱ	130.3 (6)
Yb1 ⁱ —In—Yb1 ^{viii}	118.08 (3)	Ge2—Li1—Yb1 ⁱ	58.6 (4)
Yb1 ⁱⁱ —In—Yb1 ^{viii}	67.29 (3)	Gel ⁱ —Li1—Yb1 ⁱ	58.5 (3)
Ge1 ^{viii} —In—Yb1 ^{ix}	118.63 (5)	Ge1 ⁱⁱ —Li1—Yb1 ⁱ	119.9 (9)
Ge1 ^{ix} —In—Yb1 ^{ix}	57.97 (4)	In ^x —Li1—Yb1 ⁱ	65.5 (5)
Ge2 ^x —In—Yb1 ^{ix}	127.86 (3)	Li1 ⁱ —Li1—Yb1 ⁱ	95.2 (4)
Ge2—In—Yb1 ^{ix}	58.45 (3)	Li1 ⁱⁱ —Li1—Yb1 ⁱ	173.3 (13)
Li1 ^{xi} —In—Yb1 ^{ix}	64.0 (4)	Yb2 ^{viii} —Li1—Yb1 ⁱ	119.6 (8)
Yb1 ⁱ —In—Yb1 ^{ix}	67.29 (3)	Yb2 ^{ix} —Li1—Yb1 ⁱ	67.4 (3)
Yb1 ⁱⁱ —In—Yb1 ^{ix}	118.08 (3)	Yb2 ^v —Li1—Yb1 ⁱ	117.3 (6)
Yb1 ^{viii} —In—Yb1 ^{ix}	79.49 (4)	Yb1 ⁱⁱ —Li1—Yb1 ⁱ	80.7 (6)

Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*+1/2, -*y*+1, *z*-1/2; (iv) -*x*+1/2, -*y*, *z*-1/2; (v) *x*-1/2, *y*, -*z*+1/2; (vi) *x*+1/2, *y*, -*z*+1/2; (vii) *x*, *y*, *z*-1; (viii) -*x*+1/2, -*y*+1, *z*+1/2; (ix) -*x*+1/2, -*y*, *z*+1/2; (x) *x*-1/2, *y*, -*z*+3/2; (xi) *x*+1/2, *y*, -*z*+3/2; (xii) *x*, *y*, *z*+1.

