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Abstract.—Whether or not evolutionary lineages in general show a tendency to increase in body size has often been discussed.
This tendency has been dubbed “Cope’s rule” but because Cope never hypothesized it, we suggest renaming it after Depéret,
who formulated it clearly in 1907. Depéret’s rule has traditionally been studied using fossil data, but more recently a number
of studies have used present-day species. While several paleontological studies of Cenozoic placental mammals have found
support for increasing body size, most studies of extant placentals have failed to detect such a trend. Here, we present a
method to combine information from present-day species with fossil data in a Bayesian phylogenetic framework. We apply
the method to body mass estimates of a large number of extant and extinct mammal species, and find strong support
for Depéret’s rule. The tendency for size increase appears to be driven not by evolution toward larger size in established
species, but by processes related to the emergence of new species. Our analysis shows that complementary data from extant
and extinct species can greatly improve inference of macroevolutionary processes. [Body size; Cope’s rule; macroevolution;
paleontology; phylogenetics.]

Body size is a key ecological trait, and it is relatively
easy to measure in present day as well as fossil
organisms. Hence, a substantial literature exists on the
ecology and evolution of body size in a wide variety of
taxa. A long-standing question regarding body size is
whether there exists an evolutionary tendency for body
size increase, either passive (sensu McShea 1994, 2000; see
also Stanley 1973), or active, driven by possible ecological
advantages associated with large body size.

The (perceived or real) evolutionary tendency for
body size increase is often referred to as “Cope’s rule”
or the “Cope rule”, attributing the idea to Edward
Drinker Cope, and especially his 1886 book “The Origin
of the Fittest”. However, Polly (in Polly and Alroy
1998) convincingly showed that Cope did not propose
this rule—neither in “The Origin of the Fittest” nor
in his other writings; this expression was mistakenly
introduced into the English literature by Rensch (1948),
who was quickly copied by others, such as Newell
(1949). However, other authors did propose such a rule
early on, most notably Charles Depéret (1907) in his
book “Les transformations du monde animal”, later
translated into English (Depéret 1909) under the title
“The transformations of the animal world”, in which
an entire chapter (pp. 193–205), entitled “the law of
increase in size in phyletic branches”, deals with this
topic. In this chapter, Depéret stated (pp. 199–200) that
this law was “one of the most curious and, from its
generality, most important, which has been brought
to light by the researches of modern paleontologists”
(Depéret 1909, p. 193). Later on in the chapter (pp. 204–
205), he raises the question of possible cases of reduction

in body size, as in the so-called “dwarf elephants” of
various Mediterranean islands or in the hippopotamus
from Madagascar, before concluding that they instead
represent the last survivors of lineages that had
retained a small body size throughout their evolutionary
history. (Incidentally, more recent research has upheld
the conclusion that these do represent cases of
miniaturization; see Poulakakis et al. 2006; Orlando et al.
2007). Thus, Depéret believed that body size increase
was prevalent, to the point that he doubted that we had
demonstrated any cases of gradual body size reduction
in any lineage (p. 204). We therefore suggest from now
on to refer to an evolutionary tendency for body size
increase not as Cope’s rule, but as Depéret’s rule.

Most studies investigating Depéret’s rule have been
based on fossil remains (e.g., Gingerich 1974; Jablonski
1997; Alroy 1998; Laurin 2004; Heim et al. 2015). While
evolution is sometimes best described as a random
walk (e.g., Jablonski 1997), some taxa appear to show
a tendency for size increase, such as Mesozoic dinosaurs
(Hone et al. 2005; Benson et al. 2014), and planktonic
foraminifera, at least between biological crises (Arnold
et al. 1995). In particular in the case of placental mammals
(or subclades thereof), paleontologists have long claimed
that body size generally increased through the Cenozoic
(Depéret 1907; MacFadden 1986; Alroy 1998; Smith et al.
2010; Raia et al. 2012; Slater et al. 2012; Slater 2013;
Saarinen et al. 2014), although exact patterns of body
size vary with taxa and periods (e.g., MacFadden 1986;
Alberdi et al. 1995; Finarelli and Flynn 2006), and this
complexity in body size evolution patterns is of course
not restricted to mammals (e.g., Laurin 2004; Hone
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et al. 2005). Research about the possible explanations
of these evolutionary patterns is still in its infancy, but
recent progress has been made (e.g., Smith et al. 2010;
Lovegrove and Mowoe 2013).

A smaller number of studies used present-day species
to test for Depéret’s rule. Pianka (1995) studied body
sizes of present-day varanid squamates on a phylogeny
and found no evidence for a general increase in size.
Knouft and Page (2003) similarly analyzed nine present-
day families of freshwater actinopterygians, and because
large-bodied species tended to represent basal lineages,
inferred that if any trend existed, it was toward small
rather than large body size. Moen (2006) analyzed body
sizes of present-day cryptodiran turtles on a phylogeny,
and found no evidence for general size increase. Even in
mammals, where paleontological studies concluded that
Depéret’s rule applies (Alroy 1998; Smith et al. 2010; Raia
et al. 2012), Monroe and Bokma (2010) found no evidence
for it from extant species. However, by assuming that
rates of body size evolution differ between species, Baker
et al. (2015) did find evidence for Depéret’s rule from
extant mammals.

Evidently, the most fruitful approach to investigate
evolutionary trends in body size is to combine
information on body masses available from present-day
species with fossil information about the body masses
of their ancient relatives (Finarelli and Flynn 2006; Slater
et al. 2012; Finarelli and Goswami 2013). Integration of
fossil and present-day data has been hampered by lack
of appropriate methods (but see Slater et al. 2012). Here,
we present a Bayesian approach to test for a directional
trend in the evolution of a metric trait (body mass), using
fossil and present-day data on a phylogeny. We apply our
approach to a partly resolved phylogeny of mammals
(Bininda-Emonds et al. 2007) and body mass data for
3253 present-day (Smith et al. 2003) and 553 extinct
species to test for Depéret’s rule, and to investigate the
importance of using fossil data in this type of analysis.

METHODS

To evaluate evidence for Depéret’s rule, we analyze
body masses of extant and extinct species of mammals
on a phylogeny, modeling evolution as a Brownian
motion process along the branches of the phylogeny.
The Bayesian algorithm we used (Bokma 2008a) and
its modification to test for Depéret’s rule (Monroe and
Bokma 2010) have been presented before. Therefore,
we describe here only its general features, and focus
on modifications, especially the incorporation of fossil
information. The primary variables of our model are (i)
the phylogeny, (ii) the body masses of all the lineages
in the phylogenetic tree at the present (i.e., extant
species) and at each divergence (internal node) in the
reconstructed phylogeny, and (iii) the rates of body mass
evolution, including a possible tendency for size increase
or decrease.

Because the algorithm is Bayesian, initial values
of these variables are sampled from their prior

distributions (that will be described below).
Subsequently, these values are iteratively updated
using Metropolis or Metropolis–Hastings sampling
(Metropolis et al. 1953) so as to construct a Monte Carlo
Markov chain (MCMC) that describes their posterior
distribution. The structure of the algorithm is as
follows:

1. Assign initial values to all variables.

2. Update the topology of polytomies.

3. Update branch lengths of branches that were part
of polytomies.

4. Update the rate of evolution s2.

5. Update the tendency for size increase or
decrease d.

6. Update the body masses at all nodes of the
phylogeny.

7. Repeat steps 1–5 many times.

We determined that MCMC chains converged by
visually inspecting MCMC chains from repeated
analyses with different initial values. About 10,000
iterations after a burn-in of 1000 were sufficient to
estimate posterior distributions. We retained every 10th
iteration of the chains, that is 10,000/10=1000 samples.
Below we describe the priors and likelihood functions
used to update the values of the variables.

Priors on Body Mass
Even though extant species can be directly observed

and their body masses measured, we are not certain
about their average body masses due to sampling effects.
We obtained body masses from the compilation by Smith
et al. (2003). This compilation provides estimates of
species’ average body masses, but not of the uncertainty
around these estimates. Many studies have shown that
body masses of individuals in a population or species of
mammals very generally follow a normal distribution.
The coefficient of variation of individual body masses
around the population mean is very approximately 15%
(e.g., McKellar and Hendry 2009). If we take a random
sample of n individuals to estimate the mean, then
the error variance of that estimate will be (15%)2/n.
Evidently, the error is smaller for larger n. Therefore, we
assumed that the averages reported by Smith et al. (2003)
are based on only one individual, which yields a variance
around the averages of 0.152/1=0.0225. This is also the
variance around the mean body mass on a logarithmic
scale (i.e., because if x∝N(1,v) then if v�1, to a good
approximation ln x∝N(0,v)). The majority of averages
reported by Smith et al. (2003) was probably based on
more than one individual, so this yields relatively wide
priors on the body masses of observed extant species.
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For extinct species, we inferred body mass using
previously established inference models taken from
the literature and from skeletal measurements of fossil
material. In several cases, inferences were taken directly
from the literature. The body mass was thus inferred
or compiled for 553 extinct mammal species ranging in
geological age from the Late Jurassic (Oxfordian) to the
Pleistocene, but most paleontological data date from the
Cenozoic. The compilation also includes the geological
age (online Supplementary Data File S1, available
on Dryad at http://dx.doi.org/10.5061/dryad.4nd2j),
determined as accurately as possible. Typically, this is at a
lower level than epoch, and using the land mammal ages.
The compilation also includes the phylogenetic position
(online Supplementary Data File S2, available on Dryad
at http://dx.doi.org/10.5061/dryad.4nd2j), for which
we tried to select the most consensual interpretation
from the recent literature, although this exercise is
necessarily a bit subjective. When the phylogeny is not
consensual or poorly resolved, we inserted polytomies
to reflect this uncertainty. The tips of the branches were
adjusted to reflect the geological age of the fossils of
each taxon. The length of the branches subtending the
extinct taxa is unknown because the age of the last
common ancestor of various extinct or extinct and extant
taxa is unknown. However, given the richness of the
mammalian fossil record, it is reasonable to assume
that most branches were fairly short (except when other
fossils imply long ghost lineages). Thus, we adjusted the
terminal branches subtending extinct species to occupy
at least 1 myr and the internal branches to occupy at
least 0.5 myr, while ensuring that the resulting nodal
ages were compatible with all previously established
molecular ages and with the fossil record. We did not try
to spread evenly the length of branches between nodes
subtending extinct and extant taxa (those for which
one daughter branch leads to an extinct taxon, and the
other, to an extant one) between successive nodes for
which molecular dates were available, because in many
cases this would have resulted in long branches lacking
direct paleontological evidence. Instead, we set branch
lengths so that the implied divergence dates between
extinct taxa appear plausible from a paleontological
point of view. Thus, for instance, the plesiadapiforms
that we included into our study date from the Danian
(Purgatorius unio, at 64 Ma) to the Ypresian (Microsyops
annectens, at 47 Ma), but given the number of sampled
species (29) and these branch length settings, this
implied that their last common ancestor lived in the
Campanian (about 73 Ma), which will probably appear
old enough to most paleontologists. This procedure
is admittedly a fairly arbitrary, imprecise exercise, but
we know of no other simple solution that could be
implemented with reasonable effort on such a large
data set. Less arbitrary methods exist (e.g., Bapst 2013),
but they would be time-consuming to implement and
would presumably have a negligible impact on our
results because fossils are pruned at a fairly early stage
of the analysis (see below). For each taxon or set of taxa,
the data (body mass, geological age, and phylogenetic

position) were compiled by a paleomammalogist, each
of which contributed as follows: LC, 91 “condylarth”,
perissodactyl, and cetartiodactyl species; OM, 96 glire,
lipotyphlan, and chiropteran species; SP, 16 early
carnivoran species; EG, 65 Jurassic to Eocene therian
species; FS, 70 carnivoran species; SL, 96 marsupial and
xenarthran species; and MG, 125 plesiadapiform and
primate species. ML centralized the data and built the
timetree (with some help from FJ) according to these
data, and in consultation with the paleomammalogists.
These body mass estimates of extinct species and
the phylogenetic tree we used are available at
http://dx.doi.org/10.5061/dryad.4nd2j.

Even though we have estimates of the body masses of
very many extant and extinct species, there remain many
clades of which we do not have body mass estimates
of extinct species. In addition, the fossils for which
we have body size estimates will generally not be the
direct ancestors of present-day species. However, we
do have prior hypotheses also about the body masses
of the unobserved ancestral and present-day species.
Typically, we assume that the body mass of an ancestral
species very approximately equals the body mass of the
present-day species that descended from it. Similarly, we
assume that the body mass of an unmeasured extant
species very approximately equals the body size of its
ancestor, and hence of its extant relatives. Thus, it would
not be appropriate to assign missing body masses of
lineages a uniform prior <−∞,∞>. Instead, it seems
more appropriate to assign these lineages a normal prior
N(a,v). In the following sections we describe how we
determined appropriate values for a and v.

Our prior assumption about the body mass of an
ancestral species is, as mentioned, roughly equal to the
mean body mass of the extant species that descended
from it. That, however, is a simplification: our inferences
about the ancestor to humans and chimps are also
affected by knowledge of the body masses of gorillas
and orangutans. Moreover, if estimates of body masses
of extinct species are also available, these too affect
our prior hypotheses. Thus, it is more appropriate
to say that our prior belief of the body mass of a
particular species, a, equals the average body mass
of all other species (ancestor, descendant, sister, or
more distant relative), weighted by their phylogenetic
distance to that particular species. Let P be a square
matrix of phylogenetic distances between all species,
that is, 1/exp(b) where b is a matrix of summed branch
lengths between species pairs. Let M be a vector of
body masses of all species, with zeros for the species
that have not been measured, and let A be a vector of
our body mass estimates a. The product A = MP/�P
yields estimates of a for all species, measured as well
as not measured (Cheverud et al. 1985) (� indicates
summation over rows and ensures that A has the
same scale as M). A similar approach was used by
Slater et al. (2012). For the species that were measured,
we can plot estimated body size a against measured
body size m, which shows that this procedure yields
quite accurate predictions (mpred =0.96mobs +0.22,

http://dx.doi.org/10.5061/dryad.4nd2j
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r2 =0.95; Supplementary Fig. S1, available on Dryad at
http://dx.doi.org/10.5061/dryad.4nd2j).

Evidently, the discrepancy between m and a is smaller
for species with measured close relatives, and worse for
species that appear isolated on the phylogeny. This leads
to the question of what is an appropriate variance v for
the priors on ancestral body masses. To infer appropriate
v for every node in the tree, we made use of the
concept of Fisher information: the second derivative of
the likelihood function at its maximum. At the maximum
of the likelihood function, its first derivatives are of
course zero. The second derivatives measure how sharp
the peak of the likelihood function is: a sharp peak
implies that the function is informative, a broad peak that
the function is less informative. Because we will model
body size evolution as a Brownian motion process, the
likelihood functions will be normal distributions. For
the normal distribution, the second partial derivative
(partial; about the mean) of the likelihood function is
the inverse of the variance. We can use this concept
to calculate how much information the body mass of
descendant Y provides about that of its ancestor X (or
vice versa).

Let tXY denote the length of the branch between X
and Y, and let s2 be the rate of body mass evolution (as
defined in the section Priors and Likelihood on Rates of
Evolution). Assuming Brownian motion, the body mass
of X is then mX ∝N(mY,s2tXY) and hence the Fisher
information that X provides about Y (or vice versa)
is 1/(s2tXY). In reality, there will be less information
available about X, because mY itself is not known without
error (Supplementary Fig. S2, available on Dryad at
http://dx.doi.org/10.5061/dryad.4nd2j). Let vY denote
the prior variance around mY. Then, the information
about X provided by Y is: 1/(vY +s2tXY). In other words,
Y provides more information about X if it is known
with little error (small vY), if the rate of evolution is
low (small s2), and if the branch between the species
is short (small tXY). Fisher information has the attractive
property of being additive for independent observations.
If X has another descendant Z, then the information
about X provided by Z is 1/(vZ +s2tXZ), and independent
of the information provided by Y. Therefore, the Fisher
information about X provided by its ancestor W and
two descendants Y and Z is 1/(vW +s2tWX)+1/(vY +
s2tXY)+1/(vZ +s2tXZ). Accordingly, the estimate of prior
variance vX around mX becomes vX ={1/(vW +s2tWX)+
1/(vY +s2tXY)+1/(vZ +s2tXZ)}−1.

The information provided by the body size of species
X about that of another species Y is limited because
body size evolves with rate s2. However, the decay of
information over time is determined not only by s2,
but also by prior uncertainty about the strength d of
Déperet’s rule. However, we chose a relatively high prior
expectation (0.1 loge(g)2) of the rate of evolution s2, so as
to obtain relatively wide priors also on the body masses
of species that were not observed. As a consequence,
the prior variance of d (0.0075 [loge(g)/myr]2) becomes

negligible, and it suffices to calculate prior expectations
using just the prior expectation of s2.

The principle of Fisher information introduced above
describes how information percolates through the
phylogeny, but it does not provide an analytical
expression to determine the variance v for any particular
unobserved species. To determine v for all nodes in
the phylogeny, we started by arbitrarily assigning v=
1000 to all nodes for which no measurements were
available. Subsequently we updated v for every node
X using its descendants (Y and Z, not for present-day
species) and ancestor (W, not for the root) using the
equation above: vX ={1/(vW +s2tWX)+1/(vY +s2tXY)+
1/(vZ +s2tXZ)}−1. After 1000 updates these variances do
not noticeably change any more. (Note that for measured
species, v was calculated from the measurements and not
updated.)

It should be noted that ancient fossil observations are
at much shorter distance from the ancestral nodes in
the tree compared with present-day species. Therefore,
early species have a far greater effect on the prior
distribution of the ancestral body size of the deepest
nodes than present-day species have (Ané 2008). The
first influence is on the prior means: if fossils tend to
have small body sizes, this markedly decreases the
prior expectation on the mean body sizes of nearby
ancestral nodes (Supplementary Fig. S2, available on
Dryad at http://dx.doi.org/10.5061/dryad.4nd2j). The
second effect is on the variance around the mean,
which becomes much smaller for deep nodes, due
to shorter branches between these nodes and extinct
lineages than between deep nodes and present-day
species (Supplementary Fig. S2, available on Dryad
at http://dx.doi.org/10.5061/dryad.4nd2j). Thus,
our approach illustrates how fossil and present-day
information can be integrated without assuming that the
ancient species represent direct ancestors of present-day
species.

Importance of Fossil Data
After using all body mass data to determine a

and v (i.e., the body mass prior) for every internal
and terminal node in the phylogeny, we pruned the
phylogeny of lineages that do not lead to present-
day descendants. This is necessary, in our method,
to partition evolutionary change into a gradual (i.e.,
anagenetic) and speciational component (see below),
because only for extant taxa can all branches be
considered to be known; for extinct taxa, the proportion
of known branches is not even known with precision,
and may vary between clades and periods. Thus, we
performed our analyses on the mammalian phylogeny
provided by Bininda-Emonds et al. (2007): the fossil
information was used only to obtain informative priors
on the body sizes of the internal nodes of this phylogeny.
This differs from the more common approach to retain
the extinct lineages and fit models directly to the
combined data, but makes it straightforward to evaluate

http://dx.doi.org/10.5061/dryad.4nd2j
http://dx.doi.org/10.5061/dryad.4nd2j
http://dx.doi.org/10.5061/dryad.4nd2j
http://dx.doi.org/10.5061/dryad.4nd2j
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FIGURE 1. Updating of polytomies and branch lengths. Capital
A–D are tip species, E, F, and G are internal nodes. Horizontal arrows
indicate a node’s range of possible branching times. Black arrows
indicate the branch around which topology is altered as explained in
the main text.

the importance of using fossil information: we repeated
our analysis using only the body masses of present-day
species.

Prior and Likelihood on Phylogeny
We based our analyses on a phylogeny of present-day

mammals (Bininda-Emonds et al. 2007). This phylogeny
contains virtually all present-day mammalian species,
but also a substantial number of polytomies. We assume
a priori that the phylogeny is correct except for the
polytomies, and that all possible resolutions of the
polytomies are equally likely. We started analyses
with randomly resolved polytomies, namely the strictly
bifurcating tree provided by Bininda-Emonds et al.
(2007). For nodes leading to zero-length branches in the
initial tree, our analysis proposes alternative topologies
(Fig. 1). Figure 1a shows a polytomy leading to four
lineages. This polytomy is first randomly resolved
(Fig. 1b). A pair of sister species is randomly selected
(in this case E and F). A randomly selected descendant
(in this case C) of the lineage that ends earliest (F,
indicated with a black arrow) then changes place with
the sister lineage that ends latest (E), resulting in Figure
1c. Assuming this proposal is accepted (see next two
paragraphs), in the next iteration a pair of sisters is again
randomly selected (in this case E and D), and a randomly
selected descendant (A) of the one that ends earliest (E,
indicated with a black arrow) changes place with the one
that ended most recently (D), leading to the tree in Figure
1d. Using this algorithm, all alternative configurations
of the species can be reached from the original random
resolution of the polytomy.

All alternative topologies are considered a priori
equally likely, but the body size data may favor some
over others. That is in the first place because topological
changes affect putative ancestor–descendant pairs, and

hence body size changes. In addition, topological
changes make some branches shorter (e.g., branch E
from Fig. 1b,c), and other branches longer (e.g., branch
C from Fig. 1b,c). This change in branch length also
affects the likelihood of the change in body size over
the branch. Thus, a proposed topology change affects
the likelihood of body size changes over the branches
involved, which are used to either accept or reject a
proposed topology change using Metropolis sampling.
(Note that while a topological change affects the lengths
of individual branches, it does not affect branching times
of the phylogeny. For example, in Figure 1b, c, and d
branching times are identical.)

Not only topology but also branch lengths should
be updated to resolve polytomies. Updating of branch
lengths is achieved by updating the times of the nodes
that in the original tree were the origin and/or end
point of zero-length branches. For any such node,
we proposed a new time from a uniform distribution
between the node from which it originated, and the
oldest node that descends from it (if any) (Fig. 1).
(Otherwise it would be necessary to also change the
times of other nodes.) Whether or not the proposal
is accepted depends on two likelihood functions. The
first likelihood function stems from the speciation–
extinction process that generated the phylogeny. We
assume that this process can be modeled as a constant-
rates speciation–extinction process (Raup et al. 1973). The
likelihood of the branching times of the reconstructed
phylogeny (i.e., the phylogeny pruned of extinct species)
was derived by Nee et al. (1994) and Stadler (2010) (see
also Harvey et al. 1994; Gernhard 2008), but to update
individual branching times it is more convenient to use
the (equivalent) equations provided by Maddison et al.
(2007), because these give the likelihood contribution
for each individual branch. (We somewhat arbitrarily
assumed that the speciation rate is 0.15 and the extinction
rate 0.1 per lineage and per million years, as these
values have hardly any effect on the results.) The other
likelihood function used in updating branching times
is the likelihood of body size changes: updating the
time of a node affects the lengths of the branch leading
to the node, and the two branches descending from it.
Therefore, also the likelihoods of the body size changes
over these branches are affected, and these differences in
likelihood were also used to accept or reject the proposed
change in branch length. In a strictly bifurcating tree the
nodes can be divided into two non-overlapping groups
(indicated in Fig. 1 by dark and light gray) so that the
likelihoods of the proposed new branching times of the
members of a group are mutually independent. Dividing
the branching times in these two groups, combined with
the use of Maddison et al. (2007)’s likelihood, allows for
efficient “block updating” of unknown branching times.

Priors and Likelihood on Rates of Evolution
Body size evolution on the phylogeny is modeled

as a Brownian motion process with intrinsic rate s2
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FIGURE 2. Illustration of evolution of body size by directional
Brownian motion. Natural logarithmic body size of a species, which is
m0 at time t0 follows at time t1 a normal distribution with mean d(t1 −t0)
and variance s2(t1 −t0). s2 is the intrinsic rate of Brownian motion, and
d is the strength of Depéret’s rule. One trajectory of body size change
is shown in bold, and 100 equally probable alternative trajectories in
gray.

and drift d (Fig. 2): Consider a species with average
natural logarithmic body mass m0 =0 at time t0. After
unit time, the body mass of this same species can be
considered a random variate drawn from a normal
distribution with mean d and variance s2. In other words,
the likelihood that the species has size m1 at time t1
equals the probability density at m1 −m0 of the normal
distribution with mean d(t1 −t0) and variance s2(t1 −t0).
If s2 is large, body mass evolves quickly, and if s2 is small
it evolves slowly. In the absence of an overall tendency for
size increase (or decrease), d=0. Depéret’s rule implies
that d>0, whereas d<0 would indicate a tendency for
body size to decrease. The objective of this study is
to distinguish whether d>0, that is, whether there is
evidence for Depéret’s rule.

Because the rate of body size evolution s2 is strictly
a variance (Fig. 2), we assigned it an exponential
distribution as prior, reflecting that s2 cannot be negative.
Based on previous studies that estimated s2 in mammals
(Mattila and Bokma 2008), we decided that a prior mean
of 0.1 (loge(g)/myr)2 would be appropriate. (This mean
implies 10% change in body size per myr, which is higher
than estimates in the literature, and therefore yields a
relatively broad prior.) We assigned the tendency for
body size increase d a normal prior with mean 0. Thus,
the prior neither assumes nor excludes Depéret’s rule
(d>0), and also does not exclude a tendency for decrease
(d<0). It is difficult to determine the variance around this
mean, because estimates of the strength of Depéret’s rule
in literature are sparse and highly variable. We decided
that a variance of 0.0075 (loge(g)/myr)2 was appropriate.
This is admittedly rather wide, as it does not exclude
rates of size increase that appear quite improbable, but a
narrower variance would assign relatively low likelihood
to, for example, Alroy’s (1998) high estimate of d, which

could be deemed inappropriate as it is based on rather
extensive data. In any case, the sheer number of species
analyzed here should provide so much information
about d that choosing a wide prior introduces negligible
bias.

Earlier studies of mammalian body size evolution
indicated that body size evolves not only gradually over
time as assumed above, but also in rapid bursts that
appear associated with speciation (Mattila and Bokma
2008), a phenomenon that occurs in many clades and
periods, to which Eldredge and Gould (1972) drew
attention. Furthermore, Heim et al.’s (2015) analysis of
marine animals indicated that Depéret’s rule does not
stem from evolution toward larger size in established
species, but from differential proliferation of lineages.
Therefore, we also investigated whether Depéret’s rule is
manifested in gradual evolution over time in established
species, or in rapid evolution in incipient species, or
both. For this investigation we complemented the model
of Brownian motion over time (above, with parameters
d and s2) with rapid change in incipient species: we
assume that when a new species emerges, the difference
in loge(body mass) with its immediate ancestor mdesc −
manc is normally distributed with mean dc and variance
s2
c . (The subscript c denotes cladogenesis, and we assume

that cladogenetic change is effectively instantaneous on
a geological time scale so that dc and s2

c are independent
of time.) We assigned dc a normal prior with zero mean
and variance 0.1, and s2

c an exponential prior with mean
0.1.

In order to accurately estimate changes in body size
in incipient species (i.e., dc and s2

c), we must estimate
how many internal nodes have been pruned of the
phylogeny by extinction. Under the assumption that
the process that led to the phylogeny can be modeled
as a constant-rates speciation–extinction process (Raup
et al. 1973), we can estimate the number of pruned
speciation events on every branch of the reconstructed
tree—that is, the phylogeny of extant species pruned
of all extinct lineages (Bokma et al. 2012). To do that,
we pruned the phylogeny of extinct lineages, and used
the branching times of the phylogeny to estimate the
rates of speciation and extinction (Bokma 2008b). These
rates were then used to estimate numbers of pruned
speciation events. Estimation of the rates of speciation
and extinction and numbers of hidden speciation events
is achieved by inserting these estimation steps into
the MCMC framework outlined above (Bokma 2008a;
Mattila and Bokma 2008; Monroe and Bokma 2010).
When rates of speciation and extinction and numbers of
hidden speciation events are estimated, longer MCMC
chains are needed to sample the posterior: after a burn-in
of 50,000 we sampled every 500th of 500,000 samples.

Note that modifying the method to directly
accommodate extinct species (from the fossil record)
would require obtaining a random sample of the known
extinct species (which we currently do not have, as
the taxonomic sample reflects the field of expertise
of the paleomammalogists who participated in the
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compilation). It would also require making additional
hypotheses, such as postulating a fairly homogeneous
fossilization potential of lineages through time and
between clades, and assuming that we have accurate
divergence times between extant and even extinct taxa
(Stadler 2010; Didier et al. 2012), which may not be
realistic.

Model Comparison
In order to test for Depéret’s rule, we want to compare

the support of the data for a model with Depéret’s rule
(d>0) to the support for a model without trend (d=0).
Because the estimation of d and the other unknown
parameters is Bayesian, it is most straightforward to test
for Depéret’s rule using Bayes factor, K:

K = p
(
y|M0

)

p
(
y|M1

) =
∫

p
(
ϑ0 |M0

)
p
(
y|ϑ0,M0

)
dϑ0∫

p
(
ϑ1 |M1

)
p
(
y|ϑ1,M1

)
dϑ1

,

where y is data, and � are the parameters of model
M. Bayesian analyses often approximate the posterior
distributions of � using a Markov Chain, and in the field
of phylogenetics this is virtually always the case. These
studies also often approximate the marginal likelihoods
p(y|M) needed to calculate K as the harmonic mean of
the likelihoods of the MCMC chain (e.g. Monroe and
Bokma 2010; Slater et al. 2012). However, it is notoriously
difficult to calculate K from a Markov chain of samples
of � (Weinberg 2012). Fortunately, however, the model
without trend (where d=0) can be regarded as a special
case of the more general model allowing for Depéret’s
rule (where d can take any value, including zero).
Therefore, we may write for the model without Depéret’s
rule p

(
y|ϑ=ϑ0,M1

)
. Substituting this into the definition

of Bayes factor we obtain:

K = p
(
y|M0

)

p
(
y|M1

) = p
(
y|ϑ=ϑ0 ,M1

)

p
(
y|M1

) = p
(
y|ϑ=ϑ0

)

p
(
y
) .

If we apply Bayes theorem, we can rewrite the
numerator in the above equation as:

p
(
y|ϑ=ϑ0

)= p
(
ϑ=ϑ0

∣∣y
)
p
(
y
)

p
(
ϑ=ϑ0

) .

Substituting this in the equation for Bayes factor, we
finally obtain:

K = p
(
ϑ=ϑ0

∣∣y
)

p
(
ϑ=ϑ0

) .

This illustrates that we can calculate Bayes factor as
the ratio of the prior density at d=0 to the posterior
density at d=0. This ratio of the prior to the posterior at
�=�0 is known as the Savage–Dickey ratio (Dickey 1971;
Morey et al. 2011). Thus, we can measure the evidence
in the data for a tendency for body size increase by
comparing the prior and posterior densities of d=0. This
is conceptually and computationally substantially easier
than alternative methods (Weinberg 2012).

RESULTS

When disregarding the paleontological data on body
masses, so that only body masses of extant species are
analyzed, we estimate that the intensity of Depéret’s
rule is d=0.0014 loge(g)/myr (std. = 0.0011; Fig. 3).
This would imply that species become on average 0.14%
larger during a million years of evolution. A kernel
density estimate of the posterior probability density at
d=0 is 164.3. We assigned d a normal prior distribution
with zero mean and variance 0.0075 [loge(g)/myr]2.
According to this prior, the density at d=0 is 4.61. As
argued above, because the model without Depéret’s
rule is a special case of the more general model that
allows Depéret’s rule (namely the case where d=0), we
may calculate Bayes factor as the ratio of posterior to
prior density at d=0. This yields an estimate of Bayes
factor of K =164.3/4.61=35.7, which on Jeffery’s scale
indicates that the data provide very strong evidence
against Depéret’s rule. This result is similar to that
obtained in a previous study (Monroe and Bokma 2010),
which used a similar method to analyze largely similar
data, but somewhat different priors, and a different
method to calculate Bayes factor.

If we take into account the fossil information on body
mass, the results are very different. Now we estimate
d=0.0078 loge(g)/myr (std. = 0.0012), which implies
that on average a lineage increases 0.78% in body size
during a million years. The posterior density at d=0
when fossil information is taken into account becomes
1.62×10−51. This value is much lower than the prior
density at d=0, which was 4.61. Consequently, Bayes
factor becomes K =1.62×10−51/4.61=3.52×10−52. On
Jeffery’s scale, this implies that the data provide decisive
evidence in favor of Depéret’s rule.

The posterior density was estimated using kernel
density estimation, which may be imprecise in the tails
of the distribution, where d=0 is located in this case.
However, Figure 3 shows that the posterior distribution
of d is a good approximation of a normal distribution. An
alternative approach to estimate the posterior density
thus is to calculate its mean (0.0078) and standard
deviation (0.0012) from the MCMC samples, and to
assume its distribution is normal. Doing so yields a
posterior density at d=0 of 1.1×10−7, which compared
with the prior density of 4.61 yields a Bayes factor of
2.40×10−8, indicating decisive evidence for Depéret’s
rule. Thus, although the exact value obtained for Bayes
factor depends on whether posterior density is estimated
using kernel methods or normal approximation, the data
evidently decisively favor Depéret’s rule over unbiased
evolution.

Because the incorporation of fossil data into the
analysis has such a profound impact on the results, we
also investigated whether the estimate of d depends on
how much fossil data is used. We randomly selected
500, 400, 300, 200, 100, 50, 25, and 10 of the fossil body
size estimates, and estimated d, twice for each of these
sample sizes (Fig. 4). For small samples of fossil body
mass estimates, estimates of d tend to zero. The increase
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FIGURE 3. Prior and posterior distributions of the tendency for body size increase d. The horizontal axis at the top shows proportional change
(% body size increase per myr) on an ordinary scale. Posterior distributions of MCMC samples are expressed as probability density, calculated
using kernel density estimation. (Histograms serve as illustration only.) Note that because the prior distribution has much greater variance than
the posterior distributions, its probability density is much lower than the peaks of the posterior distributions. Left panel: d estimated without
fossil information (light gray bars), with fossil information (dark gray bars), and the gradual component of d (no bars), estimated with fossil
information alongside with the cladogenetic component dc (shown only on the right panel). Right panel: prior and posterior distribution of dc.
Note that Bayes factor is calculated as the ratio of prior to posterior at d=0 (vertical dashed line), where the posterior obtained without fossil
information (light gray bars) has far higher density than the prior, while the posterior obtained with fossil evidence (dark gray bars) has much
lower density than the prior.

of d with sample size suggests that the value of d that
would be estimated if all extinct lineages were observed
would be very roughly d= 1%/myr.

Anagenetic and Cladogenetic Contributions
So far we assumed that body mass evolution

occurs gradually over time along the branches of the
phylogeny. However, previous analyses indicated that
a large proportion of body size differences between
mammalian species are due to rapid changes associated
with speciation events (Mattila and Bokma 2008). We
therefore complemented our model: incipient species
instantaneously differ in loge(body size) from their
ancestor by an amount that is normally distributed
with mean dc and variance s2

c . (The subscript c denotes
“cladogenetic”.) To account for speciation events that are
pruned from the reconstructed phylogeny by extinction,
we also estimated the speciation and extinction rates.

Because the additional parameter dc accounts for part
of the overall tendency for size increase, the estimate
of d decreases when it is estimated along with dc:
When we assumed that evolution was purely gradual we
estimated d=0.0078 loge(g)/myr (above), but when also
dc is estimated, we obtain d=5.98×10−4 loge(g)/myr
and dc =0.038 loge(g)/speciation event. These estimates
imply that over a million years of evolution a lineage
increases on average 0.06% in body size, and over a single
speciation event on average 3.8%. In the reconstructed
phylogeny of extant species, the average period of
gradual change following a single case of cladogenetic
change is �−1, where � is the speciation rate. Over
this period of time the tendency toward size increase
is dc +d/�. Substituting our estimates of dc =0.038, d=
5.98·10−4, and �=0.20, we estimate that a descendant
becomes on average 4.1% larger than its ancestor in
about 5 myr. Alroy (1998) estimated 9% and Baker et al.
(2015) 6%. Of this overall tendency toward size increase,
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FIGURE 4. Estimates of the strength of Déperet’s rule, d, as a
function of the number of fossil body mass estimates. We randomly
sampled 10, 25, 50, 100, 200, 300, 400, and 500 of the fossil body mass
estimates, and estimated d. We did this twice, so for every number of
species two estimates of d are shown. The estimate using all 553 fossil
estimates is also shown. (Standard deviations around these estimates
are approximately 0.0011, independent of the number of fossil species
sampled, and therefore not shown.) Trendline by eyeballing.

the fraction fd that is due to cladogenetic change is
fd =dc/(dc +d/�). Again substituting our estimates of dc,
d, and � we obtain fd =93%, suggesting that Depéret’s
rule is almost exclusively due to cladogenesis.

DISCUSSION

Our analysis provides evidence of Depéret’s rule in
mammalian body size evolution. In addition, it indicates
that the tendency for body size increase is not due to
gradual increase over time in established species, but
associated with cladogenesis. In our model cladogenetic
size change, that is, the logarithmic size difference
between an incipient species and its immediate ancestor
is normally distributed with mean dc. Our finding
that dc =0.038 loge(g)/myr could therefore indicate that
novel species tend to be larger than their ancestor
soon after they originate. Alternatively, it may indicate
that among descendant lineages, larger-bodied species
are more likely to proliferate, as has been suggested
for marine animals (Heim et al. 2015). Baker et al.
(2015) assumed that rates of evolution differ between
species, but did not model cladogenetic change. It is
possible that species appear to evolve at different rates
because phylogenetic branches differ stochastically in
the number of speciation events pruned by extinction
(Bokma et al. 2012), and hence in the number of instances
of cladogenetic evolution.

Our study confirms the pivotal role of fossil data to test
for long-term evolutionary trends (Finarelli and Flynn
2006; Slater et al. 2012; Finarelli and Goswami 2013): we
estimated no tendency for body size increase using data

from 3253 extant mammalian species, but when we
added 553 fossil lineages (or even a subsample of just 100)
we found decisive evidence for Depéret’s rule. The great
value of fossil data is intuitive: consider a stochastically
increasing line, and two points along this line. The
further these points are apart, the more informative
their position will be about the slope of the line. In
the limit, if the two points coincide they provide no
information about the slope. Consequently, not all fossil
observations are equally informative about directional
evolution. Therefore, specimens should not be randomly
selected for analysis: if selection is necessary it should
maximize the number of independent, accurately
inferred long-term ancestor–descendant differences.
This will often mean preferential inclusion of fossil
specimens whose phylogenetic position is close to
the base of crown clades with a sufficient number of
measured present-day species.

If body size evolution is modeled as Brownian motion
as is the case here, then the covariance between extant
species is expected to be proportional to their shared
evolutionary history (Cavalli-Sforza and Piazza 1975;
Cheverud et al. 1985; Felsenstein 1985; Pagel 1997).
Because all present-day species are at the same distance
from the root of their phylogeny, a trend toward larger
size does not affect the covariance structure, and hence
there is no power to detect Depéret’s rule from present-
day species alone (Pagel 1997; Laurin 2010). To test for
directional evolution one must place the present-day
species at variable distances from the root. One way to
achieve this is to assume that evolution is concentrated
in speciation events and that we know about all these
events, or at least, a representative sample thereof,
because not all present-day species are separated from
the root by the same number of speciation events. Knouft
and Page (2003) used this approach in their study of
freshwater actinopterygians. An alternative approach is
to assume that trait evolution is proportional to genetic
distance rather than time, because also genetic distance
to the root typically varies somewhat across extant
species. Moen (2006) used this approach in his study of
turtles. However, neither approach yields high statistical
power when applied to a limited data set of present-day
species only. Yet another approach is to assume that rates
of evolution differ between branches of the phylogeny.
Baker et al. (2015) made this assumption in their analysis
of mammals, and did find evidence of Depéret’s rule.

In the light of the evidence in favor of Depéret’s
rule that we obtained using fossil information, the most
surprising result is perhaps the strong evidence against
Depéret’s rule that we obtained when disregarding fossil
information. As explained above, because we assumed
evolution by Brownian motion, present-day species
alone should provide no information about directional
evolution, which implies that the posterior of d should
be essentially identical to the prior. This phenomenon
has already been observed in other evolutionary issues,
such as the estimation of extinction rates from molecular
phylogenies (Paradis 2004). This is not what we found:
the clear discrepancy between the posterior and the prior
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seen in Figure 1 is therefore almost certainly due to
the prior distributions on the body sizes at the internal
nodes of the phylogeny. Each node was assigned a prior
that, although wide, peaks at the value expected in the
absence of Depéret’s rule. Together, these priors on body
mass apparently induce a prior on d that is substantially
different from the prior that we assigned to d. This is a
problem that is hard to overcome: any prior assigned to
ancestral body sizes would affect the posterior of d. It is
important, however, to be aware of these effects.

We calculated Bayes factor as the Savage–Dickey ratio,
that is, the ratio of posterior to prior at d=0. The primary
reason for this was that estimating marginal likelihoods
from MCMC samples of the likelihood, for instance
by harmonic mean approximation (Monroe and Bokma
2010; Slater et al. 2012) is notoriously unreliable. The
Savage–Dickey ratio also helps to illustrate the crucial
role of the prior on d: if much data are analyzed, the
posterior is determined almost exclusively by the data,
and not by the prior. (Fig. 4 shows that that is the case
here.) With the posterior largely fixed by the data, the
Savage–Dickey ratio, and hence Bayes factor, effectively
depends on the choice of prior. It should be remembered
that even though the Savage–Dickey ratio is calculated
from the prior and posterior distribution of d, it still
is a ratio of marginal likelihoods, as we showed by
deriving it from the general expression for Bayes factor.
Thus, calculating Bayes factor from marginal likelihoods
obtained in some other way will not alter the crucial role
of the prior. In the present study, the choice of prior
on d was somewhat arbitrary. It is therefore important
to point out that any prior on d reasonably wider than
the posterior, and also the prior on d that was induced
through the priors on ancestral body masses, would have
led to the same conclusion: that mammalian body size
tended to increase over time.

In summary, our study confirms the pivotal role
that fossil data can play for macroevolutionary
inferences (Finarelli and Goswami 2013). Slater et al.
(2012) demonstrated this using simulations, and also
demonstrated that in Bayesian analyses fossil data can
be incorporated into informative priors. We introduced
a method to obtain informative priors using Fisher
information, and showed how Bayes factor is calculated
as the Savage–Dickey ratio. Our study further illustrates
the usefulness of Bayesian phylogenetic analyses, but it
also shows that complex Bayesian analyses are not free
of problems: care should be taken in interpreting the
results. Still, we find strong evidence for Déperet’s rule in
mammals, ostensibly driven by cladogenetic processes.
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