
331

The corneal endothelium covers the inner side of 
the cornea, facing the anterior chamber of the eye, which 
contains aqueous humor. This thin monolayer of hexagonal 
cells forms a leaky barrier, allowing aqueous humor to enter 
the corneal stroma. To maintain stromal deturgescence, endo-
thelial cells pump fluid out of the stroma using ionic pumps 
and cotransporters. This pump–leak balance is essential for 
corneal transparency [1].

Trauma or pathology can cause endothelial dysfunctions 
in which corneal endothelial cells (CECs) are unable to main-
tain the pump–leak balance, resulting in stromal edema and 
vision loss [2]. Currently, graft transplantation is the only 
clinical treatment to restore vision for patients with endothe-
liopathies. The patient’s decompensated corneal endothelium 
is replaced by transplanting a Descemet membrane (with 
the attached corneal endothelium) from a healthy cadaveric 
eye bank cornea. To that end, surgeons perform endothelial 
keratoplasty (EK) procedures, such as Descemet stripping 
automated endothelial keratoplasty (DSAEK) or Descemet 
membrane endothelial keratoplasty (DMEK). Both proce-
dures are safe and provide good clinical outcomes [3]. One 

limitation of these procedures is that a single donor cornea 
can treat only one patient’s eye.

As an alternative to native tissues, we developed a tissue-
engineered corneal endothelium by seeding cultured CECs 
on devitalized corneas [4]. The cultured cells reformed a 
functional corneal endothelium [5,6]. This tissue engineering 
approach, also proposed by others [7-11], could be used in EK 
procedures. Another proposed alternative treatment consists 
of injecting cultured CECs into the anterior chamber of the 
patient’s eye. This approach is currently in clinical trials with 
good clinical outcomes [12]. Whether cultured cells are used 
for tissue engineering or cell injection, the expansion of CECs 
in vitro has the major advantage of increasing the number 
of cells and thus, the number of patients who can be treated 
using a single donor. Cell culture is key to the success of these 
alternative treatments.

Donor age impacts proliferation capacity and endothelial 
phenotype in vitro. It is known that CECs from older donors 
have lower proliferative rates and may generate cells with 
a nonfunctional phenotype [13]. Despite their lower prolif-
erative capacity, CECs from older donors can be expanded 
when using the appropriate culture method [14-16]. The 
endothelial cell density (ECD) of donor corneas decreases 
with age [17-24]. Of course, high ECD allows for more cells 
to be isolated, which favors the successful culture of CECs, as 
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lower cell density is linked to decreased proliferative capacity 
[25]. However, most of the donor corneas available for cell 
isolation come from older donors. Thus, it seems important 
to be able to isolate the maximum number of cells from these 
older corneas to be able to generate a high number of func-
tional CECs.

An important parameter of CEC culture success is the 
cell isolation method, as it is the first step in CEC culture. 
A study demonstrated that the isolation method influences 
the cell attachment capacity of the isolated CECs, resulting 
in a higher rate of culture success, as collagenase A was 
more successful in starting CEC cultures than 0.1% dispase 
or 0.05% trypsin/EDTA [26]. This result is consistent with 
another paper that showed collagenase A digestion is better 
than dispase II for the isolation of human corneal endothelial 
cells based on the quality of the cell–cell junctions of the 
cultured cells and the preservation of the basement membrane 
component [27]. Our laboratory [6,28-34], as well as others 
[35-41], uses Dr. Joyce’s technique for isolating CECs [13], 
which consists of a gentle dissociation of endothelial cells 
from the Descemet membrane using EDTA. However, in 
recent years, the collagenase A method has gained popu-
larity [27,42,43]. Therefore, the aim of this study was to 
compare these two isolation techniques (collagenase A and 
EDTA isolation) in terms of the number of isolated viable 
cells, proliferation capacity, CEC morphology, and functional 
barrier integrity before switching to the collagenase method.

METHODS

This study was conducted according to our institutions’ 
guidelines and the Declaration of Helsinki. The research 
protocol was approved by the ”Bureau de l’éthique de la 
recherche du CHU de Québec – Université Laval” ethics 
committee (DR-002-1382) and adhered to the ARVO state-
ment on human subjects. Twenty-seven pairs of cadaveric 
corneas (see Appendix 1 for a precise description of the speci-
mens and their use), unsuitable for human transplantation, 
were obtained from a local eye bank (Centre Universitaire 
d’Opthalmologie (CUO) Eye Bank, Québec, Canada). Next 
of kin consent was obtained from Hema-Quebec for all the 
tissues provided for research.

Cell populations, cell isolation, and cell culture: Pairs of 
cadaveric corneas (n = 27, donor age range: 42 to 84 years old, 
mean ± SD: 69±10, Appendix 1) were used to compare the two 
isolation methods. For each donor, one Descemet membrane 
was incubated at 37 °C in collagenase A (1 mg/ml, Sigma, 
Oakville, Canada) for 2–4 h, and the other was incubated at 
37 °C in EDTA (0.02%, Sigma) for 45 min, followed by gentle 
pipetting for cell–matrix dissociation. CECs were seeded 

on FNC coating mix ® (a proprietary blend that contains 
albumin, fibronectin and collagen)-coated plates (AthenaES, 
MJS Biolynx, Inc., Brockville, Canada) and cultured in Opti-
MEM (Life Technologies, Burlington, Canada) supplemented 
with 8% fetal bovine serum (Hyclone, Logan, UT), 5 ng/ml 
epidermal growth factor (Austral Biologicals, San Ramon, 
CA), 0.08% chondroitin sulfate (Sigma), 20 μg/ml ascorbic 
acid (Sigma), and penicillin/streptomycin (Corning, NY). At 
confluence, CECs from both isolation methods were passaged 
with trypsin (0.05%)-EDTA (0.53 mM; Corning) and seeded 
at a density of 20,000 cells/cm2. The CECs were expanded 
until P3. At P3, the CECs were further maintained at conflu-
ence for a week to stabilize the phenotype.

Isolation efficiency: To determine isolation efficiency, we 
used corneas with known ECD (provided by the eye bank; 
see Appendix 1). The center of the corneas was cut out using 
a biopsy punch (7.5 mm diameter). The theoretical initial cell 
quantity within that cut tissue was calculated to serve as the 
total cells’ reference value (theoretical cell count = 3.752π × 
ECD). Each central cornea was digested with EDTA or colla-
genase A, as described above. Aggregates were dissociated 
with a short trypsin-EDTA incubation to count the isolated 
cells using a hemacytometer. Cells were counterstained 
with trypan blue coloration to assess mortality immediately 
following isolation from Descemet membranes before cell 
seeding (% of dead cells; donor age = 70±5.0 years old). 
Isolation efficiency (% of isolated cells) was calculated by 
the ratio of the number of isolated cells and the theoretical 
initial cell quantity (donor age = 70±5.0 years old). Cell 
viability 2 h after cell seeding was also assessed using the 
3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell viability assay 
(Promega, Madison, WI; donor age ± SD = 77±8.0 years old). 
The MTS assay absorbance results were normalized to the 
EDTA condition value for each population (relative viability).

Immunostaining: Immunof luorescence analysis was 
performed on P0 or P3 cells cultured on FNC-coated glass 
coverslips (AthenaES). The 1-week postconfluent CECs 
were fixed with 4% paraformaldehyde (EMS, Hatfield, PA) 
for 10 min at room temperature. Cells were permeabilized 
with 0.2% Triton X-100 (Fisher Scientific, Ottawa, Canada) 
for 10 min before blocking with 1% bovine serum albumin 
(BSA; Sigma) diluted in PBS (1X; 137 mM NaCl, 2.7 mM 
KCl, 6.5 mM Na2PO4, 1.5 KH2PO4, 0.9 mM CaCl2.2H2O, 
2.4 mM MgCl2.6H2O) for 1 h. Samples were labeled with 
the primary antibody directed against ZO-1 (mouse mono-
clonal; Thermo Fisher Scientific, Burlington, Canada), Ki67 
(mouse monoclonal; BD Biosciences, San Jose, CA), or 
N-cadherin (mouse monoclonal; Dako, Agilent Technologies, 
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Mississauga, Canada) for 1 h at room temperature. The cells 
were rinsed and then incubated with the secondary antibody 
(anti-mouse immunoglobulin type G [IgG] Alexa Fluor 594; 
Invitrogen, 1/400), Hoechst 33,258 (Sigma, 1/100), and phal-
loindin 488 (Invitrogen, 1/200) for 1 h in the dark. Coverslips 
were mounted on glass slides with mounting media and kept 
at 4 °C until observation. Micrographs were acquired using 
a confocal microscope (LSM-800, Zeiss, Toronto, Canada) 
and Zen 2.3 system software (Zeiss). Ki67 relative expression 
(donor age = 65±11 years old) was determined from immu-
nostaining images by measuring the area recovered by Ki67 
and reporting it to the area recovered by Hoechst (nuclei).

Morphology assessment: Morphology was assessed by 
calculating the cell circularity index. Randomly selected 
cells from the phase-contrast images (n = 3 images/cell 
population) of confluent CECs were used to measure cellular 
circularity (n = 4 images/condition/donor; 50 cells per condi-
tion). Cell area and perimeter were measured with ImageJ 
software (National Institutes of Health and the Laboratory 
for Optical and Computational Instrumentation, University of 
Wisconsin, WI), and then circularity was determined with the 
following formula: Circularity index = (4π × Area) / Perim-
eter2. Hexagonal cells, a hallmark of endothelial morphology, 
have a circularity index of 0.87, and cells with fibroblastic 
morphology have a score closer to 0.

Transendothelial electric resistance (TEER): At passage 3, 
CECs were seeded on semipermeable 60 mm2 filter inserts 
(EMD-Millipore, Etobicoke, Canada; n = 6; donor age = 
60±10 years old) coated with the FNC-coating mix (Athe-
naES, Baltimore, MD). First, the medium was changed, and 
then TEER (Millicell ERS-2 voltohmmeter; EMD-Millipore) 
was measured after letting the fresh medium equilibrate 
for at least 30 min. During the TEER measurements, the 
CEC cultures were kept at 37 °C on a warming plate. Three 
measurements per insert were made, and three inserts were 
used per condition. Inserts without cells containing only the 
medium were used as blanks to normalize the measurements. 
Ten TEER measurements were taken after every medium 
change.

Statistical analyses: The results are presented as the mean 
of all measurements and standard deviation (SD). Statistical 
significance was calculated with ANOVA and a paired 
Student t test with GraphPad Prism 7. A p value of less than 
0.05 was considered statistically significant.

RESULTS

Comparison of isolation methods at passage 0: As the isola-
tion method can influence the quantity of seeded cells and 
their morphology, we first compared two isolation methods, 

the classic EDTA method and the collagenase A method, on 
P0 CECs. We compared the two isolation methods using pairs 
of corneas from the same donors.

As shown in Figure 1A, collagenase A isolation produced 
a higher viability rate (EDTA = 1.0±0.7, collagenase A 
= 3.1±1.9, p = 0.03), which can be explained by the higher 
number of isolated cells (isolation efficiency). As shown in 
Figure 1B, a lower percentage of isolated cells was obtained 
using EDTA (40.5%±5.40) than collagenase A (54.4%±7.45). 
Furthermore, more dead cells were obtained using EDTA 
(70.5%±6.80; Figure 1C) than collagenase A (26.0%±4.90). 
We also investigated proliferation capacity with Ki67 immu-
nostaining. Cells in both conditions showed the same relative 
expression of positive Ki67-expressing cells (Figure 1D,E).

Collagenase A isolation initially generated small cell 
aggregates, as shown in Figure 1F, while EDTA-isolated cells 
were individually dispersed. After 7 days of culture, CECs 
isolated with collagenase A were less fibroblastic and smaller 
than EDTA-isolated CECs (Figure 1F). The circularity index 
was higher for confluent P0 CECs isolated with collagenase 
A (Figure 2B; 0.67±0.07 for EDTA; 0.80±0.03 for collagenase 
A, p = 0.01).

Cell–cell junctions play an essential role in the corneal 
endothelium barrier function. We next compared the expres-
sion of the adherens junction protein N-cadherin and the tight 
junction protein ZO-1 at 7 days after seeding. Collagenase 
A–isolated CECs had more defined junctions, as N-cadherin 
and ZO-1 staining was strongly expressed at cell–cell borders 
(Figure 1G). The collagenase A condition also had well-
formed actin rings at their apical side, and had fewer stress 
fibers, than the EDTA-isolated CECs (Figure 1G).

Comparison of initial isolation method throughout cell 
passages: Maintaining a functional phenotype throughout 
cell expansion is also an important parameter for successful 
cell therapies. Following EDTA or collagenase treatment, 
cells were passaged using trypsin/EDTA, seeded, and culti-
vated up to passage 3 (the isolation methods followed the 
same expansion protocol). At the third passage, the CECs 
were kept postconfluent for a week before the morphology 
and functionality assessments. CECs adhered to and gener-
ated a culture using both approaches. Cell morphology was 
evaluated using phase-contrast images of confluent cultures. 
As shown in Figure 2A,B, at P0 and P3, CECs isolated with 
EDTA had a lower circularity index than collagenase A (P0: 
0.67±0.07 for EDTA and 0.81±0.03 for collagenase, p=0.01; 
P3: 0.59±0.04 for EDTA and 0.71±0.05 for collagenase, p = 
0.02). The P1 and P2 cells had similar circularity indexes 
regardless of the isolation method.

http://www.molvis.org/molvis/v28/331
https://imagej.nih.gov/ij/


334

Molecular Vision 2022; 28:331-339 <http://www.molvis.org/molvis/v28/331> © 2022 Molecular Vision 

TEER was used to measure endothelial barrier integrity 

because a low TEER is associated with a loss of barrier func-

tion [44,45]. There was no significant difference in TEER 

values between CECs isolated using EDTA or collagenase A 

at any of the time points (Figure 2C) or after the tenth media 
change (Figure 2D).

CECs were also seeded on FNC-coated glass coverslips 
and immunostained for the tight junction protein ZO-1. 
Overall, ZO-1 expression was similar regardless of the 

Figure 1. Primary (P0) cultures of corneal endothelial cells isolated with EDTA or collagenase A. A: Cell viability, 2 h after cell isolation, 
relative to the EDTA condition. n = 6. B: Percentage of cells isolated from native Descemet membranes. n = 4. C: Percentage of dead cells 
immediately following cell isolation from Descemet membranes. n = 4. D: Representative images of indirect immunofluorescence staining 
of Ki67 (red), actin (green), and nuclei (blue) at 24 h postseeding. Scale bar = 100 μm. E: Relative expression of Ki67-expressing cells 
(reported on nuclei). n = 3. F: Phase-contrast images of P0-cultured corneal endothelial cells at 24 h and 7 days postseeding. Scale bar = 
200 µm. G: Representative images of indirect immunofluorescence staining of ZO-1 (red), N-cadherin (red), and actin (green) at 7 days 
postseeding. Scale bar = 50 µm. Results are expressed as mean ± standard error of the mean (SEM). Two-way ANOVA was performed with 
GraphPad Prism 7. *p≤0.05.
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isolation method used at P3, as both conditions exhibited scat-
tered cytoplasmic ZO-1 (Figure 2E).

DISCUSSION

This study compared two common isolation methods to iden-
tify which one generated a successful cell culture of CECs 
from donors more than 40 years old. The results demon-
strated that collagenase A isolation generated more viable P0 
CECs that expressed junction-related proteins than EDTA, 
showing that collagenase A should become the technique of 
choice over EDTA for isolating CECs. However, the benefits 

of collagenase isolation were lost after serial passages in 
trypsin-EDTA. Interestingly, P3 trypsin-passaged CECs, 
whether initially isolated using EDTA or collagenase, did not 
form tight junctions as quickly as in P0, as demonstrated by 
the cytoplasmic expression of ZO-1 after 7 days of postcon-
fluency, as well as similar TEER values.

To the best of our knowledge, this study is the first to 
compare the isolation of CECs using EDTA and collagenase 
A for corneas from donors more than 40 years old. Both treat-
ments have advantages and drawbacks. EDTA is a nonen-
zymatic approach that chelates calcium and magnesium, 

Figure 2. Cell functionality throughout the cell expansion of corneal endothelial cells isolated with EDTA or collagenase A. A: Phase-contrast 
images of cultured corneal endothelial cells throughout cell expansion. n = 4. Donor age ± standard deviation (SD) = 55±11 years old. B: 
Circularity index of cultured corneal endothelial cells throughout cell expansion. n = 4; 100 cells (four images) per condition per population 
were measured. White bars = EDTA, black bars = collagenase A. C: Transendothelial electrical resistance (TEER) measurements throughout 
time. TEER was measured for ten media changes (Δ; media changes were performed every 2 days). Mean ± Standard error of the mean 
(SEM) of one representative cell population. D: TEER measurements at the final media change, where nine measures per population per 
condition were taken. Mean ± SEM of four different cell populations. Two-way ANOVA was performed with GraphPad Prism 7. *p≤0.05. E: 
Indirect immunofluorescent staining of ZO-1 (red). Cell nuclei were counterstained with Hoechst (blue). Negative control (primary antibody 
omitted). n = 4. Scale bar = 50 μm.
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inducing misconformation of cadherins and disrupting lateral 
junctions [46]. Following the EDTA treatment, CEC can be 
detached from the Descemet membrane using light mechan-
ical stress. However, pipetting cells up and down can generate 
cell mortality by physically damaging the cells, as well as 
anoikis [47], programmed cell death, which occurs when 
cells are no longer attached to their basal membrane. This 
could explain the high cell mortality rate. As an advantage, 
it has been shown that disruption of cell junctions activates 
proliferation by releasing sequestered transcription activators 
such as β-catenin and ZONAB, known to promote cell prolif-
eration [48,49]. As the amplification of CECs is the main goal 
of culturing them, it is of interest to unlock the mitotic block 
caused by mature junctions observed on the native corneal 
endothelium. Zhu et al. (2012) previously showed that nuclear 
p120 can restart the cell cycle without disrupting cell–cell 
junctions [48]. On the other hand, collagenase A acts by 
digesting collagen bounds that form the Descemet membrane. 
Extracellular matrix digestion releases cells without junction 
disengagement, and it appears to advantage CEC culture 
by delaying endothelial–mesenchymal transition [50] while 
inducing cell proliferation as Ki67 staining showed (Figure 
1D). Small cell aggregates obtained with collagenase A allow 
for more cells to attach to the culture plate; however, they 
affect cell distribution. To avoid clumps of cells adhering to 
the cell culture plasticware, some research teams have added 
a brief trypsin step before cell seeding [27,51].

Of course, cell isolation is only the first step, and many 
other variables influence CEC expansion, such as the coating 
on which cells are seeded (FNC [13,52,53], type IV collagen 
[52,53], laminin [54,55]), the initial seeding cell density [25], 
the culture medium [35,56-58], and the adjustment of the 
culture medium composition according to their proliferating 
or maturing states [28,59,60]. Low mitotic agents in culture 
media also delay CEC senescence during cell expansion [61]. 
With an optimal combination for CEC culture, a maximum 
of high-quality cells could be generated from cadaveric pairs 
of corneas, even from donors who are now discarded because 
of their age.

In summary, this study showed that CEC isolation using 
collagenase A would be optimal for future cell therapies, as 
it yields higher morphology and a higher number of viable 
isolated cells at P0. Furthermore, P3 CECs isolated with 
collagenase A had an increased endothelial phenotype and 
similar barrier functionality as the same cells isolated using 
EDTA. These results were obtained using older donors, which 
is encouraging for the availability of corneas suitable for 
expanding functional CECs. Therefore, collagenase A will 
be used in our subsequent studies. This study is a small step 

toward obtaining clinical-grade CECs for the treatment of 
endotheliopathies.

APPENDIX 1. TISSUE DONORS DETAILS

To access the data, click or select the words “Appendix 1.”
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