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Abstract 
The prognosis for glioblastoma has remained poor despite multimodal standard of care treatment, including 
temozolomide, radiation, and surgical resection. Further, the addition of immunotherapies, while promising in a 
number of other solid tumors, has overwhelmingly failed in the treatment of gliomas, in part due to the immu-
nosuppressive microenvironment and poor drug penetrance to the brain. Local delivery of immunomodulatory 
therapies circumvents some of these challenges and has led to long-term remission in select patients. Many of 
these approaches utilize convection-enhanced delivery (CED) for immunological drug delivery, allowing high 
doses to be delivered directly to the brain parenchyma, avoiding systemic toxicity. Here, we review the literature 
encompassing immunotherapies delivered via CED—from preclinical model systems to clinical trials—and explore 
how their unique combination elicits an antitumor response by the immune system, decreases toxicity, and im-
proves survival among select high-grade glioma patients.
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Glioblastoma is the most common primary brain tumor in 
adults. Despite standard of care (SOC) treatment including sur-
gery, radiation, and alkylating agents, survival after diagnosis 
is typically fewer than 20 months.1 SOC for glioblastoma has 
not changed significantly since 2005, when temozolomide was 
added. Together with improvements to radiotherapy, imaging 
and intraoperative mapping, temozolomide increased the me-
dian survival from 12 to 16 months.2,3 However, because SOC 
treatment remains hindered by poor drug penetration into the 
central nervous system (CNS), systemic toxicity, and the im-
munosuppressive glioma microenvironment, outcomes for 
patients with glioblastoma remain poor despite numerous 
clinical trials since 2005.4

Convection-enhanced delivery (CED) addresses the limita-
tions of systemic drug delivery and bypasses the blood–brain 
barrier (BBB) by providing a method of local intratumoral de-
livery. Using a pressure gradient generated by positive pres-
sure, CED optimizes the volume of distribution and uniformly 

infuses macromolecules into a localized area of the brain via 
a catheter-connected pump.5–7 Compared with diffusive de-
livery, the distribution of macromolecules via CED is unaf-
fected by size and molecular weight.8–10 Initially, the volume 
of distribution is linearly related to the volume infused by 
the catheter. However, preclinical studies have shown that 
over prolonged infusions this relationship changes as clear-
ance and infusion reach equilibrium.11–13 Typically, the device 
delivers a mostly spherical distribution of therapy at a rate 
of 0.5 to 10 µL/min.5,14 Compared with a single injection tech-
nique, which distributes therapy 5 mm from the catheter tip, 
CED distributes therapy up to 6 cm from its tip, a 4000-fold 
increase in the volume of distribution.5,14,15 By circumventing 
the BBB, CED allows for far greater concentrations to enter the 
brain parenchyma, compared with intravenous delivery, while 
eliminating dose-related toxicity.16,17

In addition to the BBB, glioblastoma remains difficult to 
treat due to its immunosuppressive microenvironment.18 

Convection-enhanced delivery of immunomodulatory 
therapy for high-grade glioma  
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Mechanisms underlying poor immune response within 
glioblastoma remain partly unclear, but both host re-
sponse and tumor-intrinsic features play important roles. 
The presence of immunosuppressive myeloid cells 
and few infiltrating T cells within the tumor, combined 
with low tumor mutational burden, hinder immunoge-
nicity.18–20 Furthermore, typical therapies given to glio-
blastoma patients, including alkylating chemotherapy, 
radiotherapy, and steroids, contribute to systemic and 
local immunosuppression.21

Given the challenges associated with generating an ef-
fective antitumor response, immunotherapies, such as 
oncolytic viruses and nucleotide-based therapies, have 
been proposed as potential methods to help turn the im-
mune system against the tumor. These immunotherapies 
target local interactions within the glioma microenvi-
ronment like tumor–myeloid and tumor–lymphoid inter-
actions. Thus, local delivery of immunotherapies via CED 
allows for the most direct delivery of immunotherapies to 
their intended targets.

In addition, by bypassing the BBB, CED allows for de-
livery of more precise concentrations of drug to the 
brain.22 Precision is crucial as certain immunotherapies, 

like oncolytic therapies, operate within an infectious 
window as narrow as 102 infectious particles, where 
too large of a dose may lead to life-threatening adverse 
events.23 Similarly, CED avoids toxicities associated with 
systemic delivery of highly inflammatory therapies. For 
example, systemic delivery of IL-12 transgene, a poten-
tially potent antitumor therapy, is associated with severe 
adverse events including life-threatening hemodynamic 
instability.24 Thus, delivery of IL-12 via CED has been pro-
posed to avoid such toxicity.25 Lastly, manual placement of 
the catheter allows for direct targeting of the tumor bed 
following resection.

In this review, we address 2 major obstacles in glioblas-
toma—the immunosuppressive tumor microenvironment 
and poor drug penetrance. We examine the use of CED to 
deliver immunomodulatory therapies for the treatment of 
glioma, which include viral therapies, cytokine therapies, 
nucleotide-based therapies, monoclonal antibodies, and 
nanoparticles (NPs) (Figure 1). We will discuss the benefits 
that local delivery of these immunotherapies via CED im-
parts, as well as its limitations and side effects, and how 
these therapies can shape the future treatment landscape 
of glioblastoma.

Oncolytic viruses

Cytokine therapy

Nucleotide-based therapy

Monoclonal antibodies

Photodynamic therapy

Figure 1. Diversity of immunotherapies delivered via CED in high-grade glioma.
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Oncolytic Viruses

Viral therapies may be used in a multitude of ways to 
treat glioblastoma.23,26–31 First, viruses incapable of rep-
lication can be used to deliver transgenes that augment 
the antitumor immune response via expression of cyto-
kines, receptors, and other immune-stimulatory mol-
ecules.31 Second, oncolytic viruses with intact replication 
capabilities can enter tumor cells via neoplastic cell sur-
face markers and undergo robust viral replication that 
leads to tumor cell lysis.23 In this way, oncolytic viruses 
can both generate a direct antitumor cytotoxic effect and 
serve as a proinflammatory modulator, via the tumor 
cell lysis-induced extracellular release of immunogenic 
tumor-associated antigens, damage-associated molecular 
patterns (DAMPs), and pathogen-associated molecular 
patterns.32–34 Systemic delivery of oncolytic viruses faces 
multiple hurdles. Following intravenous injection, viruses 
infect off-target cells like blood cells, become neutralized 
by preexisting antibodies, and activate complement.35–37 
They are also sequestered in other organs, leading to 
toxicity, and later become cleared by specialized cells in 
lungs, liver, and the spleen.36 Intratumoral injection avoids 
many of these challenges. However, deep tumors, like 
glioma, can be difficult to access, and repeated dosing via 
intratumoral injection is also challenging.38 Further, large 
viral loads, leading to robust replication in a specific area, 
can lead to adverse responses carried out by the host im-
mune system such as tumor swelling, fever, headache, and 
vomiting.39 However, using CED, access to a deep tumor 
bed is accessible via a catheter. CED avoids the need for re-
peat procedures as delivery is continuous over a set period 
of time, and lastly, continual dosing avoids large viral bo-
luses that may lead to adverse reactions.38

PVSRIPO is a live attenuated poliovirus vaccine with its 
internal ribosomal entry site replaced with that of human 

rhinovirus. PVSRIPO has been studied as a potential treat-
ment for glioblastoma.23 The benefits of PVSRIPO are 
2-fold—they lyse tumor cells, while activating dendritic 
cells (DCs). Infection requires presence of CD155, which is 
broadly expressed in both tumor and antigen-presenting 
cells (APCs).40,41 Infection of tumor cells results in cytotox-
icity, release of tumor-associated antigens and activation 
of antiviral interferon signaling via release of dsRNA.42 
Meanwhile, infection in DCs leads to activation, expres-
sion of costimulatory molecules, type I IFN response, and 
proinflammatory cytokine production. This DC pheno-
type eventually promotes stimulation of T cells in vitro.42 
Furthermore, PVSRIPO is incapable of replicating in 
neurons, and thus spares healthy brain tissue.23,43

Desjardins et al. conducted a Phase I dose-escalation 
study of PVSRIPO via CED in 61 patients with recurrent 
glioblastoma (Table 1).23 Their primary goal was to assess 
the toxicity profile and determine appropriate dosing for a 
Phase II trial.23 Only 1 patient experienced a dose-limiting 
adverse event. The median overall survival (OS) of those 
who received PVSRIPO was 12.5 months (95% CI 9.9–15.2) 
compared with 11.3 months (CI 9.8–12.5) among the histor-
ical control group.23 Long-term survivors in this study lived 
as long as 57 months post-treatment.23 Preliminary studies 
examining lymphocytes in the peripheral blood of those 
long-term survivors demonstrated a significant reduction 
in immunosuppressive regulatory T cells. However, specific 
T cell markers among this immunosuppressive population 
were not reported. One patient, who received lomustine 
after recurrence of disease following PVSRIPO, experi-
enced reconstitution of effector T cells 4 weeks following 
lomustine administration. Typically, continual cycles of 
chemotherapy can lead to significant lymphodepletion and 
dampened immune responses.23 Thus, this patient’s expe-
rience unveiled a benefit of combining single-cycle chemo-
therapy and PVSRIPO vaccination that may have otherwise 
been lost with multiple cycles of chemotherapy.23 This 

Table 1. Completed Clinical Trials of Immunotherapies Delivered via CED in High-Grade Glioma

Author Year Agent Phase Identifier WHO Grade, 
Tumor Type 

Number 
of Pa-
tients 

Number 
of Cath-
eters 

Flow 
Rate 

Volume 
of Infu-
sion (mL) 

Dura-
tion 

Median 
OS 
(Weeks) 

van Putten 
et al.

2022 Delta24-
RGD

I N/A Recurrent Gr IV 
GBM

20 4 0.2–
0.3 mL/h

N/A 2–3 
days

18.4

Friedman 
et al.

2021 G207 I NCT02457845 Recurrent Pedi-
atric HGG

12 3– 4 N/A N/A 6 
hours

48.8

Desjardins 
et al.

2018 PVSRIPO I NCT01491893 Recurrent Gr IV 
GBM

61 1 0.5 mL/h 3.25 6.5 
days

50

Bogdahn 
et al.

2010 TGFB2 
inhibitor

IIb NCT00431561 Recurrent Gr IV 
GBM (103) and 
Gr III AA (42)

145 1 0.24 mL/h 40 7 
days

36.4 
(GBM)

Carpentier 
et al.

2010 CpG-
ODN

II NCT00190424 Recurrent Gr IV 
GBM

34 2 3.3 µm/h 2 6 
hours

28

Hau et al. 2007 TGFB2 
inhibitor

I/II N/A Recurrent Gr IV 
GBM (20) and 
Gr III AA (5)

25 1 0.5 mL/h N/A 7 
days

44 
(GBM)

Carpentier 
et al.

2006 CpG-
ODN

I N/A Recurrent Gr IV 
GBM

24 1–2 0.2 mL/h N/A 6 
hours

28.8

CED, convection-enhanced delivery; OS, overall survival.
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same patient remained disease free for 20 months after 
completion of chemotherapy and remained alive as long 
as 57.5 months after PVRIPO infusion. Potential benefits 
of PVSRIPO plus lomustine among a larger cohort are not 
immediately obvious, and expectations of efficacy should 
be tempered given that the response was only seen in 1 
patient. However, this finding from the single responder 
did inspire the Phase II trial (NCT02986178), involving 
PVSRIPO alone and in combination with a single cycle of 
lomustine, which is expected to be completed in 2023.23 
Adverse inflammatory responses were common among 
patients. Over half of those treated with PVSRIPO re-
quired bevacizumab to reduce peritumoral inflammation.23 
Additionally, a Phase I trial in recurrent pediatric high-
grade gliomas (NCT03043391) has been completed with 
results submitted as of June 2022 (Table 2).

Delta24-RGD (DNX-2401) is another replication-
competent oncolytic adenovirus tested in recurrent gli-
oblastoma.27,44 This virus lacks 24 base pairs in the E1A 
region, disabling it from replicating in normal cells, while 
enabling it to replicate in cells with a dysfunctional Rb 
pathway.45 Over 90% of gliomas have a dysfunctional p16/
Rb pathway, which makes DNX-2401 a compelling therapy 
for glioma.46,47 Further, the typical primary attachment site, 
Coxsackie Adenovirus Receptor, is substituted for avb5 
and avb3 integrin receptors, which are both expressed 
highly on glioma cells.48,49 Similar to other oncolytic vir-
uses, infection results in direct oncolysis, proinflammatory 
signaling, and T cell activation.50

In a Phase 1 study by Lang et al., 25 patients with re-
current glioblastoma received DNX-2401 via single 
intratumoral injection, and 5 patients survived longer than 
3 years.27 Expanding upon this, van Putten et al. adminis-
tered DNX-2401 via CED to 19 patients with recurrent glio-
blastoma.44 The goal of this study was to assess safety, and 
infusion of DNX-2401 via CED was shown to be safe.44 14 of 
the 19 patients experienced serious adverse events (SAEs) 
due to increased pressure from either edema or viral 
meningitis, though these symptoms were temporary.44 
Meningitis was thought to be due to suboptimal catheter 
placement causing backflow. At the time of the study, im-
proved catheters—dedicated to reducing backflow—were 

not yet available.44 Two patients in this study experienced 
long-term survival with 1 patient remaining tumor free for 
8 years without secondary treatment. Among those pa-
tients who survived more than 6 months following viral 
infusion, the majority had increasing levels of viral DNA 
in their cerebrospinal fluid (CSF) up to 4 weeks following 
infusion.44 Immunostimulatory chemokines and cyto-
kines were present in the CSF of most patients following 
treatment, indicating the immune system was eliciting an 
antitumor response.44 To study the effects of inflamma-
tion on survival, patients were split into 2 groups based on 
CSF IFN-gamma levels 4 weeks after treatment. High CSF 
IFN-gamma levels significantly correlated with almost all 
measured cytokines and chemokines as well as the pres-
ence of CD8+ T cells in the CSF. Lastly, patients within the 
high IFN-gamma subgroup survived longer than those 
within the low IFN-gamma subgroup.44

Similarly, G207, a genetically engineered herpes simplex 
virus type 1 (HSV-1), is another oncolytic virus designed 
to replicate selectively within tumor cells. This selectivity 
is due to deletion of the diploid γ134.5 neurovirulence 
gene and inactivation of the ribonucleotide reductase via 
insertion of Escherichia coli lacZ.29 In addition to its cyto-
toxic effects, G207 has been shown to increase antigen 
cross-presentation and induce antitumor immunity.51,52 A 
previous Phase I trial in adults with glioblastoma demon-
strated that a stereotactic injection of G207 was shown to 
be safe and led to a partial response or stable disease in a 
majority of patients with a median OS of 2.5 months.28,53,54 
A Phase I trial in 12 pediatric patients with high-grade 
glioma delivered G207 treatment via CED. The primary 
objective was to asses safety, and G207 therapy via CED 
in this pediatric population was determined to be safe.29 
Median OS was 12.2 months, and 4 patients remained 
alive 18 months after treatment.29 Clinical, neuropatholog-
ical, and radiographic responses were noted in 11 patients. 
There were no attributable SAEs or dose-limiting effects. 
Furthermore, no neurological effects due to the surgical 
procedure were observed.29

In the DNX-2401, PVSRIPO, and G207 trials, select 
groups of patients demonstrated a long-term benefit. 
However, these studies were uncontrolled, and thus lack 

Table 2. Clinical Trials of Immunotherapies Delivered via CED in High-Grade Glioma Currently Underway

Principal 
Investigator(s) 

Agent Phase Identifier Status WHO Grade, 
Tumor Type 

Number 
of Patients 

Start Date Comple-
tion Date 

Vogelbaum Anti-CD29 I NCT04608812 Re-
cruiting

Recurrent Gr IV 
GBM and Gr III AA

24 March 
2021

April 
2024

Landi Anti-CD40 I NCT04547777 Re-
cruiting

Recurrent Gr IV 
GBM and Gr III AA

30 July 2021 De-
cember 
2025

Landi, 
Thompson

PVSRIPO Ib NCT03043391 Active Recurrent Pedi-
atric HGG

12 December 
2017

March 
2022

Randazzo PVSRIPO II NCT02986178 Active Recurrent Gr IV 
GBM

122 June 2017 De-
cember 
2023

Istari On-
cology

PVSRIPO II NCT04479241 Active Recurrent Gr IV 
GBM

30 October 
2020

March 
2023

CED, convection-enhanced delivery.
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the analysis that well-designed randomized controlled 
trials offer. Given these early successes, it is paramount 
that future studies center upon rigorous controlled trials 
with these virotherapies. Further, more in-depth tissue-
based analyses of these responders’ tumors are required 
to better understand the potential antitumor response 
levied by the immune system.

Nucleotide-Based Therapies

Increased TGFB-SMAD signaling has been proposed as an 
important contributor to the immunosuppressive micro-
environment as well as progression in glioblastoma.55–57 
It is hypothesized the TGFB2 is a key contributor to T cell 
hyporesponsiveness, especially having an effect during 
later tumor stages.58 Inhibition of TGFB2 reverses tumor-
induced immunosuppression and inhibits growth and in-
vasion.59,60 Trabedersen, also known as OT101 or 12900, 
is an anti-TGFB2 RNA oligodeoxynucleotide designed to 
block the effects of TGFB2.61

Preclinical data using human-derived glioma cell lines 
revealed that treatment with trabedersen resulted in de-
creased secretion of TGFB2, decreased tumor cell prolifera-
tion, decreased migration, and increased cytotoxic activity 
among autologous immune cells.62 Nevertheless, these 
studies were solely in vitro, and further studies, for ex-
ample demonstrating therapeutic efficacy using an in vivo 
animal model, were never published.

Despite the limited preclinical evidence, a number of 
clinical trials investigated the effects of trabedersen via 
CED in glioblastoma and anaplastic astrocytoma.62,63 In 
the largest trabedersen study, a Phase IIb trial enrolled 
145 patients with recurrent glioblastoma or anaplastic 
astrocytoma. The primary goal of this study was to iden-
tify the appropriate dose for future trials, while also com-
paring its safety and efficacy to standard chemotherapy. 
10 µM trabedersen was determined to be safe.63 However, 
trabedersen failed to demonstrate a significant difference 
in the primary endpoint, tumor control rate, after 6-month 
treatment of trabedersen via CED when compared with 6 
months of standard chemotherapy.63 However, assess-
ment of tumor response early after treatment may not be 
the most appropriate endpoint as immunotherapies, which 
rely on building immune response over time, may have a 
different time-course of response as compared with fast-
acting chemotherapies.64 Again, among the entire pop-
ulation at 2 years, 10 µM trabedersen (39%) conferred a 
nonsignificant survival benefit compared with standard 
chemotherapy (22%). Previous research has shown that 
the immune response driven by trabedersen continues 
to improve months to years after trabedersen treatment 
has concluded.59,60 Thus, it is unsurprising that any poten-
tial survival benefit the authors appreciate would occur at 
later time points. Further, the authors performed explora-
tory, un-prespecified, post hoc subgroup analyses, which 
revealed that glioblastoma patients ≤55 years old with a 
Karnofsky performance status >80% had a 2-year sur-
vival rate of 40% compared with 13% among those who 
received standard chemotherapy.63 Notably, the authors 
perform no tissue-based analyses on post-treatment 

tumor to assess immunogenic response of trabedersen. 
It is also important to note that the patients in the control 
group underwent systemic delivery of the conventional 
chemotherapy, and therefore did not have a CED catheter 
implanted. Neurological adverse events (AEs) were more 
common among those who received trabedersen, and it 
was speculated that the mode of administration, CED, may 
have played a role. However, these AEs were manageable, 
and may be further reduced by improved training of the 
investigators.63

Further post hoc analysis of the same study 
(NCT00431561) was later completed.65 The authors found 
26 of 89 patients treated with trabedersen experienced a 
favorable response, defined by complete response, par-
tial response, or stable disease ≥6 months.65 Positive 
outcomes were slow to develop. Robust size reduction re-
quired a median time of 11.7 months, and, among the 19 
complete or partial responders, response required a me-
dian of 287 days.65 Lastly, among those with a favorable 
response, over one-third experienced >3-year progression-
free survival (PFS) and >3.5-year OS.65 Again, it is also 
worth noting that the authors failed to include any phar-
macodynamic data found in humans. Their final conclusion 
aligns with findings similar to other immunomodulatory 
therapies delivered via CED—that trabedersen leads to a 
durable response among a subgroup of patients. Given 
that these analyses were exploratory and post hoc, and 
therefore not powered sufficiently, it is critical to take these 
results, as well as any conclusions drawn from them, with 
degrees of caution and skepticism.

Oligodeoxynucleotides containing unmethylated 
cytosine-guanosine motifs (CpG-ODN) have been de-
signed to stimulate Toll-like receptor 9 (TLR9). Toll-like re-
ceptors (TLRs) are receptors encoded to recognize DAMPs 
shared by foreign microbes as well as endogenous mol-
ecules released during inflammation.66 TLR9 is mainly ex-
pressed by APCs, including microglia.67 CpG motifs have 
been demonstrated to induce secretion of IL-2, IL-12, and 
IFN-gamma.68 In preclinical studies of glioma, treatment 
with CpG-ODNs increased markers of antigen presenta-
tion on microglia, shifted the immune system toward CD8+ 
T cells, and decreased the number of regulatory T cells. 
Further, treatment with CpG-ODNs induced caspase-3-
dependent apoptosis among tumor cells (Table 1).69

An early Phase I trial delivering CpG-ODNs via CED to 
recurrent glioma patients demonstrated safety.70 The fol-
lowing Phase II trial was designed to assess efficacy. 
Among their cohort of 31 patients treated with CpG-ODNs 
via CED, the PFS at 6 months was a modest 19%.71 Multiple 
theories may explain this study’s underwhelming results. 
Investigators speculated poor immune cell infiltration 
and an associated low level of TLR9 expression within 
the tumor.71 Further, they did not see the hypothesized 
downregulation of regulatory T cells in those patients who 
had frozen leukocyte samples.71 The overwhelming ma-
jority of patients received steroids during their treatment, 
which may have contributed to increased regulatory T 
cells and created an immunosuppressive tumor environ-
ment.71,72 The final explanation, and probably the simplest, 
is that, despite increased antigen presentation in the set-
ting of CpG-ODN treatment, these antigens failed to be rec-
ognized as foreign by T cells.73
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Despite disappointing results in both CpG-ODN and 
trabedersen studies, CED provides unique benefits to the 
delivery of nucleotide-based therapies. Intratumoral in-
jection is the most common application among solid tu-
mors.74 Compared with systemic delivery, intratumoral 
injection most obviously bypasses the BBB and reduces 
chances of off-target effects. However, nucleotides can be 
unstable and have poor cellular uptake, requiring multiple 
injections that can be difficult for the surgeon and dan-
gerous for the patient.75 Thus, CED, with its continual de-
livery over a set period of time, provides a steady stream 
of stable nucleotides, increasing the likelihood of sufficient 
cellular uptake.

Monoclonal Antibodies

Monoclonal antibodies are the most commonly used and 
approved immunotherapies in the treatment of cancer.76,77 
They have 3 typical mechanisms of action (1) inhibition of 
receptors or factors that activate tumorigenic signaling; (2) 
antibody-mediated cytotoxicity; (3) complement-mediated 
cytotoxicity.78 Their efficacy is primarily based on 2 com-
ponents: the affinity of the Fv region for the target and the 
ability of the Fc region to bind to the host immune system.78

Similar to systemic delivery of most therapies to the 
brain, monoclonal antibody-based therapies have poor 
penetrance of the BBB and off-target effects when de-
livered systemically.79 Intratumoral injection eludes these 
challenges. However, intratumoral injection is still limited 
by poor diffusion and distribution of both small and large 
molecules, including monoclonal antibodies. Conversely, 
CED improves both diffusion and distribution by mainte-
nance of a constant pressure gradient.5

CD40, a tumor necrosis factor family member, is found 
on glioma cells in vivo and in vitro, as well as on APCs and 
DCs.80,81 CD40 ligand (CD40L) is expressed on activated T 
cells, macrophages and platelets. Crosslinking between 
CD40 and CD40L has been reported to induce activation 
of B cells and DCs.82 This early work generated interest in 
CD40 as a target for immunotherapy. Anti-CD40 agonistic 
mAb, FGK45, has been shown to induce activation of APCs 
and antitumor T cells while vaccination with FGK45 pro-
longed survival in a mouse glioma model.81

Shoji et al. demonstrated that delivery of CD40 mAb via 
CED was efficacious when treating 2 distinct glioma stem 
cell tumor models in mice. These models, NSCL61 and 
bRiTS-G3, are typically more resistant to treatment as they 
are stem cell like. In these models, both apoptosis and in-
filtration by CD4+/CD8+ T cells were noted, indicating the 
cytotoxic and immunostimulatory effects of anti-CD40 
therapy.83 Using immunocompromised mice, there was no 
benefit with anti-CD40 compared with IgG, highlighting the 
importance immunomodulatory effect.83 Previous research 
has shown significant cytokine-release syndrome with sys-
temic administration of anti-CD40, limiting the maximum 
tolerated dose and leading to poor efficacy.84–86 However, 
in the Shoji et al. in vivo CED model, the maximal dose of 
refinement, 1 µg/µL, was associated with minimal tissue 
toxicity and neurological side effects (Table 2).83

Photodynamic Therapy

Photodynamic therapy (PDT) is a novel technique by 
which diseased cells are damaged by irradiation of a 
photosensitizing drug, causing generation of superoxide 
anion radicals and reactive oxygen species.87 This reaction 
leads to cell death, via apoptosis or necrosis, and also im-
munogenic cell death (ICD), releasing tumor-derived pro-
tein antigens, tumor-associated antigens, and DAMPs.87,88 
Signals released in the setting of ICD stimulate both a local 
innate inflammatory response and recruit local and pe-
ripheral immune cells. Further, they promote engagement 
through phagocytosis and antigen presentation, eventu-
ally polarizing these immune cells toward an antitumor 
phenotype.89 Thus, PDT induces both cytotoxic and im-
munogenic effects. However, PDT, when treating glioblas-
toma, is plagued by 2 issues. First, PDT is reliant on the 
presence of oxygen to produce oxygen radicals. However, 
advanced solid tumors are inherently hypoxic.90 Second, 
there is poor delivery efficiency of PDT to the brain.91,92

Sunil et al. set out to design an NP that directly ad-
dresses these 2 issues. First, they incorporated an oxygen-
generating enzyme to allow for the production of reactive 
oxygen species (ROS) by Protoporphyrin IX (PpIX), their 
photosensitizing drug. Second, they delivered this NP via 
CED, which allows for 1000-fold greater concentrations 
compared with intravenous delivery and supplies an even 
volume of distribution without leakage or reflux compared 
with wafers or intraneoplastic injection.17,88,93 In addition 
to PpIX, they included Nutlin-3a, which induces apoptosis, 
cell-cycle arrest, and promotes antitumor immunity.94 
Lastly, their payload featured an amphiphilic polymer brush 
composed of phosphatidyl ethanolamine and polyethylene 
glycol to retain tumor antigens, improving the likelihood of 
antigen uptake.94 Their early in vitro work demonstrates in 
situ oxygen generation, cell death, antigen retention, and 
lymphocyte activation, but their work remains in the in vitro 
stage as they continue to optimize for CED duration.94

Both Sunil et al. and Atik et al. employ NPs in order to 
improve delivery of their drug of interest. NPs were first 
brought into the adult-type diffuse glioma armamentarium 
in the 1990s in an effort to develop drugs with better effi-
ciency in crossing the BBB, avoiding degradation and pro-
longing circulation.95 However, a wide-array of varying NPs 
have been reported in recent literature.88,96–110 Loosely, NPs 
are defined as inorganic or organic carries ranging from 1 
to 1000 nm in size. Ideally, these substances are nontoxic, 
biodegradable, compatible with tissue biology, less than 
100 nm in size and positively charged in order to cross the 
BBB. The molecule of interest is then associated in some 
way—whether its dissolved, attached, dispersed within, 
encapsulated—with the NP. NPs play an important role 
in augmenting CED in the treatment of adult-type diffuse 
glioma. A major setback in the use of CED is the short half-
life of drugs, most commonly chemotherapies, as they are 
infused and often quickly cleared.110 However, association 
with NPs can lead to a controlled release of these drugs, 
increasing their half-life. These NPs may also be designed 
to limit release specifically to diseased tissue, saving 
healthy brain.110 Several studies have shown enhanced 



N
eu

ro-O
n

colog
y 

A
d

van
ces

7Sperring et al.: CED of immunomodulatory therapy for high-grade glioma

potential of CED when delivered therapies incorporate 
NPs to treat adult-type diffuse glioma.111–113 Although still 
working to develop preclinical efficacy, Sunil et al. and Atik 
et al. capitalize on the compounded benefit of 2 powerful 
delivery systems—CED and NPs.88,109

Cytokine Therapy

Cytokine therapy may be a potent inducer of the immune 
system, but when given systemically, it poses a large risk 
for AEs.114 Using a rat glioma model, Frewert et al. contin-
uously infused IFN-gamma or IL-1B for 48 hours via CED 
followed by sacrifice. IFN-gamma has been shown to 
increase expression of major histocompatibility complex I 
(MHC I), activate NK and T cells, and decrease tumor cell 
growth.115,116 Stains of rat brains showed statistically sig-
nificant increases in markers of macrophages, APCs, CD4+ 
and CD8+ T cells at the tumor margin compared with ve-
hicle treatment.117 The presence of lymphocytes and APCs 
at the margin suggests that tumor antigen is being recog-
nized and presented by invading microglia.117

Gene therapy, and specifically cytokine therapy, likely re-
quire sustained expression to induce tumor regression.118 
Viral vectors have been shown to promote sustained ex-
pression with just a single administration.119–121 However, 
viral vectors have limited therapeutic potential, mainly due 
to limitations in large-scale manufacturing.118 In contrast, 
nonviral vectors typically require multiple administrations to 
overcome their associated transient expression.122,123 Wu et 
al. sought to improve sustained expression of gene therapy 
in a nonviral vector. Their previous work revealed that the 
Sleeping Beauty (SB) transposable element integrates into 
the host chromosome and facilitates prolonged expression 
in human glioblastoma xenografts.124 Mice bearing GL261 
glioma were treated with vectors containing IFN-gamma 
cDNA with and without an SB-transposon element via CED. 
Mice treated with IFN-gamma cDNA and the SB element 
exhibited expression for 3 weeks, while those mice treated 
with IFN-gamma cDNA and without the SB element did not 
express IFN-gamma past 1 week. Further, only SB-treated 
mice displayed tumor regression, and survived significantly 
longer than non-SB-treated mice.118 Interestingly, PCR data 
revealed increased endogenous expression of IFN-gamma. 
This may be explained by SB-mediated IFN-gamma-
induced activation of APCs, phagocytosis, antigen presen-
tation and T cell activation.118 This was further supported by 
lymphocyte infiltration in IFN-gamma-treated mice.118 Thus, 
SB-mediated IFN-gamma expression may create a positive 
feedback loop promoting activation of the adaptive immune 
system in in vivo models.118

Limitations and Alternatives to CED

CED has several limitations that require further devel-
opment. Backflow remains 1 major challenge of CED.8 
Backflow results in exit of drug from the target tissue 
and spread to locations such as normal brain and CSF 
spaces, potentially leading to severe immune stimulation 

in unintended areas of the CNS and limited dose delivery 
to the intended site. Improvements to catheter design 
such as tapered tips and soft or porous membrane con-
structs, along with improved placement guidelines have 
demonstrated decreased backflow.8,9,125,126 These guide-
lines include reducing trauma associated with insertion, 
delayed infusion initiation, and slow increases in infusion 
rates.127,128 Further, most studies suggest placing catheters 
at least 2 cm from the resection cavity and pial surfaces.8 
Tumor-specific factors may also limit the potential of CED. 
Tumors with increased interstitial pressure impede the pos-
itive pressure gradient that drives drug flow to the tissue 
site, limiting potential for homogenous drug distribu-
tion.129 Similarly, especially vascular tumors may present 
with heterogenous networks of vasculature, and this too 
may alter homogenous drug distribution as infusate will 
preferentially flow to perivascular spaces.130,131 Lastly, al-
though volume of distribution and pump placement can be 
carefully designed to limit infusate outside of the tumor, 
off-target effects on the normal brain remain a possibility.

Given these challenges, a variety of alternative local de-
livery strategies exist. Direct intratumoral injection allows 
for often singular, precise drug delivery at the tumor cavity, 
while bypassing the BBB and avoiding systemic toxicity. 
Furthermore, direct injection is amenable delivery of cel-
lular therapies. Conveniently, it is often completed during 
resection.26,27,31,132 However, repeat dosing is often required 
for optimal results. Further, direct injection typically lacks a 
large, homogenous volume of distribution. Focused ultra-
sound (FUS) is an exciting new frontier for local drug de-
livery aimed at disrupting the BBB. Previously, FUS has been 
used to augment certain chemotherapy treatments that nor-
mally fail to efficiently cross the BBB.133 Most importantly, 
FUS is an noninvasive method of BBB disruption and re-
cent improvements allow for tightly controlled and precise 
delivery.134 Combined with intra-arterial delivery, FUS may 
allow for focused, effective penetrance of immunotherapies 
across the BBB. Lastly, biodegradable reservoirs or wafers 
may play a future role in local delivery of immunotherapies. 
So far restricted to aiding chemotherapy delivery, these lo-
cally situated modalities deliver high doses of drug at the re-
section cavity over long periods of time.135 Recent literature 
is quite critical of implantable reservoirs and wafers mostly 
because of significantly limited volumes of distribution, and 
CED currently is more effective at uniformly diffusing drug 
directly into tissue.136 Although promising, each of these 
strategies require further development.

The tumor microenvironment in glioblastoma is pro-
foundly immunosuppressive, making the effects of any 
immunotherapy somewhat limited. Additionally, immu-
nosuppression may be further enhanced by SOC treat-
ments, including steroids, radiation and chemotherapy.137 
Necrosis, a central hallmark of glioblastoma, results in the 
release of extracellular potassium, which has been demon-
strated to reduce activity of infiltrating T cells.138 Thus, even 
high concentrations of immunotherapies delivered to the 
tumor via CED may be limited by intrinsic tumor microen-
vironment characteristics. Novel combination treatments 
that tackle some of these immunosuppressive pathways, 
like potassium release in the setting of hypoxic cell death, 
may be key for realizing the full potential of immunother-
apies in glioblastoma.
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Conclusions and Future Directions

Although among limited populations, delivery of immuno-
therapies via CED leads to dramatic treatment responses. 
This is especially prevalent among those patients treated 
with oncolytic viruses and TFGB2 inhibitors.23,29,44,63 
However, only a minority of these patients experience 
a sustained response, and it is unclear why most tumors 
are not as susceptible to immunomodulatory treatment. 
Age and treatment history (eg, steroids, multicycle chemo-
therapy) may hinder the strength of the immune system, 
which would prohibit a strong adaptive antitumor re-
sponse. While these early clinical trials are promising, 
larger studies may provide clarity as to why some tumors 
are more responsive than others.23,29,44,63 Phase III trials, 
with larger cohorts and comparison to SOC, are required 
to fully assess the benefits of these innovative treatments. 
Furthermore, there is a need to better analyze the local and 
systemic immune responses to these therapies over time.

A number of preclinical trials also show promise. 
Cytokine and monoclonal antibody studies, when de-
livered via CED, show robust immune responses within 
mice.83,117,118 These results provide strong evidence to tran-
sition to the clinical setting. Additionally, several more 
complex, pioneering technologies, within intentions to de-
liver via CED, remain in the in vitro stage. Sunil et al., fol-
lowing successful preliminary studies, continue to validate 
durations of CED delivery for their oxygen-generating pho-
todynamic payload.88

Directly targeting the tumor or resection cavity with CED 
offers many benefits. Its most obvious strength is the minimi-
zation of systemic toxicity. However, recurrence most often 
occurs within the resection cavity, and thus directing ther-
apies at this site may provide the greatest defense against 
further recurrence.139 Looking ahead, delivery of these im-
munotherapies via CED may 1 day become a suitable alter-
native for patients who are poor candidates for surgery.

Another limiting factor among these clinical trials is the 
duration of treatment. Duration of immunotherapy de-
livery for the treatment of solid tumors is debated, but 
Phase III trials of cancers responsive to immunotherapies, 
such as NSCLC and melanoma, often treat until severe tox-
icity or progression of disease.140

As mentioned previously, in trials using CED immuno-
therapies, small subsets of patients experience durable re-
sponses long after discontinuation, but longer treatments 
may benefit a greater number of patients for 2 reasons. A 
longer duration of therapy allows for a longer period of 
cytotoxic effects or inhibition of key signaling molecules 
(eg, TGFB2), and a longer duration allows for more oppor-
tunities for the adaptative immune system to develop an 
antitumor response. Previously, investigators interested in 
CED have been unable to provide chronic treatment as they 
have been limited by risks of infection due to external cath-
eters and bedside pumps. However, recent work by Spinazzi 
et al. demonstrated the feasibility of chronic delivery in gli-
oblastoma patients via CED.15 Following designs of a sim-
ilar system used in the treatment of Parkinson’s disease, 
they engineered a refillable subcutaneous catheter-pump 
system placed within the abdomen, where they were able 

to deliver multiple cycles of topotecan.15,141 Their success 
delivering sustained chronic cycles of topotecan may serve 
as a foundation for future studies involving the chronic de-
livery of immunotherapies alone or in combination with 
chemotherapies. More interestingly, this trial provided a 
novel clinical trial framework in which MRI-localized biop-
sies were taken immediately before and after therapy in 
order to study the effects of the drug at the tissue level. With 
these samples, they studied the effects of chronic treatment 
on not only tumor cell populations, but also of the immune 
microenvironment. This “window-of-opportunity” trial ap-
proach is critical to assess patient-specific responses to im-
munotherapy and improve future therapies.

Despite slow advances in the treatment of glioblastoma 
since the turn of the 21st century, numerous novel ther-
apies have shown promising results at both preclinical and 
clinical stages. In order to defend against treatment recur-
rence, a sustained antitumor response must be invoked. 
Immunotherapy, locally delivered via CED at high doses, 
allows for a robust and sustainable antitumor response in 
a subset of patients. Further studies are required not only 
to better understand the spectrum of susceptibility to these 
therapies, but more importantly to demonstrate improved 
survival and quality of life for glioblastoma patients.
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