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Perfusion magnetic resonance brain imaging induces temporal signal changes on brain tissues, manifesting distinct blood-supply
patterns for the profound analysis of cerebral hemodynamics. We employed independent factor analysis to blindly separate such
dynamic images into different maps, that is, artery, gray matter, white matter, vein and sinus, and choroid plexus, in conjunction
with corresponding signal-time curves. The averaged signal-time curve on the segmented arterial area was further used to calculate
the relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), and mean transit time (MTT). The averaged ratios
for rCBV, rCBF, and MTT between gray and white matters for normal subjects were congruent with those in the literature.

1. Introduction

Dynamic susceptibility-contrast perfusion magnetic reso-
nance (MR) imaging is a commonly used method for the
noninvasive assessment of cerebral blood perfusion because
of the availability of MR imaging units and lack of exposure
to ionizing radiation [1–10]. After a bolus injection of
intravascular contrast agent, the passage of bolus induces
the susceptibility inhomogeneity, which in turn causes a
relative decrease of image intensities of brain tissues from the
baseline. Various tissues manifest distinct blood-supply pat-
terns since the contrast agent arrives consecutively, leading
to temporal intensity drops at different time instants. Based
on the perfusion data, we can calculate the hemodynamic
parametric maps, that is, relative cerebral blood volume
(rCBV), relative cerebral blood flow (rCBF), and mean
transit time (MTT), by employing the indicator dilution

theory [11, 12]. This has been used in the assessment of
many brain disorders such as tumors [2, 7, 13], stroke [14],
infection [15], and moyamoya disease [16, 17].

The estimation of rCBV and rCBF, however, requires
arterial concentration of the contrast agent as an arterial
input function (AIF). This is a demanding task, and many
methods have been proposed to address the issue. Addition-
ally, classification of blood-supply patterns for various tissue
types in brain based on bolus transit profiles is essential
for the assessment of brain perfusion. Wiart et al. [18]
manually selected single or multiple pixels for the tissue of
interest and used the averaged temporal profile as a reference
in producing a similarity map for segmenting gray matter
(GM) and white matter (WM) from perfusion images.
This method is advantageous for easy implementation but
limited to extraction of a single tissue type per similarity
map. If one attempts to segment multiple tissue types,
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associated similarity maps need to be created one by one after
cumbersome selections of reference pixels, which may be
prone to operator influence. Alternatively, Martel et al. [19]
used the conventional factor analysis, under the hypothesis
that the observable signal-time curve for each pixel is a
weighted sum of pure physiological factors, to classify the
signal-time curves of arterial and venous structures from
MR dynamic perfusion images. This method has also been
applied in nuclear medicine to separate cardiac components
and extract left ventricular input function from dynamic
H2

15O PET images [20–22]. It should be noted that,
although the factor-analysis-based methods are attractive,
additional assumptions of a priori knowledge are required
to obliquely rotate the eigenvectors to yield meaningful
physiological factors [23–25]. Besides, only one or two
physiological factors were resolved in past studies. To our
knowledge, the automatic simultaneous segmentation of
multiple perfusion compartments has been less explored. A
recent related work was to use the expectation-maximization
algorithm with a mixture of multivariate Gaussian models
for fitting the perfusion MR images so that each pixel can be
labeled by the resulting maximal posterior probability [26].

The aim of this study is to automatically classify the
spatiotemporal blood-supply patterns which enables us to
extract the arterial compartment for modeling the AIF
and segment other tissue regions as well. To this end, we
employ an independent factor analysis (IFA) [27], a data-
driven method, allowing us to blindly separate mixed signals
into independent-factor (or independent-source) compo-
nents for multitissue hemodynamic classification. That is,
the hemodynamics of each tissue type can be dissected
without making a priori spatial and temporal assumptions
of physiology. The factors in the IFA, in contrast to the
conventional factor analysis, are modeled by a finite mixture
of Gaussian functions that can be used as a constraint to
remove rotational factors [27]. This method has been applied
to successfully separate the background factors and noise
artifacts from the stimulus-evoked MEG and EEG sensor
data contaminated by large background brain activity [28].
In this study, the use of IFA is based on two inherent
assumptions: (1) signal intensity of each pixel is a linear
mixture contributed from different tissues, referred to as the
partial volume mixing, which is a well-known phenomenon
due to finite resolution of MR scan; (2) the anatomic
structures of pure tissue types are spatially independent
(nonoverlapped with each other). The classification of multi-
tissue hemodynamics consists of two steps. The first step is to
identify a dominant tissue type on each independent-factor
(IF) image resolved from the IFA based on the arrival order
of corresponding signal-time curve and a priori knowledge
of brain anatomy. The second step is to automatically extract
regions of the dominant tissue from each selected IF image
by means of an optimal threshold [29].

This paper is organized as follows. The protocol of MR
imaging and data recordings is first described followed by the
introduction of IFA method and calculation of the pixel-by-
pixel rCBV, rCBF, and MTT maps. Computer simulations are
presented to validate the application of IFA method on two-
dimensional independent factors. Resultant five IF images

in conjunction with corresponding signal-time curves from
a data set are exhibited. We then calculate and display the
rCBV, rCBF, and MTT maps based on the extracted arterial
compartment. The averaged ratios for rCBV, rCBF, and MTT
between GM and WM from five normal subjects are also
computed. Finally, we discuss and conclude this study.

2. Subjects and Data Recording

Five healthy volunteers (three males and two females) aged
from 18 to 47 were recruited to participate in this study.
Written informed consent was obtained from each volunteer
before this study. A multislice gradient-echo EPI pulse
sequence on a 1.5-Tesla scanner (Signa CV/i; GE Medical
Systems, Milwaukee, WI, USA) was used and the imag-
ing parameters were transaxial imaging, TE/TR = 60/1000
milliseconds, flip angle = 90 degrees, FOV = 24 cm ×
24 cm, matrix = 128 × 128, slice thickness/gap = 5/5 mm
for 7 slices, one acquisition, and 100 images per slice
location. Twenty milliliters of Gd-DTPA-BMA (Omniscan,
0.5 mmol/mL; Nycomed Imaging, Oslo, Norway) followed
by 20 mL of normal saline were delivered administratively by
a power injector (Spectris; Medrad, Indianola, PA, USA) at
a flow rate of 3-4 mL/sec in the antecubital vein. The first
thirteen and last thirty-seven images were removed from
100 images and fifty images, which exhibited stable baseline
and discernible temporal signal changes, were kept in a slice
location for analysis. The temporal resolution is one second.
Figure 1 displays part of dynamic perfusion images at an
upper slice location encompassing the first circulation from
a 39-year-old volunteer. With 16384 (=128 × 128) pixels for
each image, the observation of 50 temporal images can be
represented by a 50×16384 matrix. The signal-to-noise ratios
(SNRs) of these five data sets were 51, 55, 77, 83, and 88,
respectively.

3. Independent Factor Analysis

In this study, we assume that there are N pure tissue types
presented on perfusion images and that signal intensity of
each pixel is a linear combination of contributions from N
pure tissues due to the effect of partial volume mixing in MR
scanning. Let the observed noisy mixtures be denoted by a
matrix y of size 50 × 16384, the linear mixing by a matrix H
of size 50 × N , the independent factors by a matrix x of size
N × 16384, and the zero-mean Gaussian noise by a matrix u
of size 50 × 16384, where each row in x represents an image
for a tissue type, each column of H represents a signal-time
curve for an associated tissue type, and covariance matrix
of the zero-mean Gaussian noise is denoted by Λ. Under
the assumption that the sources x are mutually statistically
independent, the IFA-based blind source separation (BSS)
technique attempts to recover the unknown mixing matrix
H and hidden IF images x from the observed noisy mixtures
[27]:

y = Hx + u. (1)

In order to recover the IF images, we assume that each
row of the matrix x is a realization of a random variable
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Figure 1: Perfusion MR images from a 39-year-old volunteer. Images encompass the first circulation (7–30, from left to right, top to bottom)
at an upper slice location.

whose probability density p(xj) is in a form of mixture of
Gaussians (MoG) given by
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where g stands for the Gaussian function, qj is a variable
with value running over number of Gaussians with means
μj,qj , variances ν j,qj used in MoG model for the source xj ,
j = 1, . . . ,N , andωj,qj ’s are the mixing proportions satisfying∑
qj ωj,qj = 1. Let q = (q1, . . . , qN ) denote all possible

combinations of the individual qj . The joint probability
density p(x) in N-dimensional space can be formed by the
product of the one-dimensional MoG’s in (2) due to the
mutual independence of xj , which is itself an MoG
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In our implementation, nj was determined to be 2
for each source xj . To estimate the IF model parameters,
the Kullback-Leibler distance function [27] is employed to
measure the difference between the probability density of
the observed signals given the model parameters W, that is,
p(y | W), and the observed one, that is, p◦(y), which is given
by
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(5)

where W = {H,Λ, θ} denotes the unknown mixing matrix
H, noise covariance Λ, and MoG parameters θ. The operator
E denotes the average over the observed y. The first term
in (5) is the negative log-likelihood of the observed signals
given the model parameters W, and the second term is the
entropy of observed signals, which is independent of W and
will henceforth be dropped. Note that, based on p(q, x, y |
W) = p(q)p(x | q)p(y | x), p(x | q) = g(x − μq, Vq), and
p(y | x) = g(y − Hx,Λ), the probability density p(y | W)
can be expressed in a closed form:
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where p(y | q) = g(y − Hμq, HVqHT + Λ). By mini-
mizing ε(W) with respect to W based on the expectation-
maximization (EM) method and denoting W′ the param-
eters obtained from the previous iteration, the iterative
algorithm can be summarized as follows [27].
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(1) Initialize all the unknown parameters, that is, W0 =
{H0,Λ0, θ0}.
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(5) Rescale the parameters to cancel the extra freedom of
scaling for facilitating convergence:
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(6) Repeat (2)–(5) until the error function ε(W) con-
verges.

Finally, the IF images can be reconstructed from the
estimated model parameters W and measured data y using
the least-mean-square estimator:
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4. Calculation of the rCBV, rCBF, and MTT

Prior to the calculation of pixel-by-pixel rCBV, rCBF, and
MTT maps, we computed the concentration-time curve
Ct(t) for each pixel using the formula

Ct(t) = − k

TE
ln

(
S(t)
S0

)
, (12)

where k is an unknown constant, TE is the echo time, and
S(t) and S0 are the signal intensities of each pixel at time
t and at the baseline, respectively [1, 4, 5, 30]. By using
the indicator dilution theory, one can determine the rCBV
for each pixel as a ratio of the area integrating over the
first pass (e.g., from 1st to 22nd images in Figure 1) of the
contrast agent under the concentration-time curve, Ct(t), to
that under the AIF, Ca(t) [11, 12],

rCBV =
∫

first pass ct(t)dt∫
first pass ca(t)dt

, (13)

where Ca(t) is the concentration-time curve for the arterial
region. The rCBF can be computed based on the relationship
with concentration-time curve for each pixel [31]:

Ct(t) = rCBF · Ca(t)⊗ R(t), (14)

where ⊗ denotes convolution, · denotes multiplication, and
R(t) is the residue function for the pixel. The rCBF · R(t)
curve for each pixel in (14) can be resolved using the singular
value decomposition (SVD) method and the value of rCBF
at each pixel was determined by the maximum value of
rCBF · R(t) curve [1]. Finally, the MTT of contrast-agent
particles passing through a pixel was defined to be [1, 4, 5]

MTT = rCBV
rCBF

. (15)

5. Results

In order to validate the implementation of IFA algorithm, a
computer simulation was conducted before perfusion data
were processed. Since the purpose of this simulation was to
verify applicability of the IFA method on the separation of
two-dimensional IF images, rather than validate the theory
of IFA method (readers are referred to [27] for detailed
computer simulations), we simply created four hypothetical
IF images (128× 128) with zero background and foreground
related to four major tissue types, that is, artery (IF1: 603
pixels), GM (IF2: 1683 pixels), WM (IF3: 1514 pixels), and
others (IF4: 924 pixels including vein, sinus, choroid plexus,
and cerebral spinal fluid) (the left four plots in Figure 2(a)).
In practice, the four tissue-related areas were segmented
from the perfusion data and copied to the corresponding
locations. The corresponding averaged temporal profile of
each area during the first pass was simplified into five points
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Figure 2: Computer simulation for the evaluation of the IFA method. (a): The four hypothetical IF images and columns of the hypothetical
mixing matrix (the right most plot). (b): The simulated images. (c): The convergence of the IFA algorithm.

to generate the hypothetical mixing matrix H (5 × 4) (also
see the right most plot in Figure 2(a))

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

0.4324 0.6992 0.8789 0.8975

0.2529 0.4676 0.6940 0.7026

0.6186 0.7655 0.8457 0.7438

0.8464 0.9269 0.9636 0.8934

⎤
⎥⎥⎥⎥⎥⎥⎦
. (16)

We arranged the four IF images into a matrix x (4 × 16384)
which was multiplied by the H to create a matrix y = Hx
(5×16384). Additional multivariate Gaussian random noises
with zero mean and diagonal covariance matrix (diagonal
terms were 10) were added to the noise-free simulated data y
(y is displayed in Figure 2(b)). The SNR was 240.

Now the task was to estimate four IF images and mixing
matrix from the matrix y, to compare them with the
hypothetical ones. The number nj of Gaussian functions
in the MoG model was chosen to be 2 for modeling
the probability density function of each IF image and
minimizing the computational cost since we have expe-
rienced that the use of larger nj did not improve the
results in either simulated or perfusion data. The values
of cost function (the first term in (5)) reduced quickly
and converged after around 100 iterations (Figure 2(c)).
The correlation value between each pair of hypothetical
and estimated IF images and that between each pair
of hypothetical and estimated mixing weightings were
higher than 0.9999. We further computed a matrix J =
(ĤTĤ)−1ĤTH, where Ĥ was the estimated mixing matrix,
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Figure 3: Classification results of a normal subject (whose perfusion images are shown in Figure 1). (a) Five major tissue types exhibited in
IF images are ar, GM, WM, vs, and cp, respectively. (b) The normalized signal-time curves correspond to five IF images, where the one (red)
with the fastest signal drop is the artery. (c) Left: a color-coded composite map is used to represent the final segmentation result for different
tissue types. Right: five signal-time curves correspond to the averaged intensities of color-coded areas. (d) The rCBV map (left), the rCBF
map (middle), and the MTT map (right). (Scale unit for rCBV and rCBF: arbitrary unit; scale unit for MTT: second.)

and the result was

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.9982 −0.0016 −0.0011 0.0015

0.0042 1.0030 0.0019 −0.0044

−0.0041 −0.0029 1.0002 0.0029

0.0017 0.0014 −0.0010 1.0001

⎤
⎥⎥⎥⎥⎥⎥⎦

, (17)

which was very close to the identity matrix if the estimate
was correct. We repeated the simulation when the SNR was
reduced to 40, which was lower than that in the normal
data. Results showed that the correlation value between
each pair of hypothetical and estimated mixing weightings
remained as high as 0.9998 and that between each pair of
hypothetical and estimated IF image only degraded slight
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to between 0.9883 and 0.9997. The values of matrix J
were

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0168 −0.0070 −0.0010 0.0201

−0.0106 1.0226 0.0008 −0.0462

−0.0230 −0.0096 1.0432 0.0390

0.0168 −0.0062 −0.0432 0.9870

⎤
⎥⎥⎥⎥⎥⎥⎦
. (18)

The high correlation values and good approximation of J
matrices not only validated the correctness and convergence
of our implementation of the IFA method, but also promised
the suitability of the IFA method in segregating various tissue
types from perfusion MRI data.

The number of IF images (N), that is, number of tissue
types, needs to be determined prior to the IFA process.
Various numbers, ranging from 4 up to 6, have been assumed
in the calculation and we have found that N = 5 elucidated
distinctly discernible tissue types, appearing to agree with
our knowledge of brain anatomy and physiology. Results
from five normal image data sets have been confirmed by a
neuroradiologist who is one of the coauthors in this study
with expertise in perfusion imaging. One of the results
was shown in Figure 3, where the upper panel depicts the
resultant five IF images, which are artery (ar), GM, WM,
vein and sinus (vs), and choroid plexus (cp), respectively.
Figure 3(b) displays the corresponding signal-time curves
(columns of H), respectively, which were all normalized to
unit variance and their baselines were shifted to 1.0 for the
comparison. The tissue types of IF images were identified
based on their anatomical structures and the arrival order
of contrast agent, that is, artery follows by GM, WM, vs,
or cp. Among all IF images, the IF image with brighter
pixels representing artery can be easily recognized because of
its signal-time curve presenting the fastest signal drop (red
curve in Figure 3(b)). The pixels of each major tissue type
can be further segmented out from each IF image using an
automatically optimal thresholding technique, that is, the
Otsu’s method in this study. The final segmentation result
was depicted by a color-coded composite image (left panel in
Figure 3(c)) and the averaged signal-time curve within each
colored area, that is, each tissue type, was computed (right
panel in Figure 3(c)).

To create the hemodynamic parametric maps, namely,
rCBV, rCBF, and MTT shown in the left, middle, and right
panels in Figure 3(d), respectively, we first converted the
averaged arterial signal-time curve and temporal intensity
profile at each pixel into the concentration-time curves using
(12) followed by (13), (14), and (15).

From the segmentation results of the five normal data
sets, we have observed that arterial areas were all reliably
segmented and the contrast agent consistently arrived first
at the artery, followed by GM, WM, vs, and cp. The averaged
ratios for rCBV, rCBF, and MTT between GM and WM were
2.139± 0.190, 2.598± 0.184, and 0.789± 0.098, respectively,
which were congruent with those in the literature [3, 4, 9, 13].

6. Discussion
This study describes an IFA-based method to classify pixels
of the same tissue type on perfusion images based on bolus
transit profiles and the assumptions of spatial independence
as well as the partial-volume mixing effect. The IFA method
is flexible in learning the source densities from observed
data so that sources can be more accurately modeled by
the mixture of Gaussians for the facilitation of subsequent
separation. The IFA technique is related to projection pursuit
[32, 33], where “interesting” projections of multidimen-
sional data are pursued for optimal visualization of data
and exploratory data analysis. Projection pursuit is usually
performed by finding directions in which the data is least
Gaussian distributed. Since the independent factors in the
IFA are modeled by mixture of Gaussian functions, it is inter-
esting to investigate whether the independent factors present
maximal non-Gaussian clustering structures in future work.
Our results indicated that the brighter pixels in a cluster
were homogeneous in most tissues and can be segmented
out using Otsu’s method for automatic determination of
optimal thresholds [29]. Otsu’s method is simple in terms of
implementation and computation and is robust to histogram
irregularities caused by noise.

The determination of the number N of IF images is
an important issue to be addressed. As suggested by Attias
[27], one can determine this number using a comprehensive
method, for example, the model comparison method [34], or
a simpler but less precise method, for example, the number
of significant eigenvalues of data covariance matrix. In this
study, we decidedN based on a priori knowledge of the brain
anatomy and arrival order of blood flows for different tissues.
When N was chosen to be five, each IF image exhibited one
dominating tissue cluster with brighter intensities, allowing
consistent and reliable segregation of the artery, GM, WM,
vs, and cp from the normal subjects. When N was less than
five, two major tissue types, for examples, artery with GM
or vs with cp, can appear at one of IF images. On the other
hand, if N was larger than five, either one major tissue type
was split into two IF images, for example, part of sinus was
separated from vs, or repeatedly exhibited at two IF images.

It is worthy to note that the number of unknown
parameters depends on the number of dynamic MR images.
The more images were used, the more parameters needed to
be estimated in the noise covariance Λ and in the mixing
matrix H in which columns corresponded to the signal-time
curves. We have found that the data points encompassed the
duration of the first and second circulations, for example,
50 in the illustrative example (Figure 3), were adequate to
resolve the IF images. A simple way to determine data length
is to average each perfusion image and plot the averaged
images with respect to time. The curve delineating the first
and second passes is readily seen and the duration can be
easily decided.

7. Conclusions

The IFA-based method provides several advantages for
cerebral hemodynamic studies. First, various tissue compart-
ments on perfusion images can be classified systematically.
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Second, the arterial compartment can be modeled consis-
tently on the same slice location for calculation of rCBV,
rCBF, and MTT maps. Third, bolus transit profiles of these
tissues can be well separated, providing information in
addition to rCBV, rCBF, and MTT maps, such as temporal
scenarios and recirculation of contrast agent. This method
also promises differentiation of pathological and nonpatho-
logical blood-supply patterns in future clinical applications.
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