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ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) is an essential and pleiotropic coenzyme involved 
not only in cellular energy metabolism, but also in cell signaling, epigenetic regulation, and 
post-translational protein modifications. Vascular disease risk factors are associated with 
aberrant NAD+ metabolism. Conversely, the therapeutic increase of NAD+ levels through 
the administration of NAD+ precursors or inhibitors of NAD+-consuming enzymes reduces 
chronic low-grade inflammation, reactivates autophagy and mitochondrial biogenesis, 
and enhances oxidative metabolism in vascular cells of humans and rodents with vascular 
pathologies. As such, NAD+ has emerged as a potential target for combatting age-related 
cardiovascular and cerebrovascular disorders. This review discusses NAD+-regulated 
mechanisms critical for vascular health and summarizes new advances in NAD+ research 
directly related to vascular aging and disease, including hypertension, atherosclerosis, 
coronary artery disease, and aortic aneurysms. Finally, we enumerate challenges and 
opportunities for NAD+ repletion therapy while anticipating the future of this exciting 
research field, which will have a major impact on vascular medicine.
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INTRODUCTION

Cardiovascular and cerebrovascular diseases are the leading causes of morbidity in the 
elderly and are responsible for at least one in every 3 deaths globally.1,2 Hence, identifying 
the pathophysiological mechanisms contributing to age-related vascular decline is key 
to the prevention and treatment of these disorders and has the potential to exert a major 
impact on human health.3 In this regard, emerging experimental and epidemiological 
evidence indicates that aging is associated with a systemic decline in nicotinamide adenine 
dinucleotide (NAD+), which is an essential coenzyme in cellular metabolism.4-6 Accordingly, 
dysregulated NAD+ metabolism has been implicated in the age-related functional decline of 
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various tissues and organs, including those composing the circulatory system.7-9 Restoring 
NAD+ homeostasis through supplementation of its precursors (also known as vitamin 
B3 derivatives), including nicotinamide riboside (NR), nicotinamide (NAM, also named 
niacinamide) and nicotinic acid (NA), in addition to the NAD+ intermediate nicotinamide 
mononucleotide (NMN), mitigates age-associated diseases in many clinically relevant animal 
models.4,10,11 These findings have transformed views on NAD+ metabolism and shaped further 
research activities with the aim to gain a deeper understanding of why NAD+ levels decline 
during aging, and how that decline affects body functions in health and disease.

In the context of vascular disease, NAD+ metabolism is increasingly recognized as an 
attractive actionable target. Replenishment of NAD+ in vascular cells—either by the 
stimulation of NAD+ synthesis or the inhibition of its degradation—protects against 
age-related arterial stiffening and endothelial dysfunction8 and improves conditions 
characterized by abnormal blood flow, such as ischemia/reperfusion injury.12 This is 
particularly important as these vascular pathologies often co-exist. Indeed, hypertension 
is a risk factor for atherosclerosis, and coronary artery disease often occurs via thrombotic 
complications of atherosclerotic plaques. Although intense research in recent years has 
revolutionized our view on NAD+ biology and generated new and evolving concepts related 
to the biosynthesis, transport, catabolism, and bioactivity of NAD+ in health and disease,13 
we are only beginning to understand the pathophysiological implications of dysregulated 
vascular NAD+ metabolism. In this review, we summarize how disruption of NAD+ 
metabolism affects vascular function, which vasoprotective mechanisms are regulated by 
NAD+, and how the restoration of NAD+ homeostasis mitigates common vascular diseases, 
including hypertension, atherosclerosis, coronary artery disease, and aortic aneurysm. For a 
comprehensive overview of NAD+ biochemistry and metabolism, as well as of its role in other 
organs, including the heart, we refer readers to other relevant in-depth reviews.5,14-16

VASOPROTECTIVE MECHANISMS OF NAD+

1. NAD+ suppresses vascular inflammation
Epidemiological and experimental studies suggest that old age and chronic systemic low-
grade inflammation (i.e., inflammaging) are the principal drivers of cardiovascular and 
cerebrovascular diseases.17,18 Very recently, Covarrubias and colleagues demonstrated a causal 
link between age-dependent decrease in NAD+ and persistent low-grade inflammation.19 The 
authors found that senescent cells promote the proliferation of M1-like mouse macrophages 
expressing high levels of CD38, which is a major NAD+-consuming enzyme in mammals.20 
Accordingly, high CD38 levels contribute to the age-dependent decline of NAD+, at least in 
metabolically active tissues, such as the liver and adipose tissue. Of note, CD38 is strongly 
expressed in endothelial cells,21 as well as in human macrophages and monocytes in 
inflammatory conditions22 and in blood samples from aged individuals.23 Therefore, reduced 
NAD+ consumption, increased NAD+ synthesis, or a combination of both have been proposed 
as plausible strategies to attenuate age-induced inflammatory processes (Fig. 1). In support 
of this idea, chronic supplementation of the NAD+ precursor NAM reduced inflammation and 
improved many aspects of healthspan in aged mice fed a high-fat diet,10 likely by promoting 
the differentiation of monocytes to macrophages with reduced pro-inflammatory phenotype.24 
Interestingly, similar anti-inflammatory actions have also been reported for niacin, which 
stimulated M2 polarization of peripheral monocytes in vitro, both in mice and humans.25 
In another study, NAM reduced renal mRNA levels of inflammatory markers, which was 
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associated with lowered arterial blood pressure in hypertensive mice with genetically or 
pharmacologically induced dysfunction of endothelial nitric oxide synthase (eNOS).26 Since 
NAM administration is safe in humans,27 this observation merits further evaluation in the 
subgroup of patients with hypertension who have an impaired eNOS system, in whom the 
inhibition of inflammation might be particularly efficient.

Similar anti-inflammatory effects were reported for alternative NAD+ precursors, such as 
NR and NMN, which inhibit interleukin-1β and tumor necrosis factor-α (TNF-α)-induced 
inflammation in cultured endothelial cells and improve endothelial dysfunction in aortic 
rings ex vivo.28 Interestingly, NMN reversed endothelial dysfunction and inflammation by 
extracellular conversion to NR via CD73, an ecto-5′-nucleotidase localized on the luminal 
surface of endothelial cells, whereas the NR-induced vasoprotective effects were CD73-
independent.28 Although the precise mechanisms underlying the vasoprotective effects of 
NR remain elusive, endothelial SIRT1 (an NAD+-dependent lysine deacetylase) appears to be 
involved,28 likely through the modulation of eNOS activity.29 In another study, the activation 
of SIRT1 with SRT1720 was shown to ameliorate vascular endothelial dysfunction in aged 
mice by reducing arterial inflammation and oxidative stress, but these effects were linked to 
elevated COX-2 signaling rather than increased nitric oxide (NO) production.30 Regardless, NR 
also inhibits TNF-α signaling, thereby lowering systolic blood pressure and, at least in part, 
reducing multimorbidity and premature aging in mice with dysfunctional mitochondria owing 
to mitochondrial transcription factor A (TFAM) deficiency in T cells.31 In sum, considering 
that inflammation renders the vasculature prone to dysfunction, pharmacological strategies 
to increase vascular NAD+ concentrations might constitute a promising approach to prevent 
inflammatory-mediated endothelial dysfunction and consequent vascular disease.

https://doi.org/10.12997/jla.2022.11.2.111
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Fig. 1. Elevating cellular NAD+ activates various vasoprotective mechanisms. Pharmacological modulation of NAD+ 
levels via NAD+ precursors or inhibitors of NAD+-consuming enzymes reduces chronic low-grade inflammation and 
protein acetylation, reactivates autophagy and mitochondrial biogenesis, and enhances oxidative metabolism in 
vascular cells. Up-arrows indicate increases, down-arrows indicate decreases. The clip art included in this figure 
was created with BioRender.com. 
NAD+, nicotinamide adenine dinucleotide.
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2. NAD+ attenuates vascular oxidative stress and mitochondrial dysfunction
The depletion of intracellular NAD+ levels impedes mitochondrial fatty acid β-oxidation 
and oxidative phosphorylation, underscoring the critical role of NAD+ in maintaining 
mitochondrial function in the vasculature and beyond. Preclinical studies have demonstrated 
that supplementation of different NAD+ precursors reduces mitochondrial oxidative 
stress and reverses related vascular dysfunction (Fig. 1).32,33 For example, chronic NMN 
supplementation improved NO-related endothelial dysfunction and decreased aortic pulse 
wave propagating velocity (a proxy of arterial stiffness) by attenuating collagen accumulation 
and increasing elastin content in aged mouse arteries.32 These NMN-induced vasoprotective 
effects correlated with reduced oxidative stress and increased SIRT1 activity. Similarly, NMN 
administration normalized mitochondrial production of reactive oxygen species (ROS) and 
improved mitochondrial bioenergetics in primary cerebrovascular endothelial cells of old 
mice.34 Additionally, the neurovascular protective effects of NMN were accompanied by 
the transactivation of genes involved in mitochondrial rejuvenation, anti-inflammatory, 
and anti-apoptotic pathways.35 NMN, especially in combination with exogenous hydrogen 
sulfide, also improved skeletal muscle blood flow by attenuating the age-associated reduction 
in capillary density (i.e., microvascular rarefaction) through the activation of vascular 
endothelial growth factor signaling in a SIRT1-dependent manner.8 In the same vein, 
many health benefits of SIRT1 activation are related to improved mitochondrial function. 
Indeed, similar to NAD+ precursors, SIRT1-activating compounds such as resveratrol and 
SRT1720 induced mitochondrial biogenesis,36 attenuated mitochondrial oxidative stress,37,38 
activated the antioxidant defense response39 and inhibited apoptosis in endothelial and 
vascular smooth muscle cells from old mice and rats.40 NMN also activates SIRT3,41 which 
deacetylates numerous mitochondrial proteins (e.g., superoxide dismutase 2, SOD2), thereby 
reducing vascular oxidative stress.42,43 In the aged mouse aorta, NMN reverted changes in the 
microRNA expression profile, which correlated with enhanced mitochondrial biogenesis.44 
However, future studies are required to explain the relationship between microRNAs and age-
related vascular diseases, and to delineate the mechanistic role of microRNA gene expression 
regulatory networks in the vasoprotective effects of NMN.

Another strategy for raising intracellular NAD+ levels is to inhibit its degradation by blocking 
NAD+-consuming enzymes,5 such as the cyclic ADP-ribose synthase CD38, which is considered 
the principal NADase in mammalian tissues.20 CD38 is highly expressed in the endothelium,21 
where it is strongly activated by hypoxia-reoxygenation, leading to loss of eNOS-mediated 
NO generation and exaggerated eNOS uncoupling. Of note, CD38 is inhibited by the 
naturally occurring flavonoid apigenin, resulting in elevated NAD+ and decreased global 
acetylation in cell cultures.45 In old mice, apigenin rescued endothelial dysfunction, which 
was associated with increased NO bioavailability, normalized arterial ROS, and reduced 
oxidative stress.46 Additionally, in vitro, apigenin prevented the formation and accumulation 
of foam cells, which are known to propagate the development of atherosclerotic lesions, and 
alleviated age-associated aortic stiffening, reducing adverse remodeling of the extracellular 
matrix and suppressing vascular inflammation. Considering that apigenin is a Food and 
Drug Administration-approved dietary supplement, these preclinical findings provide an 
experimental basis for future translational studies testing the potential of this CD38 inhibitor 
to improve arterial dysfunction and reduce vascular disease risk in the elderly.

In sum, considering the key role of mitochondrial homeostasis in maintaining vascular 
health,47 age- and disease-related depletion of NAD+ might have severe consequences on 
mitochondrial redox balance with implications for vascular disease risk.
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3. NAD+ activates vascular autophagy
In recent years, substantial progress has been made towards better understanding the 
connection between cardiovascular dysfunction and autophagy.48,49 As is also true for 
several other tissues, autophagic flux is reduced in the vasculature of aged mice and 
humans.50 Consistent with this finding, genetic manipulation studies have demonstrated 
that reducing or completely blocking autophagy by inactivating essential autophagy genes 
in vascular endothelial or smooth muscle cells markedly deteriorates vascular physiology.51 
For instance, mice harboring a vascular smooth muscle cell-specific Atg7 deficiency showed 
premature defects in calcium homeostasis, as well as abnormal vascular reactivity and 
smooth muscle cell contractility.52 Along similar lines, mice with endothelial cell-specific 
deletion of Prkaa—an α catalytic subunit of AMP-activated protein kinase that regulates 
mitochondrial biogenesis, function, and turnover—displayed reduced autophagy, which 
was sufficient to cause aortic endothelial dysfunction and mitochondrial fragmentation.53 
These findings indicate that manipulation of autophagy may impair vascular functions and 
that intact autophagic responses are required for vascular homeostasis. Increasing evidence 
suggests that enhancing NAD+ availability stimulates autophagic flux to protect from 
ischemic vascular diseases, including in the heart and brain.54,55 For example, NAD+ treatment 
preserved coronary microvascular density, reduced infarct size, and improved postischemic 
vascular repair by rescuing coronary microvascular endothelial cells upon ischemia/
reperfusion damage in the rat heart.12 This microvascular protection was mediated, at least 
in part, through TFEB-induced lysosomal autophagy, which was also reported to stimulate 
postischemic angiogenesis in a mouse hindlimb ischemia model.56

Mechanistically, recent studies have identified that sirtuins play an important role in 
mediating NAD+-induced autophagy.57 In fact, SIRT1 can induce autophagy by epigenetic 
mechanisms, namely through histone modifications that influence autophagy-related 
gene expression and by post-translational mechanisms through the action of forkhead box 
transcription factors.58 Moreover, SIRT1 directly deacetylates several essential proteins of the 
autophagy machinery, including the products of the autophagy genes Atg5, Atg7, and Atg8.59,60 
Since NAD+ might affect multiple other downstream targets relevant for autophagy, further 
research is warranted to obtain a full understanding of the mechanisms underlying NAD+-
dependent autophagy activation. Of note, SIRT6 has been recently implicated in autophagy 
activation and reduced macrophage foam cell formation, suggesting that yet another NAD+-
responsive sirtuin might protect against atherosclerosis progression.61

Taken together, emerging evidence underscores that autophagic flux plays a major role in the 
NAD+-induced maintenance of vascular homeostasis (Fig. 1). Conversely, defective autophagy 
appears to be a common cause of vascular aging and the development of associated 
pathologies. However, further studies testing causality and dose–response relationships 
are required to confirm whether and to which extent autophagy underlies NAD+-induced 
vasoprotection. Future research is required to delineate the role of autophagy subroutines, 
such as mitophagy (i.e., mitochondrial autophagy). This is particularly important 
because age-dependent impairment of mitophagy might cause endothelial dysfunction, 
metabolic imbalance, inflammation, and senescence, which may collectively contribute to 
atherosclerosis.62 Hence, future studies focusing on the mitochondrial axis are needed to 
elucidate the role of NAD+ in decelerating the manifestation of age-related diseases.63

https://doi.org/10.12997/jla.2022.11.2.111

NAD+ in Vascular Health and Disease



116https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis

TARGETING NAD+ METABOLISM IN VASCULAR DISEASE

A decrease in NAD+ is centrally involved in cardiovascular diseases, such as cardiac ischemia 
in the context of coronary artery disease.64-66 Disrupted NAD+ homeostasis also accompanies 
other human vascular pathologies, including hypertension,67 atherosclerosis,68 and aortic 
aneurysm,69 and restoration of NAD+ content via different NAD+ precursors has yielded 
promising results in animal models (Fig. 2 and Table 1).

1. Hypertension
Currently, one in 3 adults worldwide has hypertension,70 and the global epidemic of 
hypertension is expected to rise owing to the demographic shift towards ever more aged 
populations. Although hypertension is a modifiable risk factor for cardiovascular disorders, 
including ischemic and hemorrhagic stroke, coronary and valvular heart diseases, as well 
as heart or renal failure,71 hypertension management has remained a major public health 
challenge. This has been largely attributed to the multifactorial nature of hypertension and 
its complex pathogenesis, which remains incompletely understood.

In this respect, NAD+ metabolism has emerged as a potential therapeutic target for 
hypertension and associated vascular dysfunction.72 The expression of the rate-limiting 
enzyme in NAD+ biosynthesis, nicotinamide phosphoribosyltransferase (NAMPT), has been 
recently found downregulated both in mice and humans with hypertension,67 implying 
that restoring NAD+ homeostasis might have an anti-hypertensive effect. In support of this 
possibility, systemic overexpression of NAMPT was found to protect against angiotensin 
II-induced hypertension in a SIRT1-dependent manner by reducing ROS production in 
aortic endothelial cells and vascular smooth muscle cells.67 By contrast, mice with systemic 
Nampt haploinsufficiency displayed elevated blood pressure and ROS levels in response to 
angiotensin II infusion, and the administration of recombinant human NAMPT reversed 
this effect.67 Along the same lines, increased NAMPT-mediated NAD+ biosynthesis upon 
NAM supplementation prevented the increase in systolic blood pressure induced by the 
non-selective NOS inhibitor, L-NAME (N[ω]-nitro-l-arginine methyl ester). Consistently, 
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Fig. 2. Targeting NAD+ metabolism to treat vascular diseases. Restoration of NAD+ content through different NAD+ precursors and inhibitors of NAD+-depleting 
enzymes is an emerging therapeutic strategy to improve hallmarks of various vascular disorders. Up-arrows indicate increases, down-arrows indicate decreases. 
The clip art included in this figure was created with BioRender.com. 
NAD+, nicotinamide adenine dinucleotide; LDL, low-density lipoprotein; HDL, high-density lipoprotein; NO, nitric oxide; NAMPT, nicotinamide 
phosphoribosyltransferase; ROS, reactive oxygen species.
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NAM lowered the elevated systolic blood pressure in Dahl salt-sensitive rats as well as in 
eNOS−/− mice, likely through reduced inflammation.26,73 In pregnant mice with pre-eclampsia, 
NAM lowered arterial blood pressure through the reduction of cADPR,74 a product of CD38-
mediated NAD+ consumption that regulates calcium signaling.75 Similarly, NA attenuated 
high blood pressure, inflammation, and oxidative stress in rats with chronic kidney disease,76 
whereas NR treatment lowered systolic blood pressure in mice with T cell-specific TFAM 
deficiency while restoring the NAD+/NADH ratio.31 These findings were corroborated in a 
recent human phase I study showing that NR supplementation led to a mild reduction in 
blood pressure and aortic stiffness in middle-aged and old, otherwise healthy, individuals.72

Pharmacological and genetic CD38 inhibition, which increases cellular NAD+, significantly 
attenuated angiotensin II-induced hypertension and vascular remodeling in mice.77 CD38−/− 
mice and WT mice treated with NMN or the CD38-specific inhibitor 78c displayed lower 
blood pressures, reduced vascular media thickness, media-to-lumen ratio, and collagen 
deposition, as well as normalized elastin expression. Moreover, NMN supplementation and 
CD38 inhibition alleviated the senescence of vascular smooth muscle cells.77

In aggregate, restoring NAD+ levels by supplementation of NAD+ precursors or CD38 
inhibitors is being explored as an adjuvant therapy for hypertension. However, large clinical 
trials are warranted to provide conclusive evidence as to whether incrementation of NAD+ 
levels provides tangible benefits.
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Table 1. Vascular disorders, against which NAD+ precursors show beneficial effects
Vascular disease NAD+ precursor Experimental setting Effects Ref.
Hypertension NAM Dahl salt-sensitive rats Reduced high blood pressure 26,73

eNOS−/− mice Improved endothelial function
L-NAME-treated mice Reduced inflammation

NA Nephrectomized rats Reduced high blood pressure 76
Reduced inflammation
Reduced oxidative stress

NR Middle-aged and old humans A trend towards reduced blood pressure and aortic stiffness 72
Atherosclerosis NA Humans and (APOE) mice with atherosclerosis Decreased LDL cholesterol 83,132

Increased HDL cholesterol
NAM APOE mice Improved protection against ApoB-containing lipoprotein 

oxidation
79

Reduced inflammation and atherogenesis
Coronary artery 
disease

NAD+ A swine model of myocardial ischemia-
reperfusion

Decreased necrosis, fibrosis and stiffness 103
Improved recovery of cardiac function
Reduced inflammation

NAM Ischemia-reperfusion injury in rats Decreased myocardial infarction size 104,133
Reduced oxidative stress

NR Ischemia-reperfusion injury in mice Improved ejection fraction and reduced infarct size 105
NMN Ischemia-reperfusion injury in mice and aged 

rats
Smaller infarct size 106,107
Ameliorated cardiac function
Improved ROS and mitochondrial membrane potential

Aortic aneurysm NA and NAM Calcium chloride- and angiotensin II-treated 
mice

Decreased formation of abdominal aortic aneurysms 112
Reduced inflammation and immune cell infiltration
Lower matrix degradation

Vascular aging NMN Naturally aged mice Reduced arterial stiffness 32,34
Cerebromicrovascular protection
Improved neurovascular coupling
Improved endothelial function
Lower oxidative stress

NAD+, nicotinamide adenine dinucleotide; NAM, nicotinamide; eNOS, endothelial nitric oxide synthase; HDL, high-density lipoprotein; LDL, low-density 
lipoprotein; L-NAME, N[ω]-nitro-l-arginine methyl ester; ROS, reactive oxygen species; NA, nicotinic acid; NR, nicotinamide riboside; NMN, nicotinamide 
mononucleotide.
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2. Atherosclerosis
Atherosclerosis is associated with endothelial dysfunction, the recruitment of pro-
inflammatory M1-like macrophages, and the degeneration of smooth muscle cells in 
the vasculature. During early atherosclerosis, macrophages differentiate into foam cells 
by ingesting modified low-density lipoprotein cholesterol, which in turn promotes the 
formation of atherosclerotic plaques. NAD+-dependent activation of SIRT1 has been shown 
to have beneficial effects on all these cell types and to protect against atherosclerosis.78 For 
instance, dietary NAM supplementation in ApoE-deficient mice prevented atherogenesis 
and improved protection against ApoB-containing lipoprotein oxidation and aortic 
inflammation.79 Of note, the protective effects of NAM might also be achieved by increasing 
the plasma concentration of N-methyl-nicotinamide (methyl-NAM, a metabolic product 
of NAM). In fact, epidemiological studies have demonstrated that methyl-NAM may exert 
anti-thrombotic and anti-inflammatory effects on the endothelium by promoting NO-
dependent vasodilation, thereby improving endothelial function.80 In the same vein, methyl-
NAM was found to be atheroprotective in ApoE−/−/Ldlr−/− mice, which displayed improved 
endothelial dysfunction associated with reduced atherosclerotic plaque area, plaque 
inflammation, and cholesterol content in the brachiocephalic artery.81 Similarly, the aortas 
of ApoE−/− mice fed methyl-NAM and a high-fat, high-cholesterol diet exhibited improved 
endothelium-dependent vasorelaxation.82 Mechanistically, this effect was attributed, at least 
in part, to decreased asymmetric dimethylarginine concentrations due to the induction of 
dimethylarginine dimethylaminohydrolase 2.82

Niacin (nicotinic acid, NA) is a well-known lipid-lowering compound that reduces 
apolipoprotein-B-containing lipoproteins while raising the levels of atheroprotective 
high-density lipoproteins.83 Notably, the anti-dyslipidemia effects of niacin were known 
long before the discovery of statins and the link between NAD+ and sirtuins.84 Although 
niacin has a potent anti-atherogenic effect, it failed to reduce the residual cardiovascular 
risk in patients receiving statins.85-87 Furthermore, a recent meta-analysis revealed that the 
combinatory administration of niacin and standard lipid-lowering therapy using statins 
might be associated with adverse effects on survival.88,89 It is important to note, however, that 
niacin monotherapy was previously shown to reduce mortality.90 Regardless, niacin-treated 
patients exhibit poor compliance due to an unpleasant flushing side effect; thus, niacin is 
no longer recommended or only prescribed to statin-intolerant patients.91,92 Although more 
tolerable formulations of NA have been developed,93 available preclinical evidence on the role 
of NAD+, and especially NAMPT—the rate-limiting enzyme of NAD+ salvage biosynthesis94—
in atherosclerosis is rather scarce and contradictory. On the one hand, leukocyte-specific 
overexpression of NAMPT attenuated atherosclerotic plaques in low-density lipoprotein 
receptor-deficient (Ldlr−/−) mice.95 Additionally, a reduced number of atherosclerotic plaques 
in Ldlr−/− mice coincided with increased macrophage resistance to apoptosis and skewed 
polarization towards a more anti-inflammatory M2 phenotype.95 On the other hand, systemic 
NAMPT inhibition has been reported to exert an atheroprotective effect,96 while global 
NAMPT overexpression aggravated atherosclerosis in ApoE−/− mice.97

In light of the inconsistent findings regarding the impact of NAD+ on atherosclerosis, more 
studies geared towards targeted and cell type-specific interventions must examine the 
general importance of maintaining cellular NAD+ levels in atherosclerosis and delineate 
the specific role of NAMPT in atherogenesis. Furthermore, it is important to mention that, 
despite the initial discouraging clinical effects of niacin on patients with cardiometabolic risk, 
current research is shifting towards other NAD+ precursors, which do not necessarily reduce 
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lipid levels, but arguably possess higher NAD+ repletion capacity than niacin.5 In view of the 
pleiotropic actions of NAD+, it would not be surprising if the possible (cardio)vascular benefits 
of NAD+ precursors might be uncoupled from the correction of hyperlipidemia. In fact, as we 
discuss in the next sections, various studies have consistently shown that, both in the presence 
or absence of adiposity, NAD+ repletion counteracts life-threatening vascular disorders.

3. Coronary artery disease
Experimental models of coronary artery disease induced by transient coronary artery ligation 
have clearly demonstrated that myocardial ischemia is associated with NAD+ depletion.64-66 
One possible explanation for the NAD+ decline in postischemic hearts is the over 50-fold 
higher CD38 activity in endothelial cells than in cardiomyocytes.21 This CD38 overactivation 
appears to be an important cause of postischemic endothelial dysfunction, suggesting that 
CD38 is an actionable target to prevent this dysfunction in unstable coronary syndrome.98 In 
this regard, both genetic deletion and pharmacological inhibition of CD38 by luteolinidin and 
the thiazoloquin(az)olin(on)e 78c protected against ischemia/reperfusion injury, preserved 
contractile function, enhanced coronary flow, and decreased infarct size.99-101 Similarly, NAD+ 
administration (10 mg/kg body weight [BW] per day intraperitoneally) lowered the ischemic 
accumulation of succinate and ROS, which were both associated with reduced cardiac injury 
in isolated rat hearts.102 Furthermore, intravenous NAD+ administration (20 mg/kg BW 
before reperfusion) attenuated ischemic cardiac tissue necrosis, fibrosis, and inflammation 
upon reperfusion of the transiently occluded left anterior descending coronary artery in 
pigs.103 NAD+ precursors, including NAM, NR, and NMN exert similar protective effects. For 
instance, dietary administration of NAM (0.5 g/kg diet) reduced infarction size in an ex vivo 
model of myocardial ischemia-reperfusion.104 Mice treated with the alternative precursor NR 
(100 mg/kg BW) also exhibited improved cardiac function and smaller infarcts.105 The NAD+ 
intermediate NMN consistently normalized alterations in the mitochondrial membrane 
potential and ROS levels associated with ischemic myocardial injury in aged rats.106 NMN 
not only protected against ischemic injury, but also had beneficial effects against coronary 
reperfusion injuries.107 Of note, the NAD+-induced protective effects in coronary artery 
disease models coincide with the reactivation of autophagy flux.12,54 However, more studies 
are required to elucidate whether autophagy is protective or detrimental in this setting.108

Accumulating evidence implicates NAD+ deficiency in coronary artery disease and associated 
cardiac events. Like several CD38 inhibitors, various NAD+ precursors have been shown 
to improve postischemic endothelial dysfunction and, thus, protect against experimental 
ischemia/reperfusion injury of the myocardium. Therefore, future clinical trials should 
examine whether treatment with NAD+ precursors may exert beneficial effects in patients 
with acute coronary syndrome. Furthermore, the harmful effects of CD38 overactivation in 
the postischemic heart highlight the need for further research to delineate the mechanisms 
involved.98 In this respect, future studies should focus on the mechanisms of CD38 activation 
in response to hypoxia-reoxygenation in endothelial cells, which display the highest CD38 
expression among all major cardiac cell types.19

4. Aortic aneurysm
Apart from lowering lipid levels, NA mediates potent anti-inflammatory effects on human 
endothelial and immune cells.109,110 In this regard, persistent adventitial and medial 
infiltration of immune cells contributes to the pathogenesis of abdominal aortic aneurysms. 
Consistently, NA (0.3% w/v in the drinking water)111 reduced immune cell infiltration and 
matrix degradation, thereby protecting against abdominal aortic aneurysm formation in 
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mice subjected to calcium chloride or angiotensin II infusion.112 Interestingly, NAM (0.4% 
w/v), which ostensibly does not exert significant lipid-lowering effects,113 also protected 
against abdominal aortic aneurysms.112 Notably, NAM-treated mice exhibited increased 
SIRT1 activity, and co-administration of the SIRT1 inhibitor EX-527 effectively abolished 
the vasoprotective effects of NAM.112 Similarly, the alternative NAD+ precursor NR has 
been recently shown to improve mitochondrial metabolism, aortic function, and aortic 
diameter, thereby reversing Marfan syndrome-associated aortic aneurysms in a relevant 
mouse model.114 In support of a causal role of NAD+ in the development of aortic dilation and 
aneurysms, mice with smooth muscle cell-specific knockout of Nampt exhibited increased 
susceptibility to angiotensin II-induced aortic aneurysms, as denoted by exaggerated 
medial hemorrhage and dissection.69 In human subjects with thoracic aortic aneurysms, 
unrepaired DNA strand breakages were detected in smooth muscle cells, and this damage 
was particularly enriched in smooth muscle cells with the lowest NAMPT expression.69

In sum, supplementation of NAD+ precursors improves aortic wall structure and function as 
it protects or even reverses aortic aneurysms in mice. Various mechanisms, including reduced 
pro-inflammatory signals, enhanced mitochondrial metabolism, and sirtuin activation may 
mediate these vasoprotective effects. Taking into account that the aortic diameter in patients 
with aortic aneurysm inversely correlates with NAMPT expression in smooth muscle cells,69 
future clinical studies should explore whether NAD+ precursors may improve the course of 
this disease in humans.

5. Aging and related vascular decline
The integrity of most organs and tissues relies on an ample and functional microcapillary 
network that provides transport routes for the circulation of cells, oxygen, nutrients, and 
metabolic waste products.115 Recent observations suggest that the organ-specific loss of vascular 
abundance is an important characteristic of aging tissues in mice and humans.116 On the one 
hand, impaired vascular function and structure comprises stiffening of the large elastic arteries, 
intimal thickening, and media calcification, which are mediated by increases in oxidative stress, 
inflammation, and vascular smooth muscle tone. On the other hand, vascular dysfunction also 
encompasses a decrease in the number and function of endothelial cells at the interface between 
circulating blood and tissues. Endothelial dysfunction, which is characterized by reduced 
NO production and bioavailability, as well as an imbalance between the vasoconstrictors and 
vasodilators derived from the endothelium, leads to local dysregulation of the vascular tone and, 
thus, to reduced blood flow to tissues, culminating in end-organ damage.117,118

A decline in the cellular NAD+ pool is closely related to cellular aging, whereas an increase 
in NAD+ synthesis or a decrease in its degradation delays aging in various organ systems.15 
Similar geroprotective effects have been reported for the vascular system. For example, 
aged mice treated with NMN, although not suffering from hyperlipidemia or hypertension, 
exhibited several vascular benefits, including restored endothelial-dependent vascular 
relaxation, reduced arterial stiffness, and reduced oxidative stress.32 In another study, NMN 
administration to naturally aged mice conferred cerebromicrovascular protective effects, 
which led to improved neurovascular coupling and cognitive function.34 In addition, NMN 
supplementation improved blood flow and increased treadmill endurance in old mice by 
promoting a SIRT1-dependent increase in capillary density in the skeletal muscle.8 Since 
adequate blood flow is vital to every tissue and organ, not only skeletal muscle, it will be 
important to test whether increased endothelial NAD+ availability stimulates angiogenesis 
and improves blood flow in the aging brain and heart.
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NAD+ METABOLISM AS A TARGET TO IMPROVE 
VASCULAR HEALTH IN HUMANS
Despite extensive preclinical evidence on the benefits of NAD+, clinical studies still lag 
behind. In fact, only a handful of trials have been concluded, and these trials mainly focused 
on safety, as well as on the ability of NAD+ precursors to increase NAD+ bioavailability. 
Besides NA, which has been historically tested for its lipid-lowering impact, NR is the 
most common precursor evaluated in ongoing trials with vascular endpoints (Table 2). NR 
supplementation appears to be safe, well-tolerated, has no apparent side effects, and is 
effective in increasing whole-blood NAD+ levels.72 Importantly, in healthy middle-aged and 
older adults, NR tended to lower blood pressure and reduce aortic stiffness.72 In addition, 
NR improved mitochondrial fitness and dampened activation of the NLRP3 inflammasome 
in circulating leukocytes isolated from healthy volunteers.119 However, not all studies support 
the therapeutic potential of NR supplementation. For example, NR administration failed 
to ameliorate endothelial dysfunction, as determined by brachial artery flow-mediated 
dilation in middle-aged and older adults.72 Similarly, oral NR failed to improve blood flow, 
mitochondrial bioenergetics, and metabolism of skeletal muscle, although it did succeed in 
reducing the levels of circulating inflammatory cytokines in 70- to 80-year-old men.120 Future 
large-scale trials are needed to provide conclusive evidence on the putative health benefits 
provided by NR.
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Table 2. Ongoing NAD+ clinical trials with vascular endpoints
NAD+ 
precursor

Dose Condition (demographics) Trial design and phase No. of 
recruited 

participants

Vascular endpoint(s) Expected 
completion

Identifier

NAM 2,500 mg/day Early-onset pre-eclampsia  
(age: 18–55 years; gender: women)

Single group,  
open-label (phase 2)

25 Changes in mean blood pressure July 2020 NCT03419364

NA Up to 2,000 
mg/day

Healthy volunteers (age: 18–99 
years; gender: men and women)

Single group,  
open-label (phase 2)

24 Changes in lipoprotein 
composition and function as well 
as vascular compliance

July 2020 NCT02322203

NR 1,000 mg/day Hypertension (SBP >130 mmHg; 
age: 65–105 years; gender: men 
and women)

Randomized,  
placebo-controlled, 
double-blind (phase 1)

74 Changes in systolic blood 
pressure and arterial stiffness

May 2021 NCT04112043

1,000 mg/day Moderate to severe chronic kidney 
disease (age: 35–80 years; gender: 
men and women)

Randomized,  
placebo-controlled, 
double-blind (phase 2)

118 Changes in aortic stiffness and 
arterial blood pressure

September 
2024

NCT04040959

1,000 mg/day (Pre)hypertension (SBP: 120–139 
mmHg; age: 50–79 years; gender: 
men and women)

Randomized,  
placebo-controlled, 
double-blind (phase 2)

118 Changes in systolic blood 
pressure and arterial stiffness

December 
2023

NCT03821623

1,000 mg/day Peripheral artery disease (age: >18 
years; gender: men and women)

Randomized,  
placebo-controlled, 
double-blind (phase 3)

90 Effects on walking performance, 
physical activity, quality of life, 
and skeletal muscle phenotype

April 2022 NCT03743636

NMN 300 mg/day Middle-aged and old healthy 
volunteers (age: 40–65 years; 
gender: men and women)

Randomized,  
placebo-controlled, 
double-blind (phase: N/A)

66 Safety and efficacy in reducing 
systolic and diastolic blood 
pressures

March 2021 NCT04228640

400 mg/day Healthy volunteers (age: 30–60 
years; gender: men and women)

Single group,  
open-label (phase: N/A)

20 Tolerability, pharmacodynamics 
and cardiovascular effects, 
including arterial blood pressure; 
heart rate, blood lipids

October 
2021

NCT04862338

800 mg/day Hypertension (SBP: 140–159 mmHg 
and DBP: 90-99 mmHg; age: 18–65 
years; gender: men and women)

Randomized,  
single (assessor)-blind 
(phase 4)

20 Changes in flow-mediated 
dilation, pulse wave velocity, 
as well as systolic and diastolic 
blood pressures

July 2022 NCT04903210

We searched the US clinical trial registry (https://www.clinicaltrials.gov/) using terms “nicotinamide” and “vascular disease” for recently completed or ongoing 
clinical trials of NAD+ supplementation that have yet to publish results (from database inception to January 2022).
NAD+, nicotinamide adenine dinucleotide; NAM, nicotinamide; NA, nicotinic acid; NR, nicotinamide riboside; NMN, nicotinamide mononucleotide; DBP, diastolic 
blood pressure; SBP, systolic blood pressure; N/A, not available.

http://clinicaltrials.gov/ct2/show/NCT03419364
http://clinicaltrials.gov/ct2/show/NCT02322203
http://clinicaltrials.gov/ct2/show/NCT04112043
http://clinicaltrials.gov/ct2/show/NCT04040959
http://clinicaltrials.gov/ct2/show/NCT03821623
http://clinicaltrials.gov/ct2/show/NCT03743636
http://clinicaltrials.gov/ct2/show/NCT04228640
http://clinicaltrials.gov/ct2/show/NCT04862338
http://clinicaltrials.gov/ct2/show/NCT04903210
https://www.clinicaltrials.gov/
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Observational findings indicate that a diet rich in NAM (and NA) is linked to lower blood 
pressure and a reduced risk of cardiac mortality in humans.73 In view of the good tolerability 
of NAM in relatively high doses over months or even years,121 it is conceivable to examine the 
therapeutic utility of NAM as an adjuvant therapy for hypertension. Although 2 recent clinical 
studies have shown that NMN supplementation is safe and can increase NAD+ bioavailability 
in blood,122,123 the impact of NMN supplementation on vascular health has not yet been 
reported. Results from ongoing studies examining the effects of NMN on vascular function 
and arterial blood pressure in older adults and individuals with hypertension (Table 2) are 
awaited to determine whether NMN has the potential to improve vascular health.

Despite the promising vasoprotective effects of CD38 inhibitors, which have vasorelaxant and 
antioxidant properties in experimental models of cardiac ischemia/reperfusion injury,99 only 
a few clinical studies have so far been completed. The flavonoids epicatechin and quercetin 
(both abundant in tea) were tested in middle-aged and old men and women with increased 
systolic blood pressure.124 Supplementation with both CD38 inhibitors failed to improve flow-
mediated dilation, arterial stiffness, NO bioavailability, or blood lipid profiles. Similarly, the 
polyphenol and CD38 inhibitor quercetin failed to increase endothelial function in healthy 
men with the APOE genotype.125 However, quercetin lowered postprandial systolic blood 
pressure, which was associated with decreased postprandial triacylglycerol concentrations 
in parallel with increased high-density lipoprotein cholesterol concentrations. In light of the 
recent finding that CD38 hyperactivation might drive NAD+ depletion in aged mice,19 further 
research efforts are necessary to determine whether specific CD38 inhibition may alleviate 
age-related vascular remodeling. In support of this idea, new preclinical evidence suggests 
that suppressing vascular smooth muscle cell senescence by means of CD38 inhibitors delays 
vascular aging.77

In aggregate, the available human studies suggest that oral administration of various NAD+ 
precursors is safe and modestly increases levels of NAD+ or its metabolites, albeit to varying 
degrees and in a tissue-specific fashion.126 Hence, well-powered and carefully designed 
clinical trials should determine whether chronic supplementation of NAD+ precursors, 
especially those with high NAD+-increasing capacity, may improve vascular health, perhaps 
independently from lipid-lowering effects.126

CONCLUSION AND FUTURE PERSPECTIVES

Although NAD+ studies focusing on the vasculature have been largely overshadowed by 
cardiac-centric studies, the significant benefits of restoring NAD+ homeostasis in animal 
models of vascular disease have spurred interest in the therapeutic potential of NAD+ at the 
clinical level. However, many difficulties and challenges related to the administration of 
NAD+-regenerative therapeutics must be resolved to translate the experimental findings to 
medical practice. For this, future large-scale clinical studies with long-term follow-up that 
extends beyond treatment discontinuation are needed. These trials should consider adapting 
drug doses from rodent studies to human studies while considering major differences in 
metabolic rate and body surface area between mice and humans, but rather similar cellular 
NAD+ turnover rates in both species.127 Another important question is how NAD+ precursors 
are best administered (i.e., at which dose, formulation, and route of administration, and 
at what time of day, considering chronobiological variations in NAD+ levels).128 On the one 
hand, utilizing the human-equivalent dosage of NAD+ precursors could have a more favorable 

https://doi.org/10.12997/jla.2022.11.2.111

NAD+ in Vascular Health and Disease



123https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis

and consistent effect on vascular-related endpoints. On the other hand, high doses of NAD+ 
precursors can cause hepatotoxicity and other adverse effects in patients,16,129 emphasizing 
the necessity to rigorously measure therapeutic and toxicological endpoints in healthy and 
diseased states. Another important consideration is the standardization and development 
of reliable biomarkers of NAD+ metabolism, including the quantitation of NAD+ precursors 
and metabolites in the circulatory system as well as the proxies of their bioactivity, which 
can encompass specific patterns of protein acetylation, autophagy, and mitophagy. Solving 
these current limitations will be critical for designing future NAD+-centered therapeutic 
interventions in patients.

Based on current evidence, both NR and NMN seem promising candidates for boosting 
NAD+ levels in vascular cells. In addition to bypassing the rate-limiting step in NAD+ 
synthesis, another advantage of administering NR or the NAD+ intermediate NMN might 
reside in the fact that both precursors avoid the negative feedback exerted by NAM on sirtuin 
deacetylases (which typically produce NAM as an end product). However, recent in vivo 
data challenge this long-held view, as all 3 precursors (i.e., NAM, NMN, and NR) exerted 
ambiguous effects on global protein acetylation in various tissues including the heart41,73,130,131 
and liver.10 Furthermore, a recent study has demonstrated that almost all NAD+ precursors 
are metabolized to NAM before reaching peripheral tissues,127 implying that the inhibitory 
feedback exerted by NAM might occur irrespective of the chemical nature of the NAD+ 
precursor that has been administered. Regardless, this is an emerging area of investigation, 
and future head-to-head comparisons must elucidate the exact (and perhaps subtle) effects 
of different NAD+-increasing therapeutics on protein acetylation, which might depend on 
the precise (vascular) cell types and subcellular compartments where target proteins reside. 
Other open questions involve the cell type-specific mechanisms underlying the vasoprotective 
benefits of NAD+ repletion. Given the central role of NAD+ in mitochondrial metabolism 
and bioenergetics, future studies should examine mitochondrion-initiated stress pathways, 
with a particular focus on the mitochondrial unfolded protein response in mammalian 
models in vivo to identify key signaling molecules involved in mitochondrioprotection. We 
anticipate that this type of knowledge will advance our understanding of vascular diseases 
associated with mitochondrial dysfunction, and will accelerate the discovery of novel targets 
to modulate this proteotoxic stress-sensing pathway.

In summary, targeting vascular NAD+ metabolism holds significant therapeutic 
potential for the clinical management of age-related cardiovascular and cerebrovascular 
disorders. Although much remains to be done, based on ever-accumulating evidence, the 
pharmacological modulation of NAD+ levels via NAD+ precursors or inhibitors of NAD+-
consuming enzymes appears to be an attractive strategy for reducing chronic low-grade 
inflammation, reactivating autophagy and mitochondrial biogenesis, and enhancing 
oxidative metabolism in vascular cells (Fig. 3). These approaches represent an exciting avenue 
to improve vascular health.
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