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Abstract: Adipose is an important body tissue in pigs, and fatty traits are critical in pig production.
The function of long non-coding RNA (lncRNA) in fat deposition and metabolism has been found in
previous studies. In this study, we collected the adipose tissue of six Landrace pigs with contrast
backfat thickness (nhigh = 3, nlow = 3), after which we performed strand-specific RNA sequencing
(RNA-seq) based on pooling and biological replicate methods. Biological replicate and pooling RNA-
seq revealed 1870 and 1618 lncRNAs, respectively. Using edgeR, we determined that 1512 genes and
220 lncRNAs, 2240 genes and 127 lncRNAs were differentially expressed in biological replicate and
pooling RNA-seq, respectively. After target gene prediction, we found that ACSL3 was cis-targeted
by lncRNA TCONS-00052400 and could activate the conversion of long-chain fatty acids. In addition,
lncRNA TCONS_00041740 cis-regulated gene ACACB regulated the rate-limiting enzyme in fatty
acid oxidation. Since these genes have necessary functions in fat metabolism, the results imply that
the lncRNAs detected in our study may affect backfat deposition in swine through regulation of their
target genes. Our study explored the regulation of lncRNA and their target genes in porcine backfat
deposition and provided new insights for further investigation of the biological functions of lncRNA.

Keywords: lncRNA; fat deposition; pig; RNA-seq

1. Introduction

Fat deposition is an important biological process in pig growth. Fatty traits are
critical in pig production and are closely related to pork quality as well as the production
efficiency and reproductive traits of pigs [1]. Porcine fat content not only affects the
consumers’ choice of pork [2] but is also prone to induce obesity diseases [3], such as type
2 diabetes [4], hypertension, and coronary heart disease [5]. Backfat thickness of swine is a
key indicator to judge the fat deposition in commercial pigs. Investigating the measures
that decrease backfat deposition is an important approach to effectively accelerate swine
genetic improvement. Therefore, it is of great significance to explore the regulators and
molecular mechanisms of backfat deposition in pigs.

Backfat deposition is a complex biological process influenced by multiple genes and
epigenetic factors, including long non-coding RNA (lncRNA). In recent years, there have
been an increasing number of studies on lncRNA function related to fat development. The
regulation of lncRNA on fat has been reported in various species, such as humans, mice,
and cattle. For instance, Alvarez et al. [6] used de novo RNA sequencing (RNA-seq) to
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compare the transcriptomes of different adipose tissues in mice and identified 127 lncRNAs
from brown adipose tissue. In addition, they identified lnc-BATE1, which can regulate
the growth and thermogenesis of brown adipocytes. Li et al. [7] sequenced preadipocytes
and mature adipocytes of Qinchuan cattle and discovered 16 differentially expressed
lncRNAs. Among them, lncRNA-ADNCR can inhibit the differentiation of adipocytes by
competitively binding to miR-204 with SIRT1. However, there are few studies that focus on
the regulation of lncRNA on backfat deposition in pigs [8], especially within one pig breed
with extremely high- and low-backfat thickness, and the molecular regulation process of
lncRNA in backfat deposition is still unclear.

With the rapid development of high-throughput sequencing technology, transcriptome
sequencing has been widely used in animal studies. Pooling and biological replicate are
two conventional methods used in RNA-seq experiments. Pooling RNA-seq refers to
mixing individuals in the same treatment group into one pool for sequencing, which is
more efficient, less time-consuming, and incurs lower cost when there are many samples [9].
Biological replicate refers to the duplication of samples; in other words, there are multiple
samples in the same treatment group used for sequencing, which can eliminate intra-group
errors and reduce false-positive rates [10]. These two sequencing methods have their own
advantages and disadvantages, but the applicable conditions and accuracy of their results
need to be further explored.

In this study, we performed pooling and biological replicate RNA-seq for three pairs
of Landrace pigs with contrast phenotypes of backfat thickness. We identified the dif-
ferentially expressed genes and lncRNAs between the extremely high- and low-backfat
pigs. Combining the results of two methods, we obtained the key genes and lncRNAs that
affect backfat deposition in the Landrace pigs. Some novel genes and lncRNAs involved in
lipid metabolism are provided for decreasing swine backfat deposition in pig breeding. In
addition, we also compared the efficiency of the two RNA-seq methods and the accuracy
of their results, which provides new ideas for future experimental design in livestock.

2. Materials and Methods
2.1. Experimental Animals and Sample Collection

A Landrace female pig resource population was used in this study. We used real-time
B-mode ultrasonography (HS1500 convex scanner; Honda Electronics, Toyohashi, Japan) to
measure the backfat thickness between the last 3rd and 4th ribs. Combined with pedigree
information, we selected three full-sib Landrace pairs with contrast backfat thickness from
132 female Landrace pigs. Three of the pigs with extremely high-backfat thickness formed
the high group (BH, 8.88 ± 0.80 mm) and three with extremely low-backfat thickness
formed the low group (BL, 3.58 ± 0.39 mm). There was significant difference between the
two groups (p-value = 1.44 × 10−3. The experimental population phenotype and selection
criteria were the same as those previously reported [11,12]. The subcutaneous fat tissues
of these individuals were collected after slaughter and then immediately stored in liquid
nitrogen until use.

2.2. Pooling RNA-seq and Biological Replicate RNA-seq Designs

In our study, three pairs of full-sib Landrace pigs with either extremely high- or
low-backfat thickness were taken as paired samples. In pooling strand-specific library
RNA-seq, six pigs were divided into two separate pools according to their contrast backfat
thickness, among which one pool comprised pigs with extremely high backfat (BH) and
the other comprised pigs with extremely low backfat (BL). Then, pooling RNA-seq was
performed using these two groups. In biological replicate strand-specific library RNA-seq,
there were three independent individuals with similar phenotypes in both BH and BL
groups. We identified the differentially expressed genes and lncRNAs in the two-method
results and then analyzed their function in fat development. We also explored the specific
expressed genes and lncRNAs in different phenotype groups based on the two RNA-seq.
The experimental design is shown in Figure 1.
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Figure 1. Experimental design of the current study.

2.3. RNA Extraction and Sequencing

We used a total RNA extraction kit (Bioteke Corporation, Wuxi, China) to extract the
total RNAs of all the samples, according to the manufacturer’s recommendations, and
the quality of the extract was checked by a 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA). After quality control, a library was prepared using the total RNAs. The
sequencing was performed by Biomarker Technologies, Inc. (Rohnert Park, CA, USA) in an
Illumina Hiseq 2500 sequencer (Illumina, Inc., San Diego, CA, USA). The raw data obtained
from the sequencing were trimmed using Trimmomatic software [13]. Clean data were
achieved after deleting the adapter and low-quality reads (Phred quality score ≤ 10). Using
FastQC (v 0.11.8) [14] to check the quality of the paired-end reads of all the six samples. We
then used a NGSQC Toolkit (v 2.3.3) [15] to perform quality inspection and data filtering of
the high-throughput sequencing data. Only good quality trimmed reads were considered
for downstream analysis.

2.4. Mapping and Assembly of Sequenced RNA Reads

The pig reference genome (Sscrofa 11.1) and annotation files were downloaded
from the Ensembl database (http://asia.ensembl.org/Sus_scrofa/Info/Index, accessed
on 20 June 2021) and indexed with Bowtie2 (v 2.3.0) [16]. Clean reads were aligned with
the reference genome using TopHat2 (v 2.1.1) [17] alignment program. Software Cufflinks
(v 2.2.1) [18] was used to assemble the mapped reads and determine their abundance in
all the samples, keeping all parameters as default. Cuffmerge, a Cufflinks suite tool, was
used to merge samples in both pooling and biological replicate RNA-seq, then obtain the
merged gene transfer format (gtf) file for further downstream analysis.

2.5. LncRNA Filtering Pipeline

High stringency was used to filter out putative lncRNAs from the RNA-seq assembled
transcripts. The information in the assembled transcripts from the Cuffmerge results
included the class code of each transcript, such as ‘=’, ‘’., ‘c’, ‘j’, ‘e’, ‘i’, ‘o’, ‘p’, ‘r’, ‘u’, ‘x’,
and ‘s’. The transcripts with non-coding potential class codes of ‘j’, ‘i’, ‘o’, ‘u’, ‘x’, and ‘=’
were reserved [19] and all others were removed. Transcripts with less than 200 nucleotides
and less than 2 exons were also deleted. Filtered transcripts were subjected to three of
the most frequently used tools for identifying long non-coding RNAs, two of which were
the Coding Potential Calculator (CPC) [20] and Coding-Non-Coding-Index (CNCI) [21].
Common transcripts from the results of these two tools were then scanned against the Pfam
database to discover any probable protein domains. We used the hmmer-3.2.1 (Howard
Hughes Medical Institute, San Francisco, MD, USA) to identify the transcripts translated in
all six possible frames with homologs, and the transcripts matched to the Pfam hit were

http://asia.ensembl.org/Sus_scrofa/Info/Index
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excluded with an E-value < 1 × 10−5 [22]. Then we used the BLASTX program to detect
the similarity between the transcripts and the known protein in NCBI NR database. The
transcripts with an E-value < 1 × 10−5 were filtered out [23]. Similar protocols have been
used in previous studies to identify lncRNAs [8].

2.6. Identification of Differentially and Specific Expressed lncRNA and mRNA

We used htseq software (v 0.7.2) [24] to count the reads of genes and lncRNAs, and
further screened them by their expression level in extremely high-or low-backfat thickness
group. The edgeR package [25] was used to determine the expression difference between
the two groups using an over-dispersed Poisson model. We used false discovery rate
(FDR) ≤ 0.05 and |Fold Change| > 2 as the threshold to identify significantly differentially
expressed lncRNAs (DELs) and differentially expressed genes (DEGs). Heatmap clustering
analysis of all differentially expressed lncRNAs and messenger RNAs (mRNAs) was
calculated using the heatmap [26] R package. We utilized fragments per kilobase of
transcript per million mapped reads (FPKM) ≥ 0.1 as the criteria to ensure expression.
In biological replicate RNA-seq, we calculated the average FPKM of three samples in
the same group. LncRNAs expressed at marginal levels (FPKM/average FPKM < 0.1)
were removed. If the transcripts were expressed only in one group but not in the other
group, we considered them to be specific expressed lncRNAs (SELs) and specific expressed
genes (SEGs).

2.7. Gene Ontology and KEGG Pathway Functional Annotations

Gene Ontology (GO, http://www.geneontology.org, accessed on 20 June 2021) [27]
is the international standard classification of gene function. It classifies the function of
genes along three aspects. The Kyoto Encyclopedia of Genes and Genomes (KEGG, http:
//www.genome.jp/kegg, accessed on 20 June 2021) [28] is a genomic information database
that helps researchers to study genes and expression information as a whole network. The
functional annotation of the DEGs in this study based on GO and KEGG was completed using
DAVID (v 6.8) [29] and KOBAS 3.0 [30], respectively. The GO terms and KEGG pathways
with p-values < 0.05 were considered as significantly enriched, and the results were plotted
using the ggplot2 [31] R package.

2.8. Target Genes Prediction and Functional Annotations

To investigate the function of the differentially expressed lncRNAs, we searched their
nearby genes and considered them as potential targets of lncRNAs. It has been reported
that the main function of lncRNA is to regulate protein-coding genes through cis- and
trans-regulation [32,33]. The general method of predicting lncRNA target genes is to
search upstream or downstream to identify nearby protein-coding regions, termed as
cis-regulating target genes [34]. It has been reported that lncRNA can regulate coding
genes around 10 to 500 kb up and downstream [35]. Bedtools (v2.25.0) [36] was used
to search neighborhood genes around 100 kb upstream and downstream of the DELs.
In addition, if the expression patterns of lncRNA and mRNA show a highly positive or
negative correlation, their functions may be highly correlated [37]. Therefore, we examined
the Spearman’s rank correlation between the expression levels of the DELs and DEGs to
predict their targeting relationship.

2.9. Statistical Analysis

All data were reported as mean ± standard error of mean. In the edgeR package, we
used the qCML (quantile-adjusted conditional maximum likelihood) method to estimate
the dispersion and the exactTest function for differential expression analysis; the FDR
method was used to adjust the p values. An FDR < 0.05 was considered significant.

http://www.geneontology.org
http://www.genome.jp/kegg
http://www.genome.jp/kegg
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2.10. Validation of Differentially Expressed Genes and lncRNAs

Total RNA was extracted from the fat tissues and converted into cDNA using the
TaKaRa PrimeScript™RT reagent Kit (Thermo Fisher Scientific Inc, Waltham, MA, USA),
following the manufacturer’s protocol. cDNA samples were analyzed with real-time
reverse transcriptase (RT)-PCR using the Light Cycler® 480 Real-Time PCR System (Roche,
CA, USA). Primers used for quantification were designed by Primer-Premier (v6.0) and
Primer-BLAST on the NCBI website (https://www.ncbi.nlm.nih.gov/tools/primer-blast/,
accessed on 5 June 2021). RT-PCR reactions were performed in a final volume of 20 µl with
the Roche SYBR Green PCR Kit (Roche), according to the manufacturer’s instructions. Pig
GAPDH was used as an internal standard to correct the cDNA input. Triplicate RT-qPCRs
were performed for each cDNA and the average Ct was used for further analysis. The PCR
program was run at 95 ◦C for 3 min and then 45 cycles of 95 ◦C for 10 s, 60 ◦C for 30 s,
and 72 ◦C for 1 min. The melting curve was then run for 65–95 ◦C. Relative quantification
values were calculated using the 2−∆∆Ct method.

3. Results
3.1. Overview of lncRNA Sequencing Data Based on Pooling and Biological Replicate RNA-seq

In the pooling RNA-seq, a total of 15.53 and 14.30 Gb of clean data were separately
generated in the extremely high- and low-backfat thickness groups. The guanine-cytosine
(GC) contents of the BH and BL group were 51.38% and 49.37%, respectively, and their Q30
were 92.53% and 92.62%, respectively. Furthermore, the results of the biological replicate
RNA-seq were 16.20, 16.32, 17.34, 16.24, 16.07, and 16.50 Gb in the six samples. The average
of the GC content was between 50.71% and 55.55%, and Q30 ranged from 93.32% to 94.27%.
These results showed that the quality of the two libraries of pooling RNA-seq and the six
libraries of biological replicate RNA-seq was suitable for subsequent data analysis.

Next, the clean reads were aligned to the reference genome (Sus scrofa 11.1) using
Tophat v2.1.1. In pooling RNA-seq, more than 77.82% of the clean reads were uniq mapped.
In all samples of biological replicate RNA-seq, the uniq mapped ratios were larger than
83.77%. The summary of the sequencing data is shown in Table 1.

Table 1. Summary of reads after quality control and mapping to the reference genome.

Pooling RNA Sequencing Biological Replicate RNA Sequencing
Sample ID BH BL H22511 H23712 H31210 L22509 L23709 L31208

Clean Data 15,526,646,169 14,298,214,979 16,202,102,282 16,317,045,132 17,343,934,922 16,244,957,328 16,074,210,300 16,498,461,484
GC (%) 51.38 49.37 50.71 54.34 55.24 50.89 55.55 51.63
Q30 (%) 92.53 92.62 94.27 93.32 93.71 93.76 93.84 93.76

Total Reads 106,068,646 97,723,146 108,162,730 109,081,084 115,964,182 109,091,500 107,499,706 110,216,006

Mapped Reads 84,998,524 79,213,694 103,261,178 99,528,016 106,878,278 101,789,248 96,471,336 103,862,050
(80.14%) (81. 06%) (95.47%) (91.24%) (92.16%) (93.31%) (89.74%) (94.23%)

Uniq Mapped Reads 82,541,284 77,406,164 96,976,910 93,090,379 97,146,560 97,935,676 92,128,163 98,096,189
(77.82%) (79.21%) (89.66%) (85.34%) (83.77%) (89.77%) (85.70%) (89. 00%)

Multiple Mapped Reads 2,457,240 1,807,530 6,284,268 6,437,637 9,731,718 3,853,572 4,343,173 5,765,861
(2.32%) (1.85%) (5.81%) (5.90%) (8.39%) (3.53%) (4. 04%) (5.23%)

Guanine-cytosine (GC) (%) is the percentage of G and C bases in the total nucleotides; Q30 (%) is the percentage of the bases’ mass greater
than or equal to Q30 in the clean data; Total Reads is the number of clean reads; Uniq Mapped Reads is the number and percentage of reads
that were mapped to a unique position in the reference genome in the clean reads; Multiple Mapped Reads is the number and percentage
of reads that were mapped to multiple positions in the reference genome in the clean reads.

3.2. Identification and Feature Analysis of Putative lncRNAs in Landrace Pig Backfat

After using cufflinks and cuffmerge, we obtain a combined GTF file containing 146,397
transcripts. Then we followed stringent criteria and created a pipeline to identify lncRNAs,
as shown in Figure 2a. Finally, we identified 1975 lncRNAs (Figure 2b). Among them, 334
were known transcripts and 1641 were novel transcripts, including 1233 lincRNAs (62.4%),
501 anti-sense lncRNAs (25.4%), 142 sense lncRNAs (7.2%), and 99 intronic lncRNAs (5.0%)
(Figure 2c). These 1975 lncRNAs were distributed throughout all pig chromosomes, but
chromosome 1 contained the most lncRNAs (Figure 2d). The majority of the lncRNA length
was between 601 and 800 nt, and lncRNA with two exons were the most common, as
shown in Figure 2e,f.

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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3.3. Expression Analysis of Differentially and Specific Expressed Genes and lncRNAs in Extremely
High- or Low-Backfat Pigs Based on Pooling RNA-Seq

In the pooling RNA-seq, 2240 genes and 127 lncRNAs (Table S1) were differentially
expressed between the two groups, of which 1206 genes were up-regulated in the BH
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group compared to those in the BL group and 1034 were down-regulated (Figure 3a,d).
The expression of 83 lncRNAs was up-regulated in the BH group, and 44 lncRNAs were
down-regulated (Figure 3e).
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Figure 3. Expression of genes and long non-coding RNAs (lncRNAs) in extremely high- and low-backfat pigs based on the
pooling RNA sequencing (RNA-seq). (a) Number of differentially expressed lncRNAs (DELs) and differentially expressed
genes (DEGs) between the BH and BL groups; (b) Venn diagram of the genes from each group; (c) Venn diagram of the
lncRNAs from each group; (d) Volcano plot of DEGs. The Y-axis is the value of −log10 (false discover rate [FDR]) and the
X-axis is the value of log2(FC). The two threshold lines show the standard of FDR = 0.05 and FC = 2; (e) Volcano plot of
DELs. We have annotated the most significant DEGs and DELs in the volcano.

In addition, to further explore the difference in gene expression between the extremely
high- and low-backfat thickness groups, we analyzed the specific expressed genes and
lncRNAs in the two groups. There were 643 SEGs and 136 SELs in the BH group and
892 DEGs and 177 DELs in the BL group in pooling RNA-seq (Figure 3b,c).
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3.4. Expression Analysis of Differentially and Specific Expressed Genes and lncRNAs in Extremely
High- or Low-Backfat Pigs Based on Biological Replicate RNA-seq

In the biological replicate RNA-seq, we performed the same analysis as that used for
the pooling RNA-seq. We found that 1512 genes and 220 lncRNAs (Table S1) were differen-
tially expressed in the two groups, of which 820 genes were up-regulated in the BH group
compared to those in the BL group and 692 were down-regulated (Figure 4a,d). There
were 116 lncRNAs with up-regulated expression levels in the BH group, and 104 lncRNAs
were down-regulated (Figure 4e). Next, we used the 1512 differentially expressed genes
and 220 differentially expressed lncRNAs to perform a clustering analysis. As shown in
the heatmap, the expression patterns of the samples in the BH group were distinguished
from their expression patterns in the BL group, both for the DEGs (Figure 4f) and DELs
(Figure 4g).
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color scale indicates the FPKM values. Orange indicates high expression and purple indicates low expression; (g) Heatmap
of DELs in six samples. We have annotated the most significant DEGs and DELs in the volcano.

Moreover, we identified 620 genes and 133 lncRNAs specific expressed in the BH
group and 607 genes and 118 lncRNAs specific expressed in the BL group based on the
result of biological replicate RNA-seq (Figure 4b,c).

3.5. GO and KEGG Functional Enrichment Analysis of DEGs and SEGs Based on Pooling and
Biological Replicate RNA-Seq

We used the differentially expressed genes detected in the pooling and biological
replicate RNA-seq methods to perform functional enrichment analysis, respectively. The
Gene Ontology results of DEGs based on the pooling RNA-seq are shown in Figure 5a.
We focused on several terms, including ‘positive regulation of fatty acid biosynthetic
process’, ‘lipoprotein metabolic process’, and ‘carbohydrate metabolic process’. In addition,
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DEGs were also enriched in some glucose metabolism pathways such as ‘gluconeogenesis’
and ‘glycolytic process’. Simultaneously, these DEGs also underwent a KEGG analysis
to annotate their functions. As shown in Figure 5b, in the pooling RNA-seq, we found
that ‘Synthesis and degradation of ketone bodies’, ‘Pentose phosphate pathway’, and
‘Starch and sucrose metabolism’ were enriched, all of which are important in the glucose
metabolism program. All the terms that were considered important are highlighted by a
red frame in Figure 5.
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Figure 5. Functional enrichment analyses of differentially expressed genes (DEGs) and specific expressed genes (SEGs)
based on pooling and biological replicate RNA sequencing (RNA-seq). (a) Gene Ontology (GO) annotation of DEGs in
pooling RNA-seq; (b) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs in pooling RNA-seq;
(c) GO annotation of DEGs in biological replicate RNA-seq; (d) KEGG pathway analysis of DEGs in biological replicate
RNA-seq. The red boxes indicate the GO terms and KEGG pathways related to glucose and lipoid metabolism. (a,c) show
the 10 most significant (FDR < 0.05) terms in the Biological Process (BP) class and the 5 most significant terms in the Cellular
Component (CC) and Molecular Function (MF) classes. (b,d) show the most significant 20 pathways in the KEGG results.
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In the biological replicate RNA-seq, a total of 977 DEGs were annotated in GO terms.
We found many terms directly related to fat development and metabolism, especially in the
BP class, including ‘tricarboxylic acid cycle’, ‘triglyceride homeostasis’, and ‘triglyceride
catabolic process’. Furthermore, there were four mRNAs enriched to ‘positive regulation
of triglyceride catabolic process’. This GO term was also significant but not within the
top ten; therefore, it is not displayed in Figure 5c. Moreover, the KEGG results of DEGs
based on biological replicate RNA-seq are shown in Figure 5d. Some pathways related to
lipoid metabolism were significantly enriched, including ‘Citrate cycle (TCA cycle)’ and
‘Fat digestion and absorption’, which were not previously enriched. We also circled the
important pathways with a red frame in Figure 5.

In addition, we used the specific expressed genes from the pooling and biological
replicate RNA-seq to perform the functional enrichment analysis, respectively. These
results are shown in Figure S1. There are only few KEGG pathways related to glucose and
lipoid metabolism, most of which are involved in the SEGs in the BH group of biological
replicate RNA-seq (Figure S1b). These pathways include ‘Fat digestion and absorption’,
‘Synthesis and degradation of ketone bodies’, and ‘Pentose phosphate pathway’. We believe
that the other GO terms and KEGG pathways are not as necessary for fat deposition.

3.6. Comparison of Pooling and Biological Replicate RNA-seq

We compared the library construction quality of the two sequencing methods (Table 1).
We found that the amount of clean data in biological replicate RNA-seq was larger and
the average of GC content and Q30 of these samples was higher than those of pooling
RNA-seq. In addition, we aligned clean reads with the reference genome and compared
them with those of pooling RNA-seq; the percentages of uniq mapped reads were more in
biological replicate RNA-seq than in pooling RNA-seq.

In the present study, we compared the expression of the putative lncRNAs with the
genes. We found that the lncRNAs tended to be expressed at a lower level than the protein-
coding genes in both the pooling and biological replicate RNA-seq (Figure 6a,b). A total
of 19,631 genes and 1975 lncRNAs were identified, and within these, 16,002 genes and
1604 lncRNAs were jointly identified in both sequencing results. Further, 124 genes and
14 lncRNAs were uniquely detected in the pooling RNA-seq. In the biological replicate
RNA-seq, there were 2505 unique genes and 266 unique lncRNAs (Figure 6c,d). For
differentially expressed genes and lncRNAs (Figures 3 and 4), we found 2240 DEGs in
pooling RNA-seq, which were more than 1512 DEGs in biological replicate RNA-seq
(Figure 6e). However, only 127 DELs were found in pooling RNA-seq, which were less than
220 DELs in biological replicate RNA-seq (Figure 6f). There were 813 DEGs and 39 DELs
identified in both two sequencing methods (Figure 6g,h).

In the functional enrichment analysis of DEGs (Figure 5), both biological replicate and
pooling RNA-seq enriched several important GO terms and KEGG pathways related to
glucose metabolism, and the results of the two sequencing methods partially overlapped.
For example, GO terms such as ‘gluconeogenesis’ and ‘glycolytic process’ in the result of
pooling RNA-seq were same as those in biological replicate RNA-seq. KEGG pathway
‘Glycolysis/Gluconeogenesis’ also existed in the 20 most significant pathways of both
methods. The unique genes of the two sequencing methods were then subjected to GO and
KEGG functional enrichment analyses. None of the GO terms or KEGG pathways were
related to lipid metabolism in this analysis. These results are shown in Figure S2.

3.7. Target Gene Prediction of Differentially Expressed lncRNAs

To further understand the potential function of lncRNA in fat deposition, we predicted
the target genes of the lncRNAs. To increase the reliability of our results, we selected the
DELs that were shared by the two sequencing methods and then predicted their target
genes. We searched the nearby coding genes around 100 kb up- and downstream from the
39 DELs and found 76 pairs of cis-regulatory relationships between 39 DELs and 67 genes
(Table S3).
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per million mapped reads [FPKM] +1) is plotted on the Y-axis; (b) Comparison of the expression levels between the genes
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(DELs) between BH and BL groups of two sequencing methods; (g) Venn diagram of DEGs of two sequencing methods;
(h) Venn diagram of DELs of two sequencing methods.



Genes 2021, 12, 1374 12 of 17

In addition, we conducted a Spearman’s rank correlation analysis between the expres-
sion of the DELs and DEGs. The expression levels of 116 DEGs were significantly correlated
with the 39 DELs (correlation coefficient > 0.934, p < 0.05). They were also considered as
potential target genes of these DELs. We used 39 DELs and their target genes to draw a
picture of the regulatory network to investigate the relationship between them (Figure 7,
Table S3). We highlighted the lncRNAs and their target genes for further analysis with
yellow nodes and red labels.
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3.8. Validation of DEGs and DELs through qRT-PCR

We randomly selected 5 DEGs (SCN4B, EGF, ATCAY, ACACB, and CTNNA3) and
5 DELs (TCONS-00141400, TCONS-0113796, TCONS-00045571, TCONS-00054171, and
TCONS-00043408) to perform qPCR. As shown in Figure 8, the results of qPCR verified
RNA-seq analysis and indicated the quality of the sequencing data.
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4. Discussion

In most of the previous studies, researchers identify key lncRNAs between different
breeds of pigs [38,39]. However, our research used contrast backfat thickness individuals
within same the breed as the samples to eliminate inter-species differences. At the same
time, we selected full-sib pairs to minimize the influence of genetic background. We also
used pooling and biological replicate RNA sequencing to identify critical lncRNAs involved
in porcine backfat deposition. In this study, we performed pooling and biological replicate
RNA-seq on the same samples, which can compare the accuracy and reliability of the
two sequencing methods. In addition, when we analyzed the function of critical lncRNAs
involved in porcine backfat deposition, we used the lncRNA shared by the two RNA-seq
methods, which also increased the reliability of our results.

In this study, biological replicate RNA-seq detected more genes than pooling RNA-seq
did. However, in the function annotation, the unique genes of both sequencing methods
did not enrich the GO terms and KEGG pathways related to glucose and lipid metabolism.
The above results indicate that the overlap genes of pooling and biological replicate RNA-
seq may have a considerable effect on fat deposition in Landrace pigs. Next, compared
with pooling RNA-seq, biological replicate RNA-seq detected more lncRNAs and DELs.
The low expression of lncRNAs could be covered up [10]. This means biological replicate
RNA-seq is more efficient for mining lncRNAs or other type RNAs.

Studies have shown that the expression level of lncRNAs is usually lower than that of
protein-coding genes [40], we found that the expression of lncRNA was much lower than
that of the gene. We identified 18,507 genes and 1870 lncRNAs in pooling RNA-seq, and
17,126 genes and 1618 lncRNAs in biological replicate RNA-seq. Our results are similar to
those in several previously published articles on adipose tissue transcriptome sequencing.
For example, Miao et al. [41] identified 4910 lncRNAs, 119 of which were differentially
expressed in the intramuscular fat tissue of Jinhua and Changbai pigs. The results for the
functional enrichment of the DEGs showed that some genes were enriched to pathways
related to glucose and lipid metabolism. In addition, these genes were confirmed to be
related to lipid metabolism in previous studies, including APOA1 [42] and STARD3 [43].
Chen et al. [8] identified 581 putative lincRNAs related to pig muscle growth and fat
deposition, and their target genes were involved in fat deposition-related processes, such
as the lipid metabolic process and fatty acid degradation. The KEGG results showed that
the meaningful pathways were mostly concentrated on glucose metabolism. Some of these
pathways, such as ‘Glycolysis/Gluconeogenesis’, were also found in a previous study by
our team [11]. Although they are not directly related to lipid synthesis and metabolism,
glucose and lipids can change into each other and participate together in the tricarboxylic
acid cycle. Therefore, the process of glucose metabolism can have an indirect effect on
lipid metabolism.

As a kind of non-coding RNA, the main role of lncRNA is to regulate their target genes:
cis-regulating nearby protein-coding genes and trans-regulating distant protein-coding
genes. We determined 67 cis-target genes and 116 trans-target genes regulated by DELs.
The two target genes we focused on were ACACB and ACSL3, both of which have been
found to be related to lipid metabolism in other studies. ACLS3 (acyl-CoA synthetase
long chain family member 3) is located 64 kb downstream of TCONS-00052400. At the
beginning of fatty acid metabolism, long-chain acyl-CoA synthetase (ACSL) can activate
the conversion of long-chain fatty acids to fatty acyl-CoA [44]. The ACSL family contains
five different isoforms, including ACSL3, which play different roles in lipid metabolism.
Some previous studies showed that knockdown of ACSL3 may significantly reduce the
activity of several lipid-producing transcription factors such as peroxisome proliferator-
activated receptor-γ and sugar response element binding protein, and then regulate the fat
production process in the liver [45]. Furthermore, ACSL3 can also affect the secretion of
very low-density lipoproteins (VLDL) by promoting the synthesis of lecithin [46]. ACACB
(acetyl-CoA carboxylase beta) is a differentially expressed gene that is cis-regulated by the
lncRNA TCONS-00041740, which is located on the antisense strand of ACACB. Moreover,
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in the KEGG enrichment analysis, ACACB was involved in the ‘pyruvate metabolism’
pathway. Based on previous studies, we knew that ACACB is the rate-limiting enzyme
in fatty acid oxidation [47]. Moreover, in ACACB knockout mice, continuous fatty acid
oxidation increases insulin sensitivity, and feeding them a high fat/high carbohydrate
diet is more likely to cause obesity and diabetes [48]. In a previous study by Li et al. [49],
ACACB was shown to be a marker gene for childhood obesity.

Some genes were specific expressed in one of the two groups. For example, PLCB2
(phospholipase C beta 2) was specific expressed in the BL group. Phospholipase C is a class
of glycerol phospholipid hydrolases, hydrolyzing the glycerol phosphate C3 site [50]. The
protein encoded by PLCB2 is a phosphodiesterase that catalyzes the hydrolysis of phos-
phatidylinositol 4, 5-bisphosphate to the secondary messengers inositol 1, 4, 5-trisphosphate
(IP3) and diacylglycerol. In addition, the gene PLA2G12B was specific expressed in the BH
group. PLA2G12B (phospholipase A2 group XIIB) is encoded by this gene and belongs to
the phospholipase A2 (PLA2) group of enzymes, which plays a role in lipid hydrolysis by
releasing free fatty acids and lysophospholipids [51]. Studies have shown that a reduction
of PLA2G12B decreases the amount of serum triglyceride (TG)-rich VLDL particles secreted
by the liver, resulting in a reduction in TG content [52]. PLA2G12B can also participate
in the pathogenesis of idiopathic membranous nephropathy (iMN) by regulating lipid
metabolism [53]. In a previous study by Guan et al. [54], PLA2G12B-null mice had obvious
accumulation of large lipid droplets in the liver, displaying the fatty liver phenotype. These
results indicate that the genes specific expressed in the high or low backfat groups may
also have a certain regulatory effect on lipid metabolism.

During pig growth, the excessive development of adipose tissue leads to an excessive
accumulation of lipids, which affects the carcass quality of pigs. Overweight pigs show low
lean meat rates, low feed conversion rates, and slow growth [55], while overweight sows
may experience dystocia and postpartum disease [56]. Numerous studies have shown that
pigs have many similarities with humans in anatomical structure, physiological metabolism,
and disease mechanisms [57,58]. Therefore, pigs have many advantages as an animal model
for human disease research, especially related to obesity [59,60]. Pig backfat thickness can
directly reflect their body fat content. Our study obtained differentially expressed lncRNAs
between pigs with extremely high- and low- backfat thickness, providing a novel approach
for the use of lncRNAs and their target genes to screen low backfat pigs in future breeding
work, thereby further improving fat deposition traits in pigs. However, further genetic
experiments are still needed to validate the association of the lncRNA and mRNA functions
presented in this study.

5. Conclusions

In this study, we identified 1512 DEGs and 220 DELs between pigs with extremely
high- and low- fat deposition traits in biological replicate RNA-seq, and 2240 DEGs and
127 DELs in pooling RNA-seq, respectively; the former revealed more genes, but the two
methods were similar in terms of gene functional enrichment. After the analysis of potential
cis- and trans- target genes, we found 183 genes that could be regulated by DELs. Through
further functional analysis, we found that two pairs of potential targeting relationships
between lncRNAs and genes, TCONS-00041740 to ACACB, and TCONS-00052400 to ACSL3,
may have an effect on fat deposition. These results can provide useful information for
understanding the regulation of fat deposition by lncRNA in pigs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12091374/s1, Table S1: List of differentially expressed genes and lncRNAs in two high-
throughput sequencing methods, Table S2: List of cis- and trans- target genes of common DELs,
Table S3: List of differentially expressed lncRNAs and their target genes, Figure S1: Functional
enrichment analysis of specific expressed genes in porcine fat, Figure S2: Functional enrichment
analysis of unique genes in pooling and biological replicate RNA sequencing.

https://www.mdpi.com/article/10.3390/genes12091374/s1
https://www.mdpi.com/article/10.3390/genes12091374/s1


Genes 2021, 12, 1374 15 of 17

Author Contributions: Y.L. and K.X. designed the study. K.X., F.Z., X.Z. and H.L. collected samples
and performed the experiments. Y.L., H.A. and Y.S. analyzed the data. Y.L. wrote the paper. K.X.,
Y.Y. and C.W. revised the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was financially supported by the National Key R&D Program of China
(2018YFD0501005) and Beijing Municipal Education Commission Science and Technology Program
General Project (KM201910020010).

Informed Consent Statement: All protocols and procedures involving animals were performed in
accordance with the Regulations for the Administration of Affairs Concerning Experimental Animals
(Ministry of Science and Technology, China) and were approved by the Animal Welfare Committee
of the China Agricultural University (permit number: DK996).

Data Availability Statement: The deep sequencing data of total RNA were submitted to NCBI
Sequence Read Archive (SRA) with accession number Bioproject: PRJNA6600160.

Acknowledgments: We are grateful to the molecular quantitative genetics team members of the
China Agricultural University for their guidance, and for their assistance in the study’s experiment
and in data analysis. We are thankful to the Tianjin Ninghe primary pig breeding farm for providing
pigs for the experiment.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tummaruk, P.; Lundeheim, N.; Einarsson, S.; Dalin, A.M. Effect of birth litter size, birth parity number, growth rate, backfat thick-

ness and age at first mating of gilts on their reproductive performance as sows. Anim. Reprod. Sci. 2001, 66, 225–237. [CrossRef]
2. Zhang, J.; Cui, L.; Ma, J.; Chen, C.; Yang, B.; Huang, L. Transcriptome analyses reveal genes and pathways associated with fatty

acid composition traits in pigs. Anim. Genet. 2017, 48, 645–652. [CrossRef]
3. Zhao, W.; Mu, Y.; Ma, L.; Wang, C.; Tang, Z.; Yang, S.; Zhou, R.; Hu, X.; Li, M.; Li, K. Systematic identification and characterization

of long intergenic non-coding RNAs in fetal porcine skeletal muscle development. Sci. Rep. 2015, 5, 8957. [CrossRef]
4. Hajer, G.R.; van Haeften, T.W.; Visseren, F.L. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur. Heart J.

2008, 29, 2959–2971. [CrossRef]
5. Speliotes, E.; Loos, R.; Li, S.; Lindgren, C.; Heid, I.; Berndt, S.; Elliott, A.; Jackson, A.; Lamina, C.; Lettre, G.; et al. Six new loci

associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 2009, 41, 25–34. [CrossRef]
6. Alvarez-Dominguez, J.R.; Bai, Z.; Xu, D.; Yuan, B.; Lo, K.A.; Yoon, M.J.; Lim, Y.C.; Knoll, M.; Slavov, N.; Chen, S.; et al. De Novo

Reconstruction of Adipose Tissue Transcriptomes Reveals Long Non-coding RNA Regulators of Brown Adipocyte Development.
Cell Metab. 2015, 21, 764–776. [CrossRef]

7. Li, M.; Sun, X.; Cai, H.; Sun, Y.; Plath, M.; Li, C.; Lan, X.; Lei, C.; Lin, F.; Bai, Y.; et al. Long non-coding RNA ADNCR suppresses
adipogenic differentiation by targeting miR-204. Biochim. Biophys. Acta-Gene Regul. Mech. 2016, 1859, 871–882. [CrossRef]

8. Chen, G.; Cheng, X.; Shi, G.; Zou, C.; Chen, L.; Li, J.; Li, M.; Fang, C.; Li, C.; Rita, C.; et al. Transcriptome Analysis Reveals
the Effect of Long Intergenic Noncoding RNAs on Pig Muscle Growth and Fat Deposition. BioMed Res. Int. 2019, 2019,
2951415–2951427. [CrossRef]

9. Hill, J.T.; Demarest, B.L.; Bisgrove, B.W.; Gorsi, B.; Su, Y.; Yost, H.J. MMAPPR: Mutation mapping analysis pipeline for pooled
RNA-seq. Genome Res. 2013, 23, 687–697. [CrossRef] [PubMed]

10. Shen, S.; Park, J.W.; Lu, Z.X.; Lin, L.; Henry, M.D.; Wu, Y.N.; Zhou, Q.; Xing, Y. rMATS: Robust and flexible detection of differential
alternative splicing from replicate RNA-Seq data. Proc. Natl. Acad. Sci. USA 2014, 111, E5593–E5601. [CrossRef] [PubMed]

11. Xing, K.; Zhu, F.; Zhai, L.; Chen, S.; Tan, Z.; Sun, Y.; Hou, Z.; Wang, C. Identification of genes for controlling swine adipose
deposition by integrating transcriptome, whole-genome resequencing, and quantitative trait loci data. Sci. Rep. 2016, 6, 23219.
[CrossRef] [PubMed]

12. Xing, K.; Zhao, X.; Ao, H.; Chen, S.; Yang, T.; Tan, Z.; Wang, Y.; Zhang, F.; Liu, Y.; Ni, H.; et al. Transcriptome analysis of miRNA
and mRNA in the livers of pigs with highly diverged backfat thickness. Sci. Rep. 2019, 9, 16712–16740. [CrossRef]

13. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120.
[CrossRef] [PubMed]

14. Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data; 2010. Available online: https://github.com/s-
andrews/FastQC (accessed on 20 February 2021).

15. Dai, M.; Thompson, R.C.; Maher, C.; Contreras-Galindo, R.; Kaplan, M.H.; Markovitz, D.M.; Omenn, G.; Meng, F. NGSQC:
Cross-platform quality analysis pipeline for deep sequencing data. BMC Genom. 2010, 11 (Suppl. 4), S7. [CrossRef] [PubMed]

16. Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [CrossRef]
17. Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: Accurate alignment of transcriptomes in the

presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14, R36. [CrossRef]

http://doi.org/10.1016/S0378-4320(01)00095-1
http://doi.org/10.1111/age.12597
http://doi.org/10.1038/srep08957
http://doi.org/10.1093/eurheartj/ehn387
http://doi.org/10.1038/ng.287
http://doi.org/10.1016/j.cmet.2015.04.003
http://doi.org/10.1016/j.bbagrm.2016.05.003
http://doi.org/10.1155/2019/2951427
http://doi.org/10.1101/gr.146936.112
http://www.ncbi.nlm.nih.gov/pubmed/23299975
http://doi.org/10.1073/pnas.1419161111
http://www.ncbi.nlm.nih.gov/pubmed/25480548
http://doi.org/10.1038/srep23219
http://www.ncbi.nlm.nih.gov/pubmed/26996612
http://doi.org/10.1038/s41598-019-53377-x
http://doi.org/10.1093/bioinformatics/btu170
http://www.ncbi.nlm.nih.gov/pubmed/24695404
https://github.com/s-andrews/FastQC
https://github.com/s-andrews/FastQC
http://doi.org/10.1186/1471-2164-11-S4-S7
http://www.ncbi.nlm.nih.gov/pubmed/21143816
http://doi.org/10.1038/nmeth.1923
http://doi.org/10.1186/gb-2013-14-4-r36


Genes 2021, 12, 1374 16 of 17

18. Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Dif-
ferential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7,
562–578. [CrossRef]

19. Lv, J.; Cui, W.; Liu, H.; He, H.; Xiu, Y.; Guo, J.; Liu, H.; Liu, Q.; Zeng, T.; Chen, Y.; et al. Identification and characterization of
long non-coding RNAs related to mouse embryonic brain development from available transcriptomic data. PLoS ONE 2013,
8, e71152. [CrossRef]

20. Kong, L.; Zhang, Y.; Ye, Z.; Liu, X.; Zhao, S.; Wei, L.; Gao, G. CPC: Assess the protein-coding potential of transcripts using
sequence features and support vector machine. Nucleic Acids Res. 2007, 35, W345–W349. [CrossRef] [PubMed]

21. Sun, L.; Luo, H.; Bu, D.; Zhao, G.; Yu, K.; Zhang, C.; Liu, Y.; Chen, R.; Zhao, Y. Utilizing sequence intrinsic composition to classify
protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013, 41, e166. [CrossRef]

22. Finn, R.D.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Mistry, J.; Mitchell, A.L.; Potter, S.C.; Punta, M.; Qureshi, M.; Sangrador-Vegas,
A.; et al. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res. 2016, 44, D279–D285.
[CrossRef] [PubMed]

23. Pirooznia, M.; Perkins, E.J.; Deng, Y. Batch Blast Extractor: An automated blastx parser application. BMC Genom. 2008,
9 (Suppl. 2), S10. [CrossRef]

24. Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015,
31, 166–169. [CrossRef] [PubMed]

25. Robinson, M.D.; Mccarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene
expression data. Bioinformatics 2010, 26, 139–140. [CrossRef] [PubMed]

26. Raivo, K. Pheatmap: Pretty Heatmaps. R Package Version 1.0.10. 2021. Available online: https://CRAN.R-project.org/package=
pheatmap (accessed on 15 February 2021).

27. Davis, A.P.; Sherlock, G.; Botstein, D.; Eppig, J.T.; Matese, J.C.; Harris, M.A.; Kasarskis, A.; Blake, J.A.; Dolinski, K.; Dwight,
S.S.; et al. Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [CrossRef]

28. Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [CrossRef] [PubMed]
29. Dennis, G.J.; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for Annotation,

Visualization, and Integrated Discovery. Genome Biol. 2003, 4, 3. [CrossRef]
30. Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.Y.; Wei, L. KOBAS 2.0: A web server for annotation

and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, W316–W322. [CrossRef]
31. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer Publishing Company, Incorporated: Berlin/Heidelberg,

Germany, 2009.
32. Zhan, S.; Dong, Y.; Zhao, W.; Guo, J.; Zhong, T.; Wang, L.; Li, L.; Zhang, H. Genome-wide identification and characterization of

long non-coding RNAs in developmental skeletal muscle of fetal goat. BMC Genom. 2016, 17, 666. [CrossRef]
33. Hou, X.; Du, Y.; Liu, X.; Zhang, H.; Liu, Y.; Yan, N.; Zhang, Z.; Xiaodong, H.; Xinmin, L.; Zhongfeng, Z.; et al. Genome-Wide

Analysis of Long Non-Coding RNAs in Potato and Their Potential Role in Tuber Sprouting Process. Int. J. Mol. Sci. 2017, 19, 101.
[CrossRef] [PubMed]

34. Zhang, Q.; Chao, T.C.; Patil, V.S.; Qin, Y.; Tiwari, S.K.; Chiou, J.; Dobin, A.; Tsai, C.M.; Li, Z.; Dang, J.; et al. The long noncoding
RNA ROCKI regulates inflammatory gene expression. EMBO J. 2019, 38, e100041. [CrossRef] [PubMed]

35. Bonasio, R.; Shiekhattar, R. Regulation of transcription by long noncoding RNAs. Annu. Rev. Genet. 2014, 48, 433–455.
[CrossRef] [PubMed]

36. Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842.
[CrossRef] [PubMed]

37. Atala, A.M. Re: lncRNA-Dependent Mechanisms of Androgen-Receptor-Regulated Gene Activation Programs. J. Urol. 2014, 191,
1470–1471. [CrossRef]

38. Yu, L.; Tai, L.; Zhang, L.; Chu, Y.; Li, Y.; Zhou, L. Comparative analyses of long non-coding RNA in lean and obese pig. Oncotarget
2017, 8, 41440–41450. [CrossRef]

39. Huang, W.; Zhang, X.; Li, A.; Xie, L.; Miao, X. Genome-Wide Analysis of mRNAs and lncRNAs of Intramuscular Fat Related to
Lipid Metabolism in Two Pig Breeds. Cell. Physiol. Biochem. 2018, 50, 2406–2422. [CrossRef]

40. Liu, S.; Wang, Z.; Chen, D.; Zhang, B.; Tian, R.; Wu, J.; Zhang, Y.; Xu, K.; Yang, L.; Cheng, C.; et al. Annotation and cluster analysis
of spatiotemporal- and sex-related lncRNA expression in rhesus macaque brain. Genome Res. 2017, 27, 1608–1620. [CrossRef]

41. Miao, Z.; Wang, S.; Zhang, J.; Wei, P.; Guo, L.; Liu, D.; Wang, Y.; Shi, M. Identification and comparison of long non-conding RNA
in Jinhua and Landrace pigs. Biochem. Biophys. Res. Commun. 2018, 506, 765–771. [CrossRef]

42. Xepapadaki, E.; Maulucci, G.; Constantinou, C.; Karavia, E.A.; Zvintzou, E.; Daniel, B.; Sasson, S.; Kypreos, K.E. Impact of
apolipoprotein A1- or lecithin:cholesterol acyltransferase-deficiency on white adipose tissue metabolic activity and glucose
homeostasis in mice. Biochim Biophys. Acta Mol. Basis Dis. 2019, 1865, 1351–1360. [CrossRef]

43. Zhou, X.; Gao, H.; Guo, Y.; Chen, Y.; Ruan, X.Z. Knocking down Stard3 decreases adipogenesis with decreased mitochondrial
ROS in 3T3-L1 cells. Biochem. Biophys. Res. Commun. 2018, 504, 387–392. [CrossRef]

44. Mashek, D.G.; Li, L.O.; Coleman, R.A. Long-chain acyl-CoA synthetases and fatty acid channeling. Future Lipidol. 2007, 2,
465–476. [CrossRef]

http://doi.org/10.1038/nprot.2012.016
http://doi.org/10.1371/journal.pone.0071152
http://doi.org/10.1093/nar/gkm391
http://www.ncbi.nlm.nih.gov/pubmed/17631615
http://doi.org/10.1093/nar/gkt646
http://doi.org/10.1093/nar/gkv1344
http://www.ncbi.nlm.nih.gov/pubmed/26673716
http://doi.org/10.1186/1471-2164-9-S2-S10
http://doi.org/10.1093/bioinformatics/btu638
http://www.ncbi.nlm.nih.gov/pubmed/25260700
http://doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pubmed/19910308
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
http://doi.org/10.1038/75556
http://doi.org/10.1093/nar/28.1.27
http://www.ncbi.nlm.nih.gov/pubmed/10592173
http://doi.org/10.1186/gb-2003-4-5-p3
http://doi.org/10.1093/nar/gkr483
http://doi.org/10.1186/s12864-016-3009-3
http://doi.org/10.3390/ijms19010101
http://www.ncbi.nlm.nih.gov/pubmed/29286332
http://doi.org/10.15252/embj.2018100041
http://www.ncbi.nlm.nih.gov/pubmed/30918008
http://doi.org/10.1146/annurev-genet-120213-092323
http://www.ncbi.nlm.nih.gov/pubmed/25251851
http://doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/pubmed/20110278
http://doi.org/10.1016/j.juro.2014.02.011
http://doi.org/10.18632/oncotarget.18269
http://doi.org/10.1159/000495101
http://doi.org/10.1101/gr.217463.116
http://doi.org/10.1016/j.bbrc.2018.06.028
http://doi.org/10.1016/j.bbadis.2019.02.003
http://doi.org/10.1016/j.bbrc.2018.06.030
http://doi.org/10.2217/17460875.2.4.465


Genes 2021, 12, 1374 17 of 17

45. Bu, S.Y.; Mashek, M.T.; Mashek, D.G. Suppression of Long Chain Acyl-CoA Synthetase 3 Decreases Hepatic de Novo Fatty Acid
Synthesis through Decreased Transcriptional Activity*. J. Biol. Chem. 2009, 284, 30474–30483. [CrossRef] [PubMed]

46. Yao, H.; Ye, J. Long chain acyl-CoA synthetase 3-mediated phosphatidylcholine synthesis is required for assembly of very low
density lipoproteins in human hepatoma Huh7 cells. J. Biol. Chem. 2008, 283, 849–854. [CrossRef] [PubMed]

47. Abu-Elheiga, L.; Matzuk, M.M.; Abo-Hashema, K.A.; Wakil, S.J. Continuous fatty acid oxidation and reduced fat storage in mice
lacking acetyl-CoA carboxylase 2. Science 2001, 291, 2613–2616. [CrossRef] [PubMed]

48. Abu-Elheiga, L.; Oh, W.; Kordari, P.; Wakil, S.J. Acetyl-CoA Carboxylase 2 Mutant Mice Are Protected against Obesity and
Diabetes Induced by High-Fat/High-Carbohydrate Diets. Proc. Natl. Acad. Sci. USA 2003, 100, 10207–10212. [CrossRef] [PubMed]

49. Li, L.; Wang, G.; Li, N.; Yu, H.; Si, J.; Wang, J. Identification of key genes and pathways associated with obesity in children. Exp.
Ther. Med. 2017, 14, 1065–1073. [CrossRef]

50. Kanematsu, T.; Oue, K.; Okumura, T.; Harada, K.; Yamawaki, Y.; Asano, S.; Mizokami, A.; Irifune, M.; Hirata, M. Phospholipase
C-related catalytically inactive protein: A novel signaling molecule for modulating fat metabolism and energy expenditure.
J. Oral Biosci. 2019, 61, 65–72. [CrossRef]

51. Jackisch, L.; Kumsaiyai, W.; Moore, J.D.; Al-Daghri, N.; Kyrou, I.; Barber, T.M.; Randeva, H.; Kumar, S.; Tripathi, G.; Mcternan,
P.G. Differential expression of Lp-PLA2 in obesity and type 2 diabetes and the influence of lipids. Diabetologia 2018, 61, 1155–1166.
[CrossRef] [PubMed]

52. Liu, Q.; Yang, M.; Fu, X.; Liu, R.; Sun, C.; Pan, H.; Wong, C.; Guan, M. Activation of farnesoid X receptor promotes triglycerides
lowering by suppressing phospholipase A2 G12B expression. Mol. Cell. Endocrinol. 2016, 436, 93–101. [CrossRef]

53. Wu, D.; Yu, Z.; Zhao, S.; Qu, Z.; Sun, W.; Jiang, Y. Lipid metabolism participates in human membranous nephropathy identified
by whole-genome gene expression profiling. Clin. Sci. 2019, 133, 1255–1269. [CrossRef]

54. Guan, M.; Qu, L.; Tan, W.; Chen, L.; Wong, C.W. Hepatocyte nuclear factor-4 alpha regulates liver triglyceride metabolism in part
through secreted phospholipase A2 GXIIB. Hepatology 2011, 53, 458–466. [CrossRef]

55. Rocha, D.; Plastow, G. Commercial pigs: An untapped resource for human obesity research? Drug Discov. Today 2006, 11,
475–477. [CrossRef]

56. Xu, M.; Che, L.; Yang, Z.; Zhang, P.; Shi, J.; Li, J.; Lin, Y.; Fang, Z.; Che, L.; Feng, B.; et al. Effect of High Fat Dietary Intake during
Maternal Gestation on Offspring Ovarian Health in a Pig Model. Nutrients 2016, 8, 498. [CrossRef]

57. Murakami, T.; Hitomi, S.; Ohtsuka, A.; Taguchi, T.; Fujita, T. Pancreatic insulo-acinar portal systems in humans, rats, and some
other mammals: Scanning electron microscopy of vascular casts. Microsc. Res. Tech. 1997, 37, 478–488. [CrossRef]

58. Fang, X.; Mou, Y.; Huang, Z.; Li, Y.; Han, L.; Zhang, Y.; Feng, Y.; Chen, Y.; Jiang, X.; Zhao, W.; et al. The sequence and analysis of a
Chinese pig genome. Gigascience 2012, 1, 16. [CrossRef] [PubMed]

59. Bellinger, D.A.; Merricks, E.P.; Nichols, T.C. Swine Models of Type 2 Diabetes Mellitus: Insulin Resistance, Glucose Tolerance, and
Cardiovascular Complications. Ilar J. 2006, 47, 243–258. [CrossRef] [PubMed]

60. Xi, S.; Yin, W.; Wang, Z.; Kusunoki, M.; Lian, X.; Koike, T.; Fan, J.; Zhang, Q. A minipig model of high-fat/high-sucrose
diet-induced diabetes and atherosclerosis. Int. J. Exp. Pathol. 2004, 85, 223–231. [CrossRef] [PubMed]

http://doi.org/10.1074/jbc.M109.036665
http://www.ncbi.nlm.nih.gov/pubmed/19737935
http://doi.org/10.1074/jbc.M706160200
http://www.ncbi.nlm.nih.gov/pubmed/18003621
http://doi.org/10.1126/science.1056843
http://www.ncbi.nlm.nih.gov/pubmed/11283375
http://doi.org/10.1073/pnas.1733877100
http://www.ncbi.nlm.nih.gov/pubmed/12920182
http://doi.org/10.3892/etm.2017.4597
http://doi.org/10.1016/j.job.2019.04.002
http://doi.org/10.1007/s00125-018-4558-6
http://www.ncbi.nlm.nih.gov/pubmed/29427237
http://doi.org/10.1016/j.mce.2016.07.027
http://doi.org/10.1042/CS20181110
http://doi.org/10.1002/hep.24066
http://doi.org/10.1016/j.drudis.2006.04.009
http://doi.org/10.3390/nu8080498
http://doi.org/10.1002/(SICI)1097-0029(19970601)37:5/6&lt;478::AID-JEMT10&gt;3.0.CO;2-N
http://doi.org/10.1186/2047-217X-1-16
http://www.ncbi.nlm.nih.gov/pubmed/23587058
http://doi.org/10.1093/ilar.47.3.243
http://www.ncbi.nlm.nih.gov/pubmed/16804199
http://doi.org/10.1111/j.0959-9673.2004.00394.x
http://www.ncbi.nlm.nih.gov/pubmed/15312127

	Introduction 
	Materials and Methods 
	Experimental Animals and Sample Collection 
	Pooling RNA-seq and Biological Replicate RNA-seq Designs 
	RNA Extraction and Sequencing 
	Mapping and Assembly of Sequenced RNA Reads 
	LncRNA Filtering Pipeline 
	Identification of Differentially and Specific Expressed lncRNA and mRNA 
	Gene Ontology and KEGG Pathway Functional Annotations 
	Target Genes Prediction and Functional Annotations 
	Statistical Analysis 
	Validation of Differentially Expressed Genes and lncRNAs 

	Results 
	Overview of lncRNA Sequencing Data Based on Pooling and Biological Replicate RNA-seq 
	Identification and Feature Analysis of Putative lncRNAs in Landrace Pig Backfat 
	Expression Analysis of Differentially and Specific Expressed Genes and lncRNAs in Extremely High- or Low-Backfat Pigs Based on Pooling RNA-Seq 
	Expression Analysis of Differentially and Specific Expressed Genes and lncRNAs in Extremely High- or Low-Backfat Pigs Based on Biological Replicate RNA-seq 
	GO and KEGG Functional Enrichment Analysis of DEGs and SEGs Based on Pooling and Biological Replicate RNA-Seq 
	Comparison of Pooling and Biological Replicate RNA-seq 
	Target Gene Prediction of Differentially Expressed lncRNAs 
	Validation of DEGs and DELs through qRT-PCR 

	Discussion 
	Conclusions 
	References

