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A B S T R A C T
A R T I C L E I N F O
Background: Renal cell carcinoma is the most common type of malignant kidney tumor and is responsible for 14,830

deaths per year in the United States. Among the four most common subtypes of renal cell carcinoma, clear cell renal
cell carcinoma has the worst prognosis and clear cell papillary renal cell carcinoma appears to have no malignant po-
tential. Distinction between these two subtypes can be difficult due to morphologic overlap on examination of histo-
pathological preparation stained with hematoxylin and eosin. Ancillary techniques, such as immunohistochemistry,
can be helpful, but they are not universally available. We propose and evaluate a new deep learning framework for
tumor classification tasks to distinguish clear cell renal cell carcinoma from papillary renal cell carcinoma.
Methods: Our deep learning framework is composed of three convolutional neural networks. We divided whole-slide
kidney images into patches with three different sizes where each network processes a specific patch size. Our frame-
work provides patchwise and pixelwise classification. The histopathological kidney data is composed of 64 image
slides that belong to 4 categories: fat, parenchyma, clear cell renal cell carcinoma, and clear cell papillary renal cell car-
cinoma. The final output of our framework is an image map where each pixel is classified into one class. To maintain
consistency, we processed the map with Gauss-Markov random field smoothing.
Results: Our framework succeeded in classifying the four classes and showed superior performance compared to well-
established state-of-the-art methods (pixel accuracy: 0.89 ResNet18, 0.92 proposed).
Conclusions: Deep learning techniques have a significant potential for cancer diagnosis.
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1. Introduction

Kidney cancer is among the 15 most common cancers in humans and is
responsible for about 2.4% of cancers.1 The American Cancer Society esti-
mates 73,750 new patients will be diagnosed with kidney cancer in the
United States in 2020 and approximately 14,830 people will die from the
disease.2 Renal cell carcinoma (RCC) is the most prevalent type and ac-
counts for about 85% of kidney cancers. RCC is a heterogeneous group of can-
cers with different molecular characteristics, histology, responses to therapy,
and clinical outcomes.3 The most common subtypes of RCC are clear cell
(70–80%), papillary (14–17%), chromophobe (4–8%), and clear cell papillary
RCC (4%).4 Classification of subtypes of RCC is based primarily on the mor-
phologic features observed on histological preparation stained with hematox-
ylin and eosin. Among the four most common subtypes of RCC, clear cell RCC
and clear cell papillary RCC have significantmorphologic overlap, notably the
frequent presence of clear cells. Distinction of clear cell RCC and clear cell pap-
illary RCC is critical to determine appropriate patient management. Clear cell
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RCC can have a poor prognosis due to high risk of metastatic spread. This con-
trasts with clear cell papillary RCC, which is recognized as an indolent neo-
plasm that has not be proven to metastasize.5 In cases with significant
morphologic overlap, immunohistochemistry can be a helpful tool to separate
these two types of tumors. However, immunohistochemistry is not routinely
available in all parts of theworld. Deep learning algorithms achieved excellent
results in various histopathology tasks including for tumor segmentation, grad-
ing, and classifications task.6–11 Regarding classification of RCC, a classifier
based on Resnet successfully distinguished the three most common subtypes
of RCC.12 However, it was not trained to separate clear cell RCC from clear
cell papillary RCC. The purpose of thisworkwas to create a deep learning clas-
sifier to distinguish clear cell RCC from clear cell papillary RCCwhich can be a
difficult task and clinically relevant.

We propose a computerized-aided diagnostic (CAD) system that is
based on convolutional neural network (CNN) for the automated classifica-
tion that addresses this differential diagnosis. Our framework has the fol-
lowing contributions:
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• An ensemble-pyramidal deep learning model that utilizes a hierarchy of
three CNN that process different image sizes.

• Provides both patchwise classification and pixelwise classification.
• Incorporates a statistical approach based on Markov-Gibbs random field
to improve the final pixelwise classification.
Fig. 1. Samples for each tissue type where C1, C2, C3, and C4 refer to fat,
parenchyma, clear cell papillary RCC, and clear cell RCC.
2. Methods

This studywas approved by the institutional review board. All hematox-
ylin and eosin-stained slides collected for the study were deidentified be-
fore digitalization. The image files used have no identifiers that link to a
patient.

Cases of clear cell RCC (27) and clear cell papillary RCC (14) were ran-
domly selected from the institution files. The cases were reviewed by a pa-
thologist with expertise in genitourinary pathology (D.D.G). One
representative slide was selected from each case and scanned using Phillips
UFS at 40×magnification. The images were downsampled by a factor of 4
and downloaded. The images were segmented by a pathologist into four
groups: clear cell RCC, clear cell papillary RCC, renal parenchyma, and
fat. The following subsections describes our methodology and for more de-
tails please refer to Abdeltawab et al.13 To assess the generalizability of our
method, another dataset from an external source (NIH)14 has been used to
validate our methodology. The external dataset is composed of 10 whole
slide images of clear cell RCC.

2.1. Patches generation

We divided the data (from our institution) into two sets. The first
dataset, for training and testing, is composed of 44 image slides. The first
set was then divided into two parts to perform training using the first part
and testing using the second part. This testing is considered a first inference
using unseen data to evaluate the patch-wise accuracy. The second dataset,
for final validation, is composed of 10 image slides (2 fat, 2 parenchyma, 3
clear cell papillary RCC, and 3 clear cell RCC). For the first dataset, each
slide image was divided into overlapping patches of three different sizes:
small size = 250 × 250, medium size = 350 × 350, and large size =
450 × 450. The use of different patch sizes allows the recognition of fea-
tures at various scales. Learning features at different scales by using the
three CNNs resulted in better performance than learning features at a single
scale by using a single CNN. The degree of overlap between each patch and
the next one was 50%. This will let the deep learning model learn various
viewpoints within the tissue. Then, the patches that contained only back-
ground pixels were removed. About 70% of the patches was kept for train-
ing and about 30% of the patches was kept for testing. Similarly, for the
second dataset (i.e., validation set), the slide images were divided into
patches of the three sizes with only a 5-pixel shift in both image dimensions
between each patch. Therefore, we increased the degree of overlap in the
second dataset. This will allow us to have multiple labels for the same re-
gion during testing. The second dataset will be used for final validation
and pixelwise classification. This validation is considered a second infer-
ence where we evaluated the patch- and pixel-wise accuracies. The slides
of the external dataset were divided into overlapping patches of the three
mentioned sizes. Fig. 1 shows samples for each tissue type at different
patch sizes.

2.2. Preprocessing

We applied two preprocessing steps on the patches of the first and sec-
ond datasets: an adaptive histogram equalization, and edge enhancement.

2.2.1. Adaptive histogram equalization
Adaptive histogram equalization is an image processing approach

used to enhance the contrast of the image.15 Using this approach, we
compute several histograms, each histogram corresponding to a different
part in the image. Ordinary histogram equalization utilizes only one
2

histogram for the whole image. Adaptive histogram equalization uses
the computed histograms to redistribute the intensity values of the
image. Therefore, it can be used to enhance the local contrast and im-
prove the edges in each part of an image. Because the homogenous
parts of the image have highly concentrated histograms, adaptive histo-
gram equalization tends to overamplify the noise. To prevent this, we
use a variant called contrast limited adaptive histogram equalization
which avoids amplifying the noise by putting a limit on the amplification.
In contrast limited adaptive histogram equalization, the equalization step
is followed by interpolating neighboring regions using bilinear interpola-
tion to remove artificially generated boundaries.

2.2.2. Image edge enhancement
We applied edge enhancement to all patches of the training and testing

set. In image edge enhancement, we work on enhancing the edge of impor-
tant objects in the image. The purpose of image edge enhancement is to im-
prove the visual perception of the image. The enhancement is performed by
suppressing the low frequencies of the image, which is called image filter-
ing. The filtering can be performed in the spatial or the frequency domain.
We perform filtering by convolving the image in the spatial domain with a
sharpening filter. Suppose an input patch is x(m,n) and the used filter (Fig.
2) is h(m,n), then the filtered patch y(m,n) is given by:

y m, nð Þ ¼ x m, nð Þ∗h m, nð Þ (1)

2.3. The proposed deep learning architecture

Following a proposed deep learningmethod schema (Fig. 3), we use the
extracted patches to train three CNNwith three input sizes: 250×250, 350
× 350, and 450 × 450. We refer to these CNN by CNNS, CNNM, CNNL for
small, medium, and large patch size, respectively. The three CNN shared
the same architecture. As illustrated in Fig. 3, the architecture of the CNN
models is represented by a series of convolution layers intervened by
max-pooling layers followed by two fully connected layers. Finally, there
is a soft-max layer. In the convolution layer, the image is convolved with



Fig. 2. The filter/kernel used for patch edge enhancement.

Fig. 3. The proposed deep learning model for the classification of kidney histopathological images.
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Fig. 4. Pairwise voxel interaction for the 8 neighbors in a 2-D GGMRF image model
for continuity analysis.
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kernels to extract features that describe the objects in the input image; these
features are called feature maps. There are multiple kernels in each layer.
Therefore, each convolution layer resulted in a volume of feature maps.
In our implementation, we used kernels of size 3 × 3 that had stride =
1. In max-pooling layers, the spatial dimensions were reduced by a factor
of 2. This kept only the most important features and discarded those less
prominent. Also, the max-pooling operation reduced the computational
cost and training time. In our implementation, the stride of the max-
pooling layers was 2. Each CNN contained eight convolution layers and
four max-pooling layers. The first fully connected layer contained 12 neu-
rons and the second one contained 4 neurons because we had four classes.
The final soft-max layer was responsible for the multiclass classification be-
cause it took the input number from the previous fully connected layer and
produced values in the range of 0–1. Therefore, the soft-max layer assigned
a probability for each class. The highest probability indicated the final clas-
sification result for that input image. The implemented CNN were trained
by minimizing the cross-entropy loss. In the loss function, we minimized
the cross entropy between the predicted probabilities and the ground
truth labels. To minimize network overfitting, a dropout with a rate of 0.2
was used in the convolution and fully connected layers.

Each CNN had a patchwise accuracy and a pixelwise accuracy for a
tested slide image. It had a patchwise accuracy because it can classify the
input patch to one of the four classes. The patchwise accuracy for one
slide image was estimated as follows:

Accuracypatch ¼
Ncp

Ntp
(2)

Where Ncp is the number of correctly classified patches, and Ntp is the total
number of patches. Then, we estimated the average of accuracies for all
slide images. In the second dataset, we had a 5-pixel shift between each
patch. Therefore, each pixel in the image possibly belonged to many
patches. During classification of a single patch, we assigned the label of
the patch to its pixels. Therefore, each pixel could have multiple labels
from multiple patches. Majority voting was applied for the labels of the
pixels to obtain one label for each pixel, and we constructed a labeled
slide image for each slide image. The pixelwise accuracy for a single slide
image was estimated as follows:

Accuracypixel ¼
Ncx

Ntx
(3)

Where Ncx is number of correctly classified pixels, and Ntx is the total
number of pixels. Then, we estimated the average of accuracies for all
slide images.

To obtain a better pixelwise accuracy, the results of the three CNNwere
combined. Because we have three CNN, we had three labels for each pixel
in a tested slide image. Again, we applied majority voting to get the final
label for each pixel. Finally, we estimated the final pixelwise accuracy
and the average over all images, as previously discussed.

2.4. Gauss-Markov random field smoothing

During patch-based classification, the label of the patch is assigned to
the pixels of the patch. A pixel can have multiple labels from multiple
patches. The result of the majority voting is to assign a single label for
each pixel. Then, a labeled slide image is constructed for the whole slide
image. We removed inconsistencies (smooth) and preserved continuity in
the labeled image by considering the estimated labels γ samples from a
generalized 2-D Gauss-Markov random field (GGMRF) model.16 Each
pixel had an 8-neighborhood (Fig. 4). Continuity of the γ values was ampli-
fied using their voxelwise stochastic relaxation17 andmaximuma posteriori
estimates:

bγO ¼ argbγO min γO−bγOj jθ þ ρθμφ ∑
r∈υO

σO,r bγO−γrj jφ
� �

(4)
4

Where γO and bγO refer to the original label and its expected estimates,
respectively, at the observed 2-D location, O= (x,y), σO, r is the GGMRF po-
tential, υO is the 8-neighborhood voxel set (Fig. 4), and ρ and μ are scaling
factors. The parameter θ ∈ {1,2} determines the Laplace, θ = 1 or the
Gaussian, θ = 2, prior distribution of the estimator. The parameter φ ∈
[1.01,2.0] controls the level of smoothing (e.g., φ = 1.01 for relatively
abrupt edges versus φ = 2 for smooth edges). In our calculations, we set
φ=1.01, θ=2, ρ=1, μ=5, and σO,r ¼

ffiffiffi
2

p
. We hypothesized that apply-

ing smoothing for the labeled slide image would increase the pixelwise
accuracy.
3. Results

Our deep learning framework was developed using TensorFlow library
fromGoogle.18 To determine the best parameters of our framework, such as
network architecture, we analyzed system performance as a function of the
important parameters. Therefore, we performed a grid search to determine
the best settings for the number of convolutional layers (range 2:2:10), ker-
nel size (values 3× 3, 5 × 5, and 7× 7), number of filters (range 3:3:12),
initialization of the convolutional layers (Glorot Uniform distribution or He
initialization), stride (range 1:2), number of epochs (range 50:10:80), patch
size (values 16 or 32), type of optimizer (Adam or stochastic gradient de-
scent), and learning rate (values 0.01, or 0.001). The result of the grid
search was as follows: number of convolutional layers was equal to 8, ker-
nel size was equal to 3 × 3, number of filters was equal to 9, the initializa-
tion of convolutional layers was set to He initialization,19 stride of the
convolutionwas set to 1 and stride of the max-pooling was set to 2, number
of epochs was set to 60, patch size was set to 32, and we used Adam opti-
mizer with 0.001 learning rate. Twenty percent of the training data was
kept for validating the network after each epoch by estimating the valida-
tion loss and the validation accuracy. The final neural network was chosen
based on the value of the validation accuracy. To increase the size of the
training data, we used data augmentation in the form of random rotation,
flipping, and scaling. Differently scaling objects of interest in the images
is the most important aspect of image diversity. Therefore, this data aug-
mentation technique increases the prediction accuracy. Our scaling tech-
nique does not result in significant blur as it produces images with a
random scaling factor that ranges from 100% to 80% of the original image.

We trained and tested our framework using the respective sets of the
first dataset. During training and testing, we fed each patch size to its re-
spective CNN. After testing, we estimated the patchwise accuracy for each
tissue type. Table 1 presents the patchwise accuracy for the four tissue
types.

To assess the performance of our proposed framework, we compared it
with pretrained ResNet18 and ResNet34. In the ResNet networks, we re-
placed the last layers with two output layers. Then, we fine-tuned them
on the kidney data. Table 6 shows the average pixelwise accuracy of our ap-
proach versus ResNets. Tofind a significant difference between ourmethod
and other deep learning models, we performed paired one-tailed t-tests
with the assumptions that the data are continuous (not discrete) and the dif-
ferences for the matched-pairs, follow a normal probability distribution.



Table 1
Patchwise accuracy for each tissue type using the testing set at different patch sizes.

Patch size

250 × 250 350 × 350 450 × 450

Fat 0.89 ± 0.01 0.91 ± 0.02 0.90 ± 0.11
Parenchyma 0.88 ± 0.11 0.91 ± 0.12 0.90 ± 0.24
Clear cell papillary RCC 0.86 ± 0.23 0.90 ± 0.21 0.89 ± 0.21
Clear cell RCC 0.85 ± 0.02 0.89 ± 0.31 0.89 ± 0.03

Table 3
The average of the patchwise accuracy and pixelwise accuracy for parenchyma
cases in the second dataset.

Patch size

250 × 250 350 × 350 450 × 450 Fusion of the
CNN results

Average patchwise
accuracy

0.85 ± 0.11 0.88 ± 0.21 0.87 ± 0.03

Average pixelwise
accuracy

0.88 ± 0.05 0.90 ± 0.08 0.89 ± 0.16 0.92 ± 0.03

Table 4
The average of the patchwise accuracy and pixelwise accuracy for clear cell papil-
lary RCC cases in the second dataset.

Patch size

250 × 250 350 × 350 450 × 450 Fusion of the
CNN results

Average patchwise
accuracy

0.84 ± 0.14 0.87 ± 0.06 0.86 ± 0.07

Average pixelwise
accuracy

0.86 ± 0.11 0.90 ± 0.05 0.90 ± 0.21 0.91 ± 0.01

Table 5
The average of the patchwise accuracy and pixelwise accuracy for clear cell RCC
cases in the second dataset.

Patch size

250 × 250 350 × 350 450 × 450 Fusion of the
CNN results

Average patchwise
accuracy

0.83 ± 0.20 0.86 ± 0.01 0.86 ± 0.02

Average pixelwise
accuracy

0.85 ± 0.05 0.89 ± 0.04 0.88 ± 0.11 0.91 ± 0.03

Table 6
The average of the patchwise accuracy and pixelwise accuracy for the external NIH
dataset. This dataset consists of clear cell RCC slide only.

Patch size

250 × 250 350 × 350 450 × 450 Fusion of the
CNN results

Average patchwise
accuracy

0.82 ± 0.32 0.84 ± 0.20 0.85 ± 0.01

Average pixelwise
accuracy

0.84 ± 0.03 0.87 ± 0.11 0.87 ± 0.21 0.90 ± 0.20
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The P value of the test was 0.01 for Resnet18 and 0.02 for Resnet34. The P
valueswere less than 0.05. Therefore, we rejected the null hypothesis in the
two cases and concluded that there was significant difference between our
proposed method and the other deep learning models.

In this paper, we proposed an automatic CAD system that can classify
kidney histopathological images. Specifically, we target the hard task of
classifying between clear cell RCC and clear cell papillary RCC. These can-
cer subtypes share morphological features but have different prognoses.
Therefore, our task is important to determine the correct patient manage-
ment. We utilized the power of deep learning to build our CAD system.
We developed a novel ensemble-pyramidal deep learning model that is
based on three CNN. Our pyramidal-CNN successfully identified the normal
and abnormal tissue textures and classified clear cell RCC vs clear cell pap-
illary RCC. We also introduced the notion of pixelwise accuracy using a sta-
tistical maximum a posteriori-GGMRF approach to remove inconsistencies
from the labeled image.

The whole-slide image of the histopathology contains enormous
amount of information. Therefore, the manual examination of histopathol-
ogical images is a laborious and time-consuming task for the pathologist.
Given that there is a growth in the number of cancer cases, rapid and accu-
rate evaluation is not feasible. Our work addresses this limitation by pro-
posing a computational framework for the automatic analysis of
histopathology images with good classification accuracy. Our framework
can also be used for other cancer types.

Our approach had a high patchwise accuracy (Tables 2–5). This demon-
strates that our approach can identify tissue type from patches with differ-
ent sizes. For the patchwise accuracy, the best patch size was 35×350.We
noted that patches with size 350 × 350 had better patchwise accuracy for
the cases of fat, parenchyma, and clear cell papillary RCC. In the case of
clear cell RCC, the same patchwise accuracy could be obtained for sizes
350 × 350 and 450 × 450, while 350 × 350 size had better accuracy
than 250 × 250 size. The results in Table 6 establish the generalizability
of our methodology, as we obtained a good classification performance for
an external dataset. Therefore, this paper is different from our previous
work in terms of the amount of validation and assessing the generalizability
of the model.

The ensemble-pyramidal approach allowed processing the pathology
image at various spatial scales, and the final classification was obtained
by combining the results of the three CNN. Therefore, we obtain better re-
sults than with just one CNN. Furthermore, the pixelwise classification
gives the pathologist the opportunity to identify pathology regions at
small scale. For the pixelwise accuracy, the best patch size was 35 × 350.
Patches with size 350 × 350 had better pixelwise accuracy for the cases
Table 2
The average of the patchwise accuracy and pixelwise accuracy for fat cases in the
second dataset.

Patch size

250 × 250 350 × 350 450 × 450 Fusion of the
CNN results

Average patchwise
accuracy

0.87 ± 0.04 0.90 ± 0.11 0.89 ± 0.05

Average pixelwise
accuracy

0.89 ± 0.01 0.91 ± 0.08 0.91 ± 0.11 0.93 ± 0.02

5

of parenchyma and clear cell RCC. For fat and clear cell papillary RCC,
the same pixelwise accuracy could be obtained for sizes 350 × 350 and
450×450, while 350×350 size had better accuracy than 250×250 size.

For all tissue types, the fusion of the CNN pixel labels resulted in a new
labeling for the pixels that had better pixelwise accuracy (Tables 2–5). The
highest pixelwise accuracy could be obtained from the fat cases and the
lowest from the clear cell papillary RCC and clear cell RCC. We concluded
that each patch size taught the CNN to extract new features related to the
underlying texture of the tissue and the combination between CNN deci-
sions helped in improving the final classification.

Applying GGMRF smoothing improved the labeling of the tested slide
image because it worked on removing inconsistencies (Table 7). Further-
more, our approach showed superior performance in comparison with



Table 7
Quantitative comparison between our method and other deep learning models
using the second dataset that has tissue distribution as follows: 20% fat, 20% paren-
chyma, 40% clear cell papillary RCC, and 40% clear cell RCC.

Average pixelwise accuracy

ResNet18 0.89 ± 0.07
ResNet34 0.88 ± 0.12
Proposed without GGMRF smoothing 0.91 ± 0.02
Proposed with GGMRF smoothing 0.92 ± 0.02
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popular CNN architectures such as Resnet 18 and Resnet 34, demonstrating
that the idea of combining CNN decisions is beneficial for obtaining
improved classification.

4. Conclusions

In this work, we evaluated the performance of an automated classifica-
tion framework in predicting kidney cancer. In this study, we performed
C
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more validation than our previous work.13 Furthermore, validating our
model by external data establish the generalizability of our system. Or sys-
tem can classify between clear cell RCC and clear cell papillary RCC and
showed that deep learning techniques can work well at classifying cancer
subtypes with morphologic overlap. Given the success of deep learning in
computational pathology, pathologists should appreciate the outcomes of
using deep learning. Deep learning reduces the workload on pathologists
and in contrast tomanual examination, which is susceptible to subjectivity,
deep learning produces reproducible results. Furthermore, our work pro-
duced precise dense classification in the spatial domain of the histopathol-
ogy image by introducing the notion of pixelwise classification. Pixelwise
classification gives the pathologist the opportunity to identify regions on
a small scale.
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