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ABSTRACT We have used a monoclonal antibody specific for a hydrocarbon-induced cyto- 
chrome P450 to localize, by electron microscopy, the epitope-specific cytochrome P450. The 
cytochrome was found in the rough and smooth endoplasmic reticulum (ER) and the nuclear 
envelope of hepatocytes. Significant quantities of cytochrome P450 were not found in Golgi 
stacks. We also could not find any evidence of Golgi-associated processing of the Asn-linked 
oligosaccharide chains of two well-characterized ER membrane glycoprotein enzymes (glu- 
cosidase II and hexose-6-phosphate dehydrogenase), or of the oligosaccharides attached to 
the bulk of the glycoproteins of the ER membrane. We conclude that these ER membrane 
proteins are efficiently retained during a process of highly selective export from this organelle. 

Evidence from subcellular fractionation (1-5; and reviewed 
in reference 6) suggests that membrane proteins (enzyme 
markers) that are most concentrated in the endoplasmic retic- 
ulum (ER) l membranes are also found at high concentrations 
in the Golgi complex, a highly compartmentalized organelle 
(6-12). 

To examine this issue further, we have determined the 
intraceUular localization of a major ER membrane protein, 
cytochrome P450 (13), by electron microscope immunocy- 
tochemistry. We have also studied the structures of the oli- 
gosaccharide chains of two particular ER membrane glyco- 
proteins (glucosidase II [14-16] and hexose-6-phosphate de- 
hydrogenase [H6PDH; 17]) as well as those of a broad spec- 
trum of membrane glycoproteins prepared from ER fractions 
of rat liver to seek evidence of Golgi-associated oligosaccha- 
ride processing of these glycoproteins. 

MATERIALS AND METHODS 

Cytochrome P450 Experiments 
ANIMALS: Wistar rats (Simonson Labs) were either starved for 24 h or 

fed ad libitum (as indicated) before they were killed. Induction of 3-methyl- 
cholanthrene (3-MC)--cytochrome P450 was achieved by intraperitoneal injec- 
tion of 10 mg 3-MC (Eastman Kodak Co., Rochester, NY) per 340 gm body 
weight. 3-MC was dissolved at 50"C in corn oil at 10 mg/ml concentration. 
Control rats were mock-induced by injection of an equivalent amount of corn 

Abbreviations used in this paper: Con A, concanavalin A; 
H6PDH, hexose-6-phosphate dehydrogenase; 3-MC, 3-rnethylchol- 
anthrene; RCA I, ricin agglutinin I; RM2, rough microsome fraction. 
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oil. Livers were excised 1 d after a single injection. 
A N T 1 B O D I E S : Monoclonal IgG antibodies to a 3-MC-induced form of 

cytochrome P450 (MC-P450 1-7-1) and to a phenobarbital-induced cytochrome 
17450 (PB-P450 2-66-3) have been described (18, 19). Both are of the IgG, 
subtype and react with different forms of P450. Affinity-purified rabbit anti- 
mouse IgG (Cappel Laboratories, Cochmnville, PA), rhodamine-conjugated 
goat anti-rabbit IgG (Vector Laboratories, Inc., Burlingame, CA), and protein 
A (Pharmacia Fine Chemicals, Piscataway, N J) were purchased. Protein A/ 
gold conjugates of ~5-, 8-, or 12-nm diam were prepared as described (20). 

TISSUE PREPARATION: Rat liver was fixed by portal vein perfusion 
with a gradient of 2-8% paraformaldehyde (in phosphate-buffered saline 
[PBS]) as described (21). l-mm 3 blocks of liver were stored in 8% paraformal- 
dehyde in PBS. A Golgi-enriched fraction of rat liver was prepared according 
to Bergeron et al. (22) and fixed in formaldehyde (21). 

I M M U N O C Y T O C H E M I S T R Y :  Semithin (200 nm) and ulthrathin (50- 
100 nm) cryosectioning (for light microscopy and electron microscopy, respec- 
tively) of liver and liver Golgi-enriched fractions, as well as the subsequent 
immunoincubation procedures, were done according to Brands et al. (21). The 
anti-MC-P450 monoclonals were used at 50 ug/ml. Since the mouse monoclo- 
nals do not bind protein A/gold conjugates, we applied rabbit anti-mouse IgG 
as an intermediate antibody (as described in reference 21) to localize the 
cytochrome P450 subtypes studied. For reference to standard morphology, 
some tissue blocks were Epon-embedded (Polysciences, Inc., Warrington, PA) 
after osmium postfixation and subsequent dehydration, and stained with uranyl 
acetate after sectioning. 

H6PDH and Glucosidase II 

PROTEINS: H6PDH and glucosidase II were purified as previously de- 
scribed (16, 17). 

ENDOGLYCOSIDASE H DIGESTION OF H6PDH" DigestionofH6PDH 
with endoglycosidase H (Endo H) was essentially as described (16). 2 #g of 
H6PDH preparation (20 ul) was mixed with an equal volume of 0.1 M Tris- 

THE /OURNAL OF CELL BIOLOGY . VOLUME 101 NOVEMBER 1985 1724-1732 
© The Rockefeller University Press • 0021-9525/85/11/1724/09 $1.00 



HC1 buffer (pH 6.8) containing 30 mM dithiothreitol and 2% SDS, and heated 
at 100*C for 5 min. Then 20 t~l of 0.3 M sodium citrate buffer (pH 5.5) 
containing 1 mg/ml SDS, either in the presence or absence of Endo H (6 ng 
protein, 2 x 104 IU), was added, and the mixture was incubated for 16 h at 
37"C. The digest was subjected to SDS PAGE, and the gel was analyzed for 
protein, concanavalin A (Con A) binding, or ricin binding as will be described 
below. 

LECTIN BINDING: tzsI-Con A was used in conjunction with SDS PAGE 
to determine ifa polypeptide has a Con A-binding oligosaccharide. Paper blots 
of the SDS gels were incubated with ~zsI-Con A as before (16). Ricin agglutinin 
I (RCA I) binding was studied by essentially the same procedure (16) except 
that an anti-RCA 1 IgG and ~251-protein A were used for detection. The 
diazonium paper transfer of the gel (-100 cm ~) was thoroughly washed with 
0.25% gelatin solution containing 0.1 M Tris-HC1 buffer (pH 9.0) and then 
with a detergent solution (0.15 M NaCI, 50 mM Tris-HC1 [pH 7.4], 0.25% 
gelatin, and 0.05% Nonidet P-40) to inactivate any remaining diazonium 
groups. The inactivated paper was incubated for 1 h at room temperature with 
1.5 ml of the same detergent solution now containing RCA I (20 t~g/ml). Then, 
the paper was incubated (in 1.5 ml vol) for 1 h each at room temperature 
successively with mucin (1 mg/ml), anti-RCA I lgG (1.5 #g/ml; kindly provided 
by Vector Laboratories, Inc.), and ~ZSl-protein A (80 ng protein, 7 x 105 cpm). 

PERIODATE OXIDATION: Sialic acid is specifically oxidized by sodium 
metaperiodate under mild conditions (23). The aldehyde group formed by the 
oxidation can be reduced to the corresponding radioactive alcohol group by 
NaB[SH]4. A glucosidase II preparation (100 t~g/ml; 0.5 ml) was extensively 
dialyzed against 0.1 M acetate buffer (pH 5.6) containing 0.15 M NaC1, was 
mixed with 0.05 ml of 60 mM NaIO4 (final concentration 5 raM), and incubated 
for 10 min on ice. The reaction was then quenched by adding an excess of 
ethylene glycol (20 t,l). The whole mixture was then thoroughly dialyzed at 4"C 
against 50 mM potassium phosphate buffer (pH 7.0) containing 0.15 M NaC1 
to remove the remaining periodate. Then 0.6 mCi ofearrier-free NaB[SH]4 (100 
mCi/ml dissolved in 0.01 M NaOH) was added to the oxidized sample, and 
the mixture was incubated for ~ 1 h at room temperature. The sample obtained 
as above was precipitated with 6% triehloroacetic acid, using 0.2 mg of 
cytochrome c as a carrier protein. The protein precipitate was neutralized and 
subjected to SDS PAGE. After staining with Coomassie Blue, the gel was treated 
with ENHANCE (New England Nuclear, Boston, MA) and autoradiographed. 

Analysis of Endo H-Sensitive GIycopeptides of 
Rough ER Membranes 

Microsomes were extracted with 0.05% deoxycholate to remove soluble 
content proteins as described (25). Lyophilized membrane pellets (6-10 mg 
protein) were rehydrated in 0.5 ml of 0.1 M Tris-HCl, pH 8.0, 1 mM NaNs, 
and 40 vl of 20 mg/ml pronase (CB grade, Calbiochem-Behring Corp., La Jolla, 
CA) was added. The pronase had been dissolved in this same buffer, but also 
containing 10 mM CaC12, and was incubated for 1.5 h at 37"C before use. 
Digestion was for 36 h at 50"C, with additional 25-vl portions of pronase being 
added after 12 and 24 h of incubation (26). The resulting glycopeptides were 
lyophilized, redissolved in water, and desalted on a Sephadex G-10 column. 
Glycopeptides were then reduced with 0.1 M NaBI-h -0.15 M NaOH overnight 
at room temperature (to react any groups available before the Endo H cleavage), 
and then the reaction was stopped by the addition of glacial acetic acid, and 
the water evaporated under a stream of nitrogen. The glycopeptides were then 
treated with endoglycosidase H as described (26), and the liberated oligosaccha- 
rides were isolated by passing samples over columns of Sephadex G-10 and 
AG-1 X-2 (formate form, Bio-Rad Laboratories, Richmond, CA) using water 
as eluant. The resulting Endo H-sensitive oligosaccharide preparation was then 
reduced with 0.5 mCi NaB[SH]4 in 0.5 ml of 0.1 M NaOH for 24 h at room 
temperature. The reactions were desalted on AG-I X-2 (H + form), and boric 
acid was removed by repeated evaporation from methanol, all as described 
(27). Contaminating, free radioactivity was removed by descending paper 
chromatography in ethyl acetate/acetic acid/formic acid/water (18:3:1:4) over- 
night (28). Material that ran in the first 2.5 cm of the chromatogram was cut 
out, eluted with water, and lyophilized. Samples were analyzed (26) by chro- 
matography on 1 x 120-cm columns of Biogel P-4 (400 minus) or high pressure 
liquid chromatography on Lichrosorh Si-60 in the presence of 1,4-diaminobu- 
tane (29). Reduced oligosaccharides were treated with jack bean alpha-man- 
nosidase (Sigma Chemical Co., St. Louis, MO) and the products analyzed on 
Biogel P-4 as previously described. Mild acid hydrolysis and chromatography 
on QAE Sephadex were performed according to Varki and Kornfeld (30). 

RESULTS 
Subcellular Localization of Cytochrome P450 

After induction by substrates, certain forms of cytochrome 

P450 become major components of the ER membrane (13). 
The 3-MC-induced forms of cytochrome P450 (MC-P450) 
are virtually absent before induction, but are abundant after 
induction (31). We have used a monoclonal antibody (18, 31) 
together with electron microscope immunocytochemistry to 
localize the 3-MC-induced cytochrome P450 in rat liver 
hepatocytes. For this purpose, frozen sections of livers from 
control and from 3-MC-induced rats were prepared and were 
incubated with an anti-cytochrome P450 monoclonal anti- 
body, and then rabbit anti-mouse antibody, and finally either 
rhodamine-conjugated goat anti-rabbit IgG (for immunoflu- 
oreseence) or a protein A-gold conjugate (for electron mi- 
croscopy). 

The specificity of the monoclonal antibody for the induced 
form of MC-P450 in the context of the cytochemical proce- 
dures used here was demonstrated by comparing the level of 
immunofluorescent staining of 3-MC-induced (Fig. 1 B) and 
uninduced (Fig. 1 C) livers. Note that the section in Fig. 1 C 
(control) was photographed with 18 times the exposure used 
for Fig. 1 B (induced). 

The distribution of cytochrome P450 can be explored at 
much higher resolution by electron microscopy. No qualita- 
tive changes occur as a result of 3-MC treatment, either in 
the structure of the Golgi complex or in the proportion or 
distribution of ER membranes (data not shown). Figs. 2 and 
3 show that the 3-MC-induced cytochrome P450 is (as ex- 
pected) found in both the rough and smooth ER membranes. 
The outer nuclear envelope (Fig. 2A) also stains, consistent 
with the findings of Matsura et al. (42). Lysosomes, peroxi- 
somes, and the nucleus do not stain. Glycogen granules, when 
present in livers from fed rats, also do not stain (Fig. 3A). 
Despite some biochemical evidence suggesting a mitochon- 
drial localization (43), mitochondria do not stain. The speci- 
ficity of the immunocytochemical procedure for MC-P450 
could be further demonstrated in two different ways. First, a 
control monoclonal antibody (also IgGt) specific for a differ- 
ent kind of P450 induced by phenobarbital (19, 31) did not 
stain sections of 3-MC-induced livers (Fig. 2 D) but did stain 
sections of livers from phenobarbital-induced rats (not 
shown). Second, hepatocytes from control rats (not induced 
by 3-MC) did not stain with the anti-MC-P450 monoclonal 
antibody (Fig. 2 B). Together, these controls establish that the 
gold particles represent sites at which 3-MC-induced forms 
of cytochrome P450 are present. 

Despite the ease with which cytochrome P450 can be 
demonstrated in the surrounding ER membranes, we could 
not detect this protein in the Golgi stack. Fig. 2 C illustrates a 
typical Golgi area in which the surrounding ER is clearly 
labeled for cytochrome MC-P450, but in which the Golgi 
stack itself has few, if any, gold particles above the back- 
ground. 

We have also examined isolated Golgi stacks in a Golgi- 
rich fraction (22) from which most of the ER membranes that 
surround the Golgi in the cell have been removed by fraction- 
ation. Staining of these isolated Golgi membranes for MC- 
P450 was also insignificant; microsomal membranes, ob- 
tained from the same homogenate, were heavily stained for 
P450 (data not shown). 

In summary, the 3-MC-induced form of cytochrome P450 
is a major component of the ER membrane, and we have 
been unable to detect significant quantities of this protein in 
Golgi stacks. 
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FIGURE 1 Specificity of monoclonal antibody to MC-P450 demonstrated by immunofluorescence (A and B); sections from an 
induced (fed) rat. (A) Phase contrast, (B) immunofluorescence (lO-s exposure). (C) Section from an uninduced (control, fed) rat, 
stained in parallel for immunofluorescence (3-min exposure). Fluorescence is limited to the cytoplasm of hepatocytes. Endothelial 
cells (arrowheads) lining the sinusoids and Kuppfer cells (~) do not label. Labeling of Golgi regions (arrows) does not occur. 
Albumin is concentrated in the Golgi complex in these same areas (21). Bar, 10 ~m. x 600. 

FIGURE 2 Electron microscopic immunolocalization of 3-MC-P450 in hepatocytes using 8-nm protein A/gold conjugates as the 
electron dense marker. (A) Label is specific for ER including the nuclear envelope (arrows). (B) Hepatocyte from an uninduced 
rat. The ER does not label for 3-MC P450 with the 3-MC P450 antibody (the few gold particles present are indicated by 
arrowheads). (C) Hepatocyte from induced rat. The ER surrounding a Golgi area is labeled, however, the Golgi complex itself is 
not labeled. Here, 12-nm gold conjugates were used. (D) Control in which a monoclonal antibody to a phenobarbital-induced 
form of cytochrome P450 was used to stain sections of MC-induced liver. Label over ER was at background levels as judged by 
the similar densities over nuclei (N) and mitochondria (not shown). 8-nm gold. (A) Bar, 0.5 ~m. x 25,000. (B) Bar, 0.5 /~m. x 
22,000. (C) Bar, 0.25 ~m. x 50,000. (D) Bar, 0.25 ~m. x 33,000. The rats used for this figure had been starved before they were 
killed. 

1 726 



FIGURE 3 (A) Liver from fed rat, to retain glycogen granules. Note 
the density of 3-MC P450 label in smooth ER, which is now spaced 
out by glycogen filled areas (*). Rough ER is not affected. 9-nm gold 
conjugate. MC-450 labeled with 12-nm gold in livers from starved 
rats. Golgi (G) stacks are not labeled, whereas surrounding ER is 
labeled. Negligible label is seen over mitochondria (M), lysosomes 
(L}, and peroxisomes (P). (A) Bar, 0.5 p.m. x 22,000. (B) Bar, 0.25 
~m. x 32,000. 

The Oligosaccharide Chains of H6PDH and of 
Glucosidase II 

We have examined the oligosaccharide chains present on 
two glycoprotein enzymes of the ER membrane to see whether 
any evidence could be obtained of passage into (or back from) 
the Golgi. H6PDH was purified to homogeneity from rat liver 
microsomes (17). The polypeptide chain (108 kD) has previ- 
ously been suggested to be a glycoprotein because it stained 
with the PAS reagent. Glucosidase II is an enzyme that acts 
in the ER to remove the inner two (1,3-1inked) glucose 
residues from oligosaccharide chains soon after their transfer 
to Asn residues of nascent glycoproteins. Glucosidase II is 
itself a glycoprotein (14-16) as its polypeptide chain is sensi- 
tive to Endo H (15, 16). Glucosidase II has also been reported 
to contain sialic acid, on the basis of the effect of neuramini- 
dase on its isoelectric point (14). 

Fig. 4 confirms that H6PDH is glycoprotein, and shows 
that it contains Endo H-sensitive oligosaccharide chains. For 

FiGure 4 H6PDH has Endo H-sensitive Con A-binding sites. A 
mixture containing H6PDH (0.5 /~g) and ovalbumin (2 /zg) (as an 
internal standard) was incubated for 16 h at 37°C with or without 
Endo H, and then subjected to SDS PAGE. A paper transfer was 
incubated with 12Sl-Con A to localize polypeptides with Man-con- 
taining oligosaccharide chains. 

this experiment, untreated and Endo H-digested H6PDH 
were electrophoresed on an SDS gel and then transferred to 
diazonium paper. The paper blot of the SDS gel was then 
incubated with x2~I-labeled Con A to reveal the location of 
an# Con A-binding polypeptides. The intact enzyme, retain- 
ing its Endo H-sensitive oligosaccharides, bound radioactive 
Con A. The binding sites for Con A were largely lost upon 
removal of the Endo H-sensitive oligosaccharide chains. This 
suggests an absence of complex-type Asn-linked oligosaccha- 
ride chains. 

We have previously reported that glucosidase II is Endo H -  
sensitive, and that all of the Con A binding sites are also lost 
after an Endo H digestion (16). Fig. 5a tests whether or not 
any RCA I (a lectin specific for Gal attached to N-linked 
chains) binding sites may be present on the glucosidase II 
polypeptide chains. For this purpose, an SDS gel of glucosi" 
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FIGURE 5 Glucosidase II appears to lack N-linked galactose as well 
as sialic acid residues. (a) A glucosidase II preparation (13.4/~g) was 
electrophoresed on an SDS gel (in lane 2), and the paper blot of 
the gel was analyzed for RCA 1 binding polypeptides (lane 2). 
Ovalbumin (0.5 ~,g) and fetuin (0.5 u-g) were electrophoresed to- 
gether (in lane 1) to validate the technique as negative and positive 
controls, respectively. Note that fetuin (lane I) binds RCA, but 
ovalbumin (lane 1) and glucosidase II (lane 2) do not. The position 
of these proteins was established from a stained replica (not shown). 
(b) A mixture of glucosidase II (50/zg), fetuin (50/~g), and ovalbumin 
(50 u,g) was treated with sodium metaperiodate and then with 
NaB[3H]4, to label sialic acids. The mixture was electrophoresed on 
an SDS gel. One lane was stained with Coomassie Blue for protein 
(lane 1). An identical lane was autoradiographed with fluorographic 
enhancement (lane 2) to locate the sialic acid-containing species. 
Note that fetuin (a positive control) was labeled, whereas ovalbumin 
(negative control) and glucosidase II were not labeled. 

dase II (lane 2) was transferred to paper, and the paper blot 
was probed with 125I-labeled RCA I. No binding to the glu- 
cosidase II polypeptide chain could be detected. Positive and 
negative controls were included in this experiment to validate 
the technique. Fetuin, a glycoprotein that contains galactose, 
did bind RCA I (lane 1). Ovalbumin, lacking Gal residues, 
did not bind any RCA I (lane 1). 

To test whether or not sialic acid residues might be present 
in glucosidase II, we have taken advantage of the finding (23) 
that sialic acid (whether attached to N-linked or O-linked 
chains) can be specifically oxidized by sodium metaperiodate 
under mild conditions. The aldehyde group formed by the 
oxidation can be reduced to the corresponding alcohol by 3H- 
labeled borohydride, thus incorporating 3H into the glycopro- 
tein. The results are shown in Fig. 5 B. Lane I was stained for 
protein. An identical lane (lane 2) was autoradiographed. No 
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incorporation of radioactivity into glucosidase II occurred as 
a result of this procedure (lane 2). As positive and negative 
controls we included fetuin in the same reaction. Fetuin, 
which contains terminal sialic acid residues, incorporated 3H 
to a high level (lane 2). Ovalbumin was also included in the 
reaction mixture as a negative control. Ovalbumin, which 
lacks sialic acid, did not incorporate any 3H (lane 2). 

Together, these results establish that glucosidase II and 
hexose-6-phosphate dehydrogenase, both integral proteins of 
the ER membrane, contain high Man-type Asn-linked oligo- 
saccharide chains. The findings strongly suggest, though do 
not prove, that these polypeptides also lack complex-type 
asparagine-linked oligosaccharides and any sialic acid (in the 
case of glucosidase II). 

Bulk Glycoproteins of the ER Membrane 
To help establish whether or not the bulk of the ER 

membrane glycoproteins also lack Endo H-resistant oligosac- 
charide chains, and to examine the structure of these chains 
in greater detail, we have prepared a highly purified rough 
microsome fraction (RM2) from rat liver, using established 
procedures (24). The purity was confirmed by electron mi- 
croscopy (not shown). The integral membrane glycoproteins 
were separated from the soluble, content glycoproteins of the 
RM2 fraction using a published procedure (25). Briefly, the 
microsomes were permeabilized with 0.05% deoxycholate to 
release the content glycoproteins while retaining most of the 
integral membrane glycoproteins in a sedimentable form. The 
pattern of polypeptides present in stained SDS gels of this 
membrane fraction (data not shown) agreed closely with that 
reported (25). 

Fig. 6 shows that the glycoproteins of the ER membrane 
can bind Con A, but lose their ability to do so after a digestion 
with Endo H. For this purpose, the membrane fraction (i.e., 
the 0.05% deoxycholate pellet) was further extracted with 2% 
deoxycholate, and the supernatant was chromatographed on 
Con A-Sepharose to separate a Con A-binding fraction from 
a nonbinding fraction (as a control). Samples of these fractions 
were then incubated with or without Endo H and then elec- 
trophoresed on an SDS gel. The Con A-binding polypeptides 
were localized in this gel after an in situ staining procedure 
(25). As expected tzsI-Con A was bound to polypeptide chains 
present in the Con A-binding fraction derived from the RM2 
membrane (lane 1, 120 ug loaded). As a control for the 
specificity of the binding, '25I-Con A did not bind to any of 
the polypeptides that had flowed through the Con A-Sepha- 
rose column (lane 6, 100 ug loaded). Little if any Con A 
binding was lost during a mock digestion of the Con A- 
binding fraction without Endo H (lane 3, 25 ug loaded). 
However, when the same amount of the Con A-binding 
fraction (25 #g) was digested with Endo H, virtually all of the 
binding of 125I-Con A was lost (lanes 4 and 5). This implied 
that most if not all of the Con A-binding sites in the major 
ER membrane glycoproteins consist of Endo H-sensitive 
high-mannose oligosaccharide chains. This also argued 
against the presence of complex (Golgi-derived) chains in the 
bulk of ER membrane proteins, consistent with the conclu- 
sions of Rodriguez-Boulan et al. (24). 

The apparent absence of Endo H-resistant chains attached 
to principal ER membrane proteins would suggest that these 
proteins, as a group, do not travel as far as the medial Golgi 
cisternae, in which GlcNAc residues are added (11) (confer- 



FIGURE 6 Binding of 12Sl-Con A to proteins from the ER membrane 
before and after digestion with Endo H. The glycoprotein fraction 
and the nonglycosylated protein fractions of the membranes RM2 
were prepared by chromatography on Con A-Sepharose, exactly 
as described (25). Samples of these fractions, in some cases digested 
with Endo H as described (16), were electrophoresed on an SDS 
polyacrylamide gel. The gel was incubated with ~251-Con A, washed 
exhaustively, dried, and autoradiographed as described (25). Shown 
is the autoradiograph. Lane 1, 120 #g of the glycoprotein fraction 
from RM2 membranes. No Endo H treatment. Lane 2, empty. Lane 
3, 25 pg of RM2 membrane glycoprotein fraction, mock-digested 
without Endo H for 16 h at 37°C. Lane 4, same as lane 3, except 
0.01 U/ml of Endo H was added. Lane 5, same as lane 3, except 
0.02 U/ml Endo H was added. Lane 6, 100 pg of the nonglycosylated 
fraction (the flow-thru fraction of the Con A-Sepharose column) 
from the RM2 membrane fraction, without an Endo H treatment. 
Parallel experiments (not shown) in which gels of Endo H-treated 
and untreated protein fractions were stained ruled out the possi- 
bility that the loss of Con A binding by the RM2 membrane glyco- 
protein fraction was due to proteolysis accompanying the Endo H 
digestion. 

ring resistance to Endo H). Still, they might have had their 
high-mannose chains trimmed in the Golgl. Therefore, we 
have determined the size distribution of the oligosaccharide 
chains released by Endo H from rough ER membrane glyco- 
proteins. From this size distribution, the extent to which Man 
residues have been removed by the earlier-acting Golgi man- 
nosidase I can be assessed (8, 32). The Endo H-sensitive 

oligosaccharide chains were released and then labeled at their 
reducing ends with [3H]NaBFL (27). Fig. 7 shows the profile 
of oligosaccharides analyzed by chromatography on Biogel 
P-4. 80% of the radioactivity appeared in the fraction in 
which reduced high mannose oligosaccharides elute, with the 
major peak eluting between the Man9GlcNAcov and Mans- 
GlcNAcox markers (the subscript OT denotes that the oligo- 
saccharide is labeled with tritium at the reducing end). In 
addition, 13% of the radioactivity eluted in a peak midway 
between the void volume and the reduced high mannose 
oligosaccharides (peak A). When control samples were treated 
identically, except for the omission of the digestion with Endo 
H, radioactivity was only found in the void volume fractions. 
The reduced, high-mannose oligosaccharides and peak A were 
pooled separately, lyophilized, and analyzed further by high 
performance liquid chromatography. 

High performance liquid chromatography offers a better 
resolution of individual species in the high mannose fraction 
(Fig. 8). Material chromatographing as MansGlcNAccrr and 
ManaGlcNAcoz were the major peaks, each comprising ~25 % 
of the total. In addition, more minor peaks corresponding to 
Mans_TGlcNACoT and GlcMan9GlcNAcoT were seen, each 
making up -10% of the total. To confirm the identification 
of the peaks corresponding to Man~_gGlcNAcoT, each peak 
was treated exhaustively with jack bean alpha-mannosidase 
and then analyzed on a Biogel P-4 column. In each case, the 
sole product migrated with ManGlcNAcoT (not shown), in- 
dicating that the identification of the oligosaccharides had 
been made correctly, since each contained exclusively alpha- 
linked Man residues attached to a Man-B-GIcNAcoT. It is 
interesting to note that several of the peaks seen on high 
performance liquid chromatography particularly Man7- 
GIcNAcor and MansGlcNAcor, appear to be heterogeneous, 
suggesting that several isomers of these high-mannose oligo- 
saccharides are found on rough ER glycoproteins. 

The size distributions of the Endo H-sensitive chains are 
essentially those expected from the actions of the ER-associ- 
ated mannosidase (32). A repeated exposure to Golgi man- 
nosidase I would have been expected to result in the eventual 
production of MansGlcNAcoT as the major species. 

To determine if the oligosaccharides in peak A were nega- 
tively charged, they were characterized by chromatography 
on QAE-Sephadex (30). Material eluting at 5 mM NaCI 
accounted for 40% of the total radioactivity of peak A while 
the balance eluted at 50 mM NaC1 (not shown). To test for 
the presence of sialic acid or phosphodiester residues on these 
oligosaccharides, each of the two QAE fractions from peak A 
was treated with mild acid (30). Sialic acid residues should be 
removed by this treatment, resulting in reduced charge and 
elution at a lower NaCI concentration, Phosphodiesters 
should be cleaved yielding phosphomonoesters with increased 
charge, resulting in elution at high NaC1 concentrations. 
Phosphomonoesters should be unaffected. The elution posi- 
tion of neither QAE pool was affected by the mild acid 
treatment, suggesting that the oligosaccharides in peak A do 
not contain sialic acid, -P-GIcNAc, or -P-glucose diesters. 
Because of the small amount of material available, peak A 
material could not be further characterized. Thus, the signif- 
icance of peak A is presently unclear. It is negatively charged 
and derived from high-Man Asn-linked oligosaccharide 
chains. The negative charge is not due to sialic acid, or a 
phosphodiester, but could conceivably be either a phospho- 
monoester or a sulfate. 
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FIGURES 7 and 8 Analysis of Endo H-sensitive oligosaccharides of RM2. The microsomes were extracted with 0.05% deoxycholate 
to release soluble content (25) and pelleted. The Endo H-sensitive oligosaccharides of RM2 membranes were labeled by reduction 
with [3H]NaBH4 and analyzed by column chromatography (Fig. 7) as described under Materials and Methods. The void volume 
(Vo) and the elution positions of authentic reduced high mannose oligosaccharide are shown: 1, GIcMangGIcNAc; 2, MangGIcNAc; 
3, ManaGIcNAc; 4, ManTGIcNAc; 5, Man6GIcNAc; 6, MansGIcNAc. The regions marked with horizontal bars were pooled for 
further analysis by high performance liquid chromatography in Fig. 8 (29). Fractions of 1 ml were collected. 

DISCUSSION 

The evidence from subcellular fractionation (1-5) that ER 
membrane proteins are also found at high concentrations in 
Golgi membranes led to the proposal (6) that the ER marker 
proteins putatively present in the Golgi escape from the ER 
as a result of a low level of errors made during the process of 
a selective but imperfect export from ER. The fact that these 
ER marker proteins are not present in the plasma membrane, 
a major target for export from the Golgi apparatus, gave rise 
to the idea (6) that the escaped ER membrane proteins are 
eventually removed from the Golgi and returned to the ER. 
The stack would then act as a multistage filter, improving the 
overall fidelity of the process of protein transport from the 
ER to other organdies. 

This distillation hypothesis (6) makes several predictions. 
First, the major components of the ER membrane should be 
readily demonstrable in the Golgi stack by immunocytochem- 
ical methods. In particular, the concentration of ER marker 
proteins should be greatest at the cis (entry face) and least at 
the trans (exit face). Second, a typical ER membrane protein 
would escape into the Golgi and then be retrieved many times 
during its lifespan of a few days. Thus, oligosaccharide chains 
attached to ER membrane proteins should, in many cases, 
bear the characteristic imprints of the actions of Golgi-local- 
ized mannosidases and glycosyttransferases (7, 8). These in- 
clude the removal of Man residues (most likely in the cis or 
medial Golgi [9, 10]), the addition of GlcNAc (in medial 
Golgi [ 11 ]), and of Gal and sialic acid (in trans Golgi [ 12]). 
Even ER glycoproteins that are relatively poor substrates for 
these enzymes would be expected to eventually be processed 
in the Golgi, due to a repeated exposure. 

A third prediction is that proteins in the ER membrane 
should be in a dynamic equilibrium with the same molecules 

in the Golgi. Unfortunately, pulse-chase experiments in which 
the ER marker proteins would be labeled biosynthetically in 
the ER are likely to be insensitive indicators of potential ER- 
Golgi traffic. Since the total amount of ER membrane in a 
cell is typically in great excess of the total amount of Golgi 
membrane, most of the labeled ER protein will be in the ER 
membranes at any given time with very little in the Golgi 
membranes, whether or not there is a traffic of ER markers 
between these two organelles. 

We have been unable to confirm the first two basic predic- 
tions of the distillation hypothesis for the ER proteins that we 
have studied. Using sensitive electron microscopic immuno- 
cytochemical methods, we have been unable to demonstrate 
the presence of significant quantities of the 3-MC-induced 
form of cytochrome P450 in the Golgi stack, even though this 
component is abundant in the ER membrane. C. DeLemos 
and D. Sabatini have reached a similar conclusion for phe- 
nobarbital-induced cytochrome P450 (personal communica- 
tion). Also, Lucocq et al. (34) have reported similar findings 
in the case of glucosidase II. Our findings with cytochrome 
P450 are consistent with ferritin-antibody studies of isolated 
Golgi fractions (33) but inconsistent with conclusions that 
can be drawn from subcellular fractionation experiments (1- 
5). The latter studies have suggested that ER membrane 
proteins are also present as bona fide components in Golgi 
membranes, at concentrations perhaps as much as one half 
of that in the ER membrane. It seems likely that artifacts of 
contamination by ER membranes, although apparently ruled 
out in these studies, nonetheless account for the presence of 
most of the cytochrome P450 and other ER markers in the 
Golgi-rich fractions. A combined electron microscope and 
subcellular fractionation study by Ito and Palade (5) showed 
that membranes containing the bulk of the cytochrome P450 
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reductase (an ER membrane-bound enzyme) in a Golgi frac- 
tion were absorbed in an immunospecific fashion to beads 
coated with anti-reductase antibody. Among the absorbed 
membranes were Golgi cisternae and very low density lipo- 
protein--containing, Golgi-associated vesicles. Evidently, these 
Golgi membranes contain some of the P450 reductase (and, 
presumably, other ER membrane proteins). However, it is 
important to note that the presence of only a few molecules 
of cytochrome P450 reductase in each cisterna would be 
sufficient to account for their absorption to the beads. 

Our studies of the oligosaccharide chains attached to two 
individual ER membrane proteins, as well as those attached 
to the bulk population, also support the view that ER mem- 
brane proteins are efficiently retained within this organelle. 
We have been unable to detect evidence of passage into medial 
or trans cisternae of the Golgi stack, as would be indicated by 
the presence of GIcNAc and Gal or sialic acid, respectively, 
on ER glycoproteins. This is in keeping with the study of 
Rodriguez-Boulan et al. (24), who could not detect binding 
sites for either wheat germ, ricin, or soybean aggiutinins in 
rough microsomes. They concluded that microsomal mem- 
brane glycoproteins have incomplete carbohydrate chains that 
lack the characteristic terminal trisaccharides (GlcNAc-Cral- 
sialic acid) present in many giycoproteins that are transported 
through the Golgi body. 

We have confirmed and also extended their work by ex- 
amining the number of Man units present in the Asn-linked 
oligosaccharide chains of ER membrane glycoproteins. This 
analysis makes it seem unlikely that the bulk of the ER 
membrane protein even enters the Golgi cisternae. We found 
that the predominant oligosaccharide chains are those with 
either eight or nine Man units, with smaller amounts of Man5, 
Man6, and Man7. This pattern would be predicted from the 
spectrum of products of the ER-localized mannosidase de- 
scribed by Bischoff and Kornfeld (32). A similar product 
distribution is found when proteins that are normally trans- 
ported rapidly out of the ER are artificially retained there 
(35-38). Had the Golgi-localized mannosidase I acted upon 
these ER glycoproteins, the number of Man units could have 
been reduced to as few as five. Certainly, some of the ER 
membrane glycoproteins could pass into the Golgi and retain 
their Man units because their oligosaccharide chain happens 
to be relatively inaccessible to the action ofGolgi mannosidase 
I. However, it seems unlikely that this would be the case for 
the bulk of ER membrane polypeptides, especially with many 
repeated exposures as the distillation hypothesis must propose 
(6). An analysis of the Endo H-sensitive oligosaccharides of 
ribophorin (39) has shown that they, too, consist mostly of 
Man9 and Man8 chains. These observations may not be 
pertinent to the issue of ER--Golgi traffic, however, since 
ribophorins may not be diffusible in the plane of the ER; 
rather, they may be fixed in rough ER regions. Hydroxyme- 
thylgiuUryl-CoA reductase, a transmembrane glycoprotein of 
the ER, has an oligosaccharide chain of which Man6 is the 
principal species (40). 

In conclusion, the bulk of proteins of the ER membrane 
appear to be very efficiently retained in the face of a massive 
and continuous export of newly made secretory, cell surface, 
and lysosomal proteins, even though there is no evidence 
(apart from that of cell fractionation) in keeping with the 
basic predictions of the distillation hypothesis (6) for the ER 
membrane proteins that have been studied to date. Because 

these findings are intrinsically negative, i t  is formally possible 
though unlikely that this hypothesis is correct although diffi- 
cult to confirm, or that it holds for a subset of ER proteins 
that have not yet been studied. A similar conclusion has been 
reached by Green and co-workers (41). The notion that is 
most fundamental to the distillation hypothesis, that the Golgi 
suck exists to carry out sorting operations in a multistage 
process, could nonetheless still be correct. Indeed, it is increas- 
ingly clear that the Golgi suck consists of sequential com- 
partments as originally proposed (6) and thus can carry out 
multistage operations. However, it is most unlikely that the 
bulk of ER membrane proteins are the substrates of such a 
sorting cascade. 
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