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Acute ischemic stroke (AIS) is a common devastating disease that has increased
yearly in absolute number of cases since 1990. While mechanical thrombectomy
and tissue plasminogen activator (tPA) have proven to be effective treatments, their
window-of-efficacy time is very short, leaving many patients with no viable treatment
option. Over recent years there has been a growing interest in stimulating the facial
nerves or ganglions to treat AIS. Pre-clinical studies have consistently demonstrated
an increase in collateral blood flow (CBF) following ganglion stimulation, with positive
indications in infarct size and neurological scores. Extensive human trials have focused
on trans-oral electrical stimulation of the sphenopalatine ganglion, but have suffered from
operational limitations and non-significant clinical findings. Regardless, the potential of
ganglion stimulation to treat AIS or elongate the window-of-efficacy for current stroke
treatments remains extremely promising. This review aims to summarize results from
recent trial publications, highlight current innovations, and discuss future directions for
the field. Importantly, this review comes after the release of four important clinical trials
that were published in mid 2019.
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INTRODUCTION

Acute Ischemic Stroke
Stroke is the leading cause of disability and the fifth leading cause of death in the United States
(US). Approximately 795,000 people experience a new or recurrent stroke each year (1). Acute
ischemic stroke (AIS) occurs when an obstruction within a blood vessel decreases cerebral blood
flow, depriving nerve cells of oxygen and leading to severe metabolic failure and neural death (2–4).
Immediately following stroke, a section of the brain referred to as the ischemic core is subject to
extreme hypoxia, leading to irreversible brain damage (5). The area surrounding the ischemic core,
the ischemic penumbra, is severely hypoperfused and non-functioning, yet can regain functionality
if blood flow is restored to the area (5, 6). This recovery is highly time-dependent, as the penumbra
rapidly evolves into the ischemic core (6, 7). The recovery of the penumbra has been demonstrated
to have a significant effect on clinical outcomes; Meretoja et al. showed that for every 20-min
reduction in time to reperfusion increases the average disability-free life span by 3 months (8).
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Current Treatments: Endovascular
Thrombectomy and Tissue Plasminogen
Activator
Management for AIS relies on rapid treatment times to avoid
penumbra evolution. The goal of modern stroke treatment
facilities is to reperfuse the ischemic area via endovascular
thrombectomy, mechanically removing the blood clot with
catheter-based devices (9). The faster the patient achieves
reperfusion, the more likely the patient will have excellent
neurological outcomes at 90 days (10). The second treatment
paradigm for AIS is the use of intravenous (IV) tissue
plasminogen activator (tPA), which acts to chemically break
down clots (11–14). IV-tPA is commonly used prior to patient
transport for thrombectomy.

Both endovascular thrombectomy and IV-tPA suffer from a
limited window-of-efficacy. Currently, stroke guidelines list the
acceptable window of treatment for mechanical thrombectomy
at 24 h (15, 16), and a recommended IV-tPA door-to-treatment
time of 60min (10, 17, 18). These windows are frequently missed,
with fewer than a third of patients in the U.S. treated within the
IV-tPA 60min window (19). Mandatory neuroimaging, presence
of a highly-trained neurointerventionalist, and hospital transfer
times all reduce event-to-treatment times and result in reductions
of successful functional outcomes following recanalization (16,
20, 21).

Thrombectomy is a well-established treatment (15, 16, 22),
but patients routinely fail to achieve functional independence
(mRS ≤ 2) due to extensive event-to-treatment times (15, 16).
There is a clear need for innovative approaches to extend the
window-of-efficacy for endovascular thrombectomy and IV-tPA.

Time Is Brain: Inhibiting the Evolution of
the Ischemic Penumbra
Researchers have recently sought to find new approaches to arrest
the evolution of the ischemic penumbra and keep this susceptible
region from becoming irreversibly damaged. Current approaches
aim to either enhance oxygen delivery to the penumbra or reduce
tissue oxygen demand (6). In addition to door-to-treatment time
limitations, many patients also become ineligible for mechanical
thrombectomy due to large ischemic core volumes. Inhibiting the
evolution of the penumbra may help buy time by limiting core
volume growth from reaching recommended exclusionary levels
(23, 24). Inhibition of penumbra evolution could also be highly
beneficial when combined with IV-tPA, potentially increasing its
effectiveness and elongating its window-of-efficacy (6).

Increased Collateral Blood Circulation Through

Ganglion Stimulation
Facial nerve-induced vasodilation of the cerebral arteries is an
emerging therapeutic target that seeks to increase collateral blood
flow in ischemic brain tissue, improve oxygen availability, and
improve patient functional outcomes after stroke. Collateral
circulation refers to alternative, pre-existing vascular pathways
that deliver blood to target tissue when the primary vessel is
occluded (25). Imaging of the brain and vessels has shown that
collateral blood flow can preserve brain tissue for hours after

major arteries to the brain are blocked (26). Figure 1 illustrates
how facial nerve-induced increased collateral blood flow has
the ability to ameliorate clot-induced tissue death by limiting
ischemic penumbra evolution.

The sphenopalatine ganglion (SPG), also known as the
pterygopalatine ganglion, is the largest and most superior
ganglion of the sympathetic and parasympathetic nervous system
and contains the largest collection of neurons in the calvarium
outside of the brain (27). Humans have two SPGs, on each side of
the midface, located within the viscerocranium in a space called
the pterygopalatine fossa. This fossa has direct connections to the
middle cranial fossa, nasal cavity, orbit, infratemporal fossa and
oral cavity (28, 29). The SPG contains parasympathetic fibers that
synapse in the ganglion and innervate the internal carotid artery
(ICA) through the deep petrosal nerve (30). Electrical stimulation
of the SPG activates the fibers, releasing several neurotransmitters
such as acetylcholine, vasoactive intestinal polypeptide, peptide
histidine isoleucine, and nitrous oxide that play a role in inducing
vasodilation of blood vessels in the anterior circulation (26, 31).

The geniculate ganglion is a small collection of somatosensory
and gustatory ganglion cells (32) located within the temporal
bone along the axis of the ear canal. Similar to the SPG,
the geniculate ganglion has parasympathetic connections to
cerebral arteries and has also been demonstrated to increase
cerebral blood flow (33, 34). Its curved shape allows for greater
susceptibility to be activated location makes it easier to access
through non-invasive routes (33, 35).

METHODS

Search Strategy and Selection Criteria
The literature search was conducted in three electronic
databases MEDLINE, EMBASE, and SCOPUS, to obtain
pre-clinical and clinical studies dating from 1986 to 2019.
Search terms included “isch(a)emic,” “brain,” “cerebr∗,” “core,”
and “penumbra” with intervention approach terms such
as “parasympathetic,” “ganglion,” “facial nerve,” “stimulation,”
“neuromodulate∗,” “electrical acupuncture,” and “magnet∗.”

Studies selected for final review included those assessing
the effects of stimulation in the ischemic stroke indication, as
well as the effects on blood flow in the brain from ganglion
stimulation. The inclusion criteria for pre-clinical studies had at
least one of the following outcome measures: (1) healthy and
ischemic stroke-induced animal models, (2) invasive or non-
invasive ganglia stimulation, and/or (3) studies providing at least
one outcome measurement of cerebral or collateral blood flow,
brain infarct size, neuronal survival, and neurological outcomes.
Respectively, the inclusion criteria for clinical studies had at
least one of the following outcome measures: (1) healthy human
volunteers or patients with ischemic stroke, (2) invasive or
non-invasive ganglia stimulation, (3) sham stimulation control
group, (4) safety and tolerability of intervention, and/or (5)
studies providing at least one outcome measurement of cerebral
or collateral blood flow, brain infarct size, neuronal survival,
functional and neurological outcomes including but not limited
to mRS at 90 days post-stroke.
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FIGURE 1 | Increased collateral blood circulation by sphenopalatine ganglion (SPG) stimulation. (A) Anatomical overview of stroke affected brain region before SPG
stimulation. (B) The SPG contains parasympathetic fibers that synapse in the ganglion and innervate the internal carotid artery (ICA) through the deep petrosal nerve.
(C) SPG stimulation induces vasodilation of blood vessels in the anterior circulation, increasing blood flow to the affected area limiting the evolution of the penumbra
and reducing infarct volume.

Pre-clinical and clinical studies were excluded if they
evaluated facial nerve stimulation for other indications such
as hemorrhagic stroke, chronic headache, migraine, rhinitis,
or stroke rehabilitation. Reviews, meta-analyses, observational
studies, and commentaries were also excluded.

Risk of Bias Analysis
The final emerging pre-clinical studies were subjected
to the Systematic Review Center for Laboratory Animal
Experimentation (SYRCLE) risk of bias tool (36). The SYRCLE’s
tool for assessing risk of bias contains 10 domains which fall
under six types of bias; selection bias, performance bias, detection
bias, attrition bias, reporting bias, and other. Judgement of bias
was indicated as low by a positive (“yes”), high by a negative
(“no”), and imprecise (“unclear”) when details reported were
insufficient. Physiotherapy Evidence Database (PEDro) scale was
selected as the risk of bias assessment tool for clinical studies
(37). The PEDro scale consists of 10 items; they are random
allocation, concealment of allocation, baseline equivalence, blind
subjects, blind therapists, blind assessors, intention to treat
analysis, adequate follow-up, between-group statistical analysis,
and measurement of data variability and point estimates. Studies
with a PEDro score of more than 6 were considered good quality.

RESULTS

The initial search yielded 1,106 studies: 263 duplicates were
removed, 843 studies were screened by title and abstract, and
717 studies were deemed irrelevant articles. A total of 126

studies were assessed for eligibility and were subjected to the
predefined inclusion and exclusion criteria via full-text review,
resulting in the removal of 100 studies. The final emerging
26 studies combined in this review assessed 22 pre-clinical
studies and 5 human studies. One publication contained both
a human and a pre-clinical trial. Figure 2 outlines the flow of
study selection.

Quality of Studies
The methodological quality assessments of included pre-clinical
and clinical studies are provided in Tables 1, 2, respectively.
Animal studies assessed by the SYRCLE found a prevalence
of 41.3% for items classified as “unclear,” and 5.9% for items
classified as “no” (Table 1). Human trials assessed by the PEDro
scale had an average score of 6.0 with scores ranging from 4 to 7
(Table 2).

Invasive Ganglion Stimulation: Pre-clinical
Studies
Of the 22 pre-clinical studies included in this review, a
majority (38–43, 46–50, 53–55, 57–59) were invasive electrical
stimulation procedures (Table 3). Targeted ganglions included
SPG, geniculate ganglion (43, 44, 56), trigeminal ganglion (48–
52), vagus nerve (38–40, 45), petrosal nerve (46), nasociliary
nerve (47), and dorsal facial area (54).

Key parameters of stimulation protocols included intensity,
frequency, pulse, and duration (Tables 3, 4). Several studies
sought to find a dose-response relationship or a maximum
tolerated frequency and intensity, causing variability between

Frontiers in Neurology | www.frontiersin.org 3 November 2021 | Volume 12 | Article 753182

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Baker et al. Results From Trial Publications and Innovations

FIGURE 2 | Flow chart of study selection using PRISMA guidelines.

reported stimulation protocols. Electrical stimulations reported
intensity in Amps or Volts, ranging from 0.5 to 5mA and 2
to 20V. CBF significantly increased along with blood pressure
in a stimulation frequency-dependent manner (41, 46). Even in
studies where this dependency was not clear, lower powers and
durations were markedly less effective in increasing CBF (56).

Intervention groups undergoing stimulation routinely
demonstrated increased CBF. Three studies did not report
an increase in CBF, with one not recording CBF (42), one
reporting no change (64), and another reporting a decrease
following vagus nerve stimulation (39). Goadsby et al. (49)
reported the largest shift from baseline following stimulation,
reporting a 150% increase following 200 s of stimulation. CBF
increased throughout the brain without an obvious preference
for the hemisphere ipsilateral to stimulation (54, 56). The
ability for stimulation to increase CBF flow was found to
be lower in ischemic models compared to CBF increase in

health models (39, 40, 53). Animals that underwent invasive
stimulation were found to have improved neurological scores
in five of the seventeen studies (38, 39, 42, 53, 59). Only one
study tracking neurological scores found a decrease following
ganglion stimulation, however, they also reported a reduction
in infarct volume compared to controls (40). In all studies
that reported infarct volume stimulated models performed
better (38–40, 42, 53, 55, 59). Bar-Shir et al. (42) found both
improved neurological scores and infarct volumes in stimulated
models at 8 days compared to control, but no difference in a 28
day follow-up.

Invasive Ganglion Stimulation: Clinical
Studies
Four clinical studies using invasive electrical stimulation to
treat AIS were identified (Table 5) (60–63). All four targeted
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TABLE 1 | Quality assessment of included pre-clinical studies using SYRCLE’s tool.

Study Selection bias Performance bias Detection bias Attrition bias Reporting

bias

Other

Sequence

generation

Baseline

characteristics

Allocation

concealment

Random

housing

Blinding Random

outcome

assessment

Blinding Incomplete

outcome

data

Selective

outcome

reporting

Other

sources of

bias

Ay et al. (38) Yes Yes Yes Unclear No Yes Yes Yes Yes Yes

Ay et al. (39) Yes Yes Yes Unclear No Yes Yes Yes Yes Yes

Ay and AY (40) Unclear Yes Unclear Unclear No Yes Yes Yes Yes Yes

Ayajiki et al. (41) Unclear Yes Unclear Unclear Yes Yes Unclear Yes Unclear Yes

Bar-Shir et al. (42) Unclear Yes Unclear Unclear Unclear Yes Yes Yes Yes Yes

Borsody et al. (43) Yes Yes Yes Unclear Yes Yes No Yes Unclear Yes

Borsody et al. (44) Yes Yes Yes Unclear Yes Yes No Yes Unclear Yes

Chi et al. (45) Yes Yes Yes Unclear Yes Yes Yes Yes Yes Yes

D’Alecy and Rose (46) Unclear Yes Unclear Unclear No Unclear No Yes Unclear Yes

Edvinsson et al. (47) Unclear Yes Unclear Unclear Unclear Unclear Unclear Unclear Unclear Yes

Goadsby et al. (48) No Unclear No Unclear Unclear Unclear Unclear Unclear Unclear Yes

Goadsby et al. (49) Unclear Yes Unclear Unclear Unclear Unclear Unclear Unclear Unclear Yes

Goadsby et al. (50) Unclear Yes Unclear Unclear Unclear Unclear Unclear Unclear Unclear Yes

Gulturk et al. (51) Unclear Yes Unclear Unclear Yes Yes Yes Yes Yes Yes

Gürelik et al. (52) Unclear Yes Unclear Unclear Yes Yes Yes Yes Yes Yes

Henninger (53) Unclear Yes Unclear Unclear Yes Unclear Yes Yes Yes Yes

Kuo (54) Unclear Yes Unclear Unclear Unclear Unclear Unclear Unclear Unclear Yes

Levi et al. (55) Yes Yes Yes Unclear No Yes Unclear Unclear Unclear Yes

Sanchez et al. (56) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Seylaz et al. (57) No Yes No Unclear No Unclear Unclear Yes Unclear Yes

Suzuki et al. (58) Unclear Yes Unclear Unclear Unclear Yes Yes Yes Unclear Yes

Talman (59) Unclear Yes Unclear Unclear Yes Unclear Unclear Yes Yes Yes
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the SPG using an implanted device (ISS, BrainsGate, Israel).
The procedure involved surgically placing a platinum-iridium
stimulator trans-orally through the greater palatine canal in
the extracranial pterygopalatine fossa, adjacent to the SPG. A
transmitter coil was then placed on the patient’s cheek to induce
an electronic circuit.

Khurana et al. (60) reported the outcomes of the implant for
augmentation of cerebral blood flow trial-1 (ImpACT-1). The
prospective, single-arm, feasibility trial was conducted between
2006 and 2009. The trial recruited 98 subjects and reported no
major safety concerns. At least one SAE was reported in 23
patients, with three classified as “related” or “possibly related”
to the intervention, mostly due to the re-implantation and/or
implant misplacement. Pain during stimulation (15/92) was
the most frequently reported AE. Secondary efficacy analysis
demonstrated a very slight reduction in mRS score (−0.76)
between stimulation and historical controls. There was also a
significant improvement in functional independence (0–2 mRS)
at 90 days, with 48% of stimulated patients (40/84) reaching
functional independence compared to 29% (48/165) in the
historical control group (60).

Bornstein et al. (61) reported the outcomes of the implant for
augmentation of cerebral blood flow trial-24A (ImpACT-24A),
the follow-up efficacy trial of the ImpACT-1. The trial used a
two-arm, randomized, double-blind design with a sham-control.
Within the sham procedures the trans-oral device was implanted
but no electrical current was activated. The trial was conducted
from 2009 to 2011. The trial recruited patients with evidence of
stroke in the anterior circulation, were able to undergo treatment
within 24 h, and were ineligible for IV-tPA or endovascular
thrombectomy. Bornstein et al. reported enrollment of 327
patients, however six exited prior to implantation and 18 had
incomplete implantations. Patients were randomized 2:1, with
202 undergoing stimulation and 101 undergoing sham. Due
to issues during implantation a new optic navigation system
was introduced midway through the trial, however, only 75.7%
of patients in the active group received stimulation. Due to
the inconsistency of accurate device placement the trial was
ended at the first interim analysis. A modified intent to treat
(mITT) analysis looking at patients who underwent at least one
full successful active or sham treatment found no benefits in
either the primary outcome or any of the secondary endpoints.
Post-hoc analysis demonstrated significant improvements within
a subsection of the population that had confirmed cortical
involvement (CCI), defined as patients with NIHSS score ≥10
and signs of hypodensity or tissue swelling in at least one cortical
region on initial imaging (61).

The results of the follow-up trial, ImpACT24B, was conducted
between 2011 and 2018 and reported by Bornstein et al. (62).
Trial set-up was nearly identical to ImpACT24A, however, the
CCI subsection was added as a primary outcome measure of
interest. The trial protocol was changed several times, including
the introduction of a new guidance system, neurostimulator,
implantation technique, and electrical transmitter-control unit.
Of the 1,078 patients recruited, 481 underwent stimulation
and 519 underwent a sham operation. Again, no benefit in
the mITT population was seen in any analysis, however the
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CCI subgroup showed statistically significant improvements
in every endpoint. An inverted U-shape relationship
between stimulation intensity and effectiveness in the CCI
subgroup, with lower-mid-level stimulation indicated as most
effective (62).

The ImpACT24M study, reported by Saver et al. (63),
was a single-arm study assessing the effect of two changes
to the SPG stimulation procedure required for implanting
and optimizing the device. Primary outcomes were difference
in 7-day NIH Stroke Scale (NIHSS), and proportion of
patients with improvement in stroke symptoms, compared
to historical controls (65). The 49 patients that received
stimulation demonstrated a median NIHSS improvement of 75%
compared to 50% in the historical control. Stimulation was also
shown to significantly increase CBF and hand motor function
within the cohort, but was not compared to the historical
control (63).

There is one ongoing trial (NCT04014621) to determine
if 6 h of SPG stimulation using the same procedure in
the ImpACT studies will “freeze” the ischemic penumbra
in patients with acute ischemic stroke and reduce
brain tissue death. The primary outcome measure is
volume of core expansion determined by CT scan post
SPG stimulation. This trial is expected to complete in
spring 2021.

Non-invasive Ganglion Stimulation:
Pre-clinical Studies
Six of the 26 publications identified assessed non-invasive
interventions to stimulate facial nerves or ganglions (Table 4)
(43–45, 51, 52, 56). Three studies used a non-invasive magnetic
intervention, only one of which used an ischemic stroke
model (43, 44, 56). Four studies used a non-invasive electrical
intervention, all of which were tested in healthy models (43, 45,
51, 52). Borsody et al. (43) reported outcomes on both a magnetic
and electrical non-invasive intervention, with each intervention
targeting separate ganglions.

Magnetic stimulation interventions were primarily deployed
through tesla coils located on either side of the subject’s head.
Magnetic intensities were reported in Tesla, and ranged from 0.5
to 1.9 T in the three studies (43, 44, 56). Non-invasive electrical
stimulation was induced over 30–90min, while the magnetic
stimulation was induced over several 5min increments with a
30min recovery period.

All non-invasive stimulation studies found an increase in
CBF compared to controls (43–45, 51, 52, 56), however, Borsody
et al. (43) found a reduction in CBF following non-invasive
electrical stimulation through the middle ear. They also reported
the largest change in CBF following magnetic stimulation, with
a 120% increase compared to baseline using a 10Hz frequency
at 1.5 T. Comparatively, Sanchez et al. (56) found the increase in
CBF occurred throughout the brain without obvious preference
for the hemisphere ipsilateral to stimulation, however this finding
was not reported in any other study. No studies recorded
neurological scores, and only two reported on infarct size (44, 45),

with non-invasive stimulation significantly reducing infarct size
compared to control in both studies.

Non-invasive Ganglion Stimulation: Clinical
Studies
Sanchez et al. (56) was the only clinical study that assessed
the ability of non-invasive ganglion stimulation (Table 5). The
geniculate ganglion was targeted and stimulated at 1, 1.3, 1.6, and
1.9 T in 280 µs pulses for 3min in health volunteers. All tests
were conducted using a single device (VitalFlow, NeuroSpring,
California). CBF was found to significantly increase following
stimulation, with higher intensity correlating to larger CBF flux.
No adverse effects were reported within a 24-h follow-up.

DISCUSSION

There is a substantial amount of pre-clinical and clinical data
to suggest that stimulation of the parasympathetic fibers of
the facial nerve system is a promising option for rapid AIS
treatment. Data from early trials with both invasive and non-
invasive approaches have proven safe with very minimal reports
of treatment-associated adverse events. Stimulation of the SPG
or geniculate ganglion clearly results in increased CBF, and
the technological means required to rapidly induce ganglion
stimulation are certainly feasible. While the SPG has been
the most well-studied ganglion in clinical trials to date, pre-
clinical evidence suggests a variety of targets for the potential
therapeutic development.

Despite the tremendous upside it poses for treating AIS,
ganglion stimulation has yet to demonstrate clinicallymeaningful
outcomes. To date the clinical trials for SPG stimulation via
a trans-oral device have suffered from various methodological
shortcomings that obscure the reasons behind the lack of positive
results. A recurring issue with incorrect device placement
resulted in the study protocols for both the ImpACT-24A
and ImpACT-24B trials to be repeatedly modified during the
trial course. The mid-trial change of the neurostimulator,
implantation technique and electrical transmitter-control unit
in the ImpACT-24B trial is especially disconcerting and was
not addressed in the outcome analysis. Additionally, while the
trials claim to be double or triple blinded, it is unclear how
successful the blinding can be for the subject and physician
when a key element of the intervention’s deployment is mild
facial discomfort. It is also not clear why the ImpACT-1 and
ImpACT-24A were published almost 10 years after completion,
and simultaneously with ImpACT-24B and ImpACT-24M.

Current strategies for employing ganglion stimulation to treat
AIS suffer from three core limitations: (1) current trial design, (2),
time-to-deployment, and (3) accessibility to trained physicians.

The ImpACT trials have focused on independently improving
AIS-related disability, but their negative results suggest that tPA
and mechanical thrombectomy will remain the gold standard for
AIS treatment. It is therefore optimal for facial nerve stimulation
to augment and improve the applicability of these existing
treatments. There is a clear need for interventions that elongate
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TABLE 3 | Characteristics of invasive animal studies.

References Experimental model Intervention Protocol of stimulation Ganglion target Outcomes of interest Results

Ay et al. (38) Ischemic stroke Rats
(n = 24)

Invasive electrical
stimulation

Frequency: 20Hz
Intensity: 0.5mA
Pulse: 0.5ms for 30 s
Parameter: experimental group
1—every 30min for 3 h
experimental group 2—every
5min for 1 h

Vagus nerve Infarct volume
Neurological score

Infarct volume: The relative percentage of contralateral
hemispheric volume that underwent infarction was
16.2 ± 3.2% in the VNS and 33.0 ± 5.0% in the
control arms in experimental group 1 (p < 0.05). The
respective values for experimental group 2 were 19.8
± 0.5% and 37.9 ± 2.6% (p < 0.05).
Neurological score: The functional score improved by
50% in experimental group 1 and 44% in experimental
group 2 (p < 0.05 for both groups)

Ay et al. (39) Ischemic stroke Rats
(n = 32)

Invasive electrical
stimulation

Frequency: 20Hz
Intensity: 0.5mA
Pulse: 0.5ms for 30 s
Parameter: every 5min for 1 h

Right cervical vagus
nerve Left cervical
vagus nerve

Infarct volume
Neurological score CBF

Infarct volume: Infarct size measurement revealed that
the volume of ischemic damage was 41–45% smaller
in animals receiving stimulation as compared with
control animals.
Neurological score: The effect of VNS on tissue
outcome was associated with better neurological
outcome at both 1- and 3-day time points after the
induction of ischemia with a significant difference after
24 h after
CBF: Both the right and left VNS caused subtle
reduction in CBF during each 30-s stimulation period
that quickly returned back to the baseline level at the
end of each stimulation cycle.

Ay and Ay (40) Stroke Rats (n = 12) Invasive electrical
stimulation

Frequency: 20Hz
Intensity: 0.5mA
Pulse: 0.5ms for 30 s
Parameter: 5min intervals for 1 h

Vagus nerve Infarct volume
Neurological score CBF

Infarct volume: VNS reduces infarct volume by ∼50%
as compared to sham stimulation
Neurological score: At 24 h the median neurological
scores and IQR in the sham SPGi were 3.0 ± 0.0. VNS
treatment were 2.5 ± 0.5 in the txSPGi animals (p >

0.05)
CBF: The mean reduction in rCBF was marginally
responsive to SPG ablation, measuring 33.12 ± 8.06%
baseline (n = 78) in the txSPGi animals

Ayajiki et al. (41) Healthy Rats (n = 8) Invasive electrical
stimulation

Frequency: 5, 10, 20Hz
Intensity: 10 V
Pulse: 1ms
Parameter: 30 s every 3-5min

Sphenopalatine
ganglion

CBF CBF: nerve stimulation induced a marked increase in
CBF together with MABP in a frequency-dependent
manner at 5, 10, and 20 hz. The highest significant
change of 15.4% ± 4.9 occured in the left parietal
cortex (p = 0.05)

Bar-Shir et al.
(42)

Stroke Rats (n = 13) Invasive electrical
stimulation

Frequency: 10Hz
Intensity: 2mA
Pulse: 0.5ms
Parameter: two 60-s-long pulses
separated by 12 s off-time,
applied every 15min (8 pulses
per hour) for 3 h, for seven
consecutive days

Sphenopalatine
ganglion

Infarct volume
Neurological score

Infarct volume: 21.1 ± 3.5% and 20.1 ± 4.5% for the
controls and SPG-stimulated group, respectively (P =

0.88). Twenty-eight days post-occlusion, the LV of the
treated rats decreased to 12.9 ± 3.1% (P = 0.05)
while the LV of the controls decreased only to 15.6 ±

3.4% (P = 0.05). Despite that the difference between
the LVvalues of the two groups at day 28 post-MCAO
wasnot statistically significant (P = 0.57)
Neurological score: Signficant increase from baseline
after 8-day period with a difference of 5.6 ± 0.8 for the

(Continued)
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TABLE 3 | Continued

References Experimental model Intervention Protocol of stimulation Ganglion target Outcomes of interest Results

control rats and 3.8 ± 0.4 for the SPG-treated animals,
(P = 0.04) after t-MCAO. This difference did not reach
statistical significant level at 28 day

Borsody (43) healthy Sheep (n = 6),
dogs (n = 5)

Invasive electrical
stimulation

Frequency: 5, 10, 20Hz
Intensity: 0.5, 2.0, 5.0mA
Pulse: 0.10ms
Parameter: 5min stimulation
duration with 30min recovery

Geniculate ganglion CBF CBF: CBF decreased to a level ∼15% below
pre-stimulation baseline

D’Alecy and
Rose (46)

Healthy Dogs (n = 3) Invasive electrical
stimulation

Frequency: 2, 5, 10, 20, 40Hz
Intensity: Maximized at 20Hz
Pulse: 3ms
Parameter: 90 s duration

Petrosal nerve CBF CBF: Stimulation of the major petrosal nerve produced
a frequency-dependent increase in cerebral blood flow
that reached a maximum of approximately an 11 %
increase in flow

Edvinsson et al.
(47)

Healthy Cats (n = 6) Invasive electrical
stimulation

Frequency: 0.5, 1.5, 10, 20Hz
Intensity: 100 µA
Pulse: 250 µs
Parameter:

Nasociliary nerve CBF CBF: Stimulation of the nasociliary nerve resulted in a
frequency-dependent increase in CBF. A response
could be seen across all frequencies with the maximal
effect being at 20Hz with a 30 ± 6% increase in flow

Goadsby et al.
(48)

Healthy Monkey (n = 9) Invasive electrical
stimulation

Frequency: 0.2–200Hz
Intensity: 500 µA
Pulse: 250, 500 µs
Parameter: 15 s stimularion
duration

Trigeminal ganglion CBF CBF: no effect on bulk flow and resistance in the
internal carotid circulation

Goadsby and
Hoskin (49)

Healthy Cats (n = 6) Invasive electrical
stimulation

Frequency: 5 hz Intensity: 500 uA
Pulse: 250 uS Parameter:

Trigeminal ganglion CBF CBF: Stimulation of the VIIth nerve led to a marked
increase in CBF v (47 ± 7% at 5/s) delta CBF was
∼150% change at 200 s of stimulation

Goadsby et al.
(50)

Healthy Cats (n = 6) Invasive electrical
stimulation

Frequency: 0.5, 1, 2, 5, 10, 20
and 30Hz
Intensity: 500 uA
Pulse: 250 uS
Parameter: 30s stimulation
duration at each frequency

Trigeminal ganglion CBF CBF: The mean maximal reduction in resistance was
39 Ž. “5% at 20 rs for the carotid bed and 37” 6% at
20 rs for the cerebral circulation

Henninger et al.
(53)

Healthy and Ischemic
stroke Rats (n = 9)

Invasive electrical
stimulation

Frequency: 10Hz Intensity:
1.9–2.2mA Pulse: 0.2ms
Parameter: 4 sets of 60 s
stimulations separated by 12 s
intervals

Sphenopalatine
ganglion

Infarct volume
Neurological score CBF

Infarct volume: TTC-derived lesion volumes were
significantly smaller in stimulated vs. non-stimulated
animals (120.4 ± 74.1 mm3 vs. 239.3 ± 68.5 mm3,
respectively). CBF-derived lesion volumes in stimulated
animals were ∼10% smaller (non-significant, P > 0.05)
than in non-stimulated controls
Neurological score: The 24-h neurological scores
(mean ± SD min, max, range) were improved in the
SPG group (2.5 ± 0.8, 2, 4.2) relative to controls (3.7
± 0.8, 3, 5, 2).
CBF: In the non-ischemic brain, SPG stimulation
significantly elevated CBF predominantly within areas
supplied by the anterior cerebral artery (by 0.64
mL/g/min relative to baseline. In the ischemic brain,
CBF only marginally increased within the penumbra
and core (by up to 0.08 and 0.15 mL/g/min relative to
pre-stimulation, respectively)

(Continued)
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TABLE 3 | Continued

References Experimental model Intervention Protocol of stimulation Ganglion target Outcomes of interest Results

Kuo et al. (54) Healthy Cats (n = 20) Invasive electrical
stimulation

Frequency: 20Hz
Intensity: 2 V Pulse: 0.5ms
Parameter: 5 s train of
rectangular pulses

Dorsal facial area CBF CBF: Electrical stimulation of the DFA appeared to
increase the regional blood flow of both cerebral
hemispheres (intracranial tissues) and to increase
predominantly the regional blood flow of extracranial
tissues on the side ipsilateral to stimulation

Levi et al. (55) Ischemic stroke Rats (n =

14)
Invasive electrical
stimulation

Frequency: 10Hz
Intensity: 1, 2mA
Pulse: 200 uS, 500 uS
Parameter: two sets of 60-s
stimuli separated by a 12-s
interval, followed by 13.6min of
“OFF” time, giving a total
treatment time of 180min

Sphenopalatine
ganglion

Infarct size CBF Infarct size: In SPG-stimulated rats (n = 6), both the
size of the stained cortical region and the intensity of
the dye were smaller compared to those in RB-treated
non-stimulated animals (n = 6). Rats stimulated either
at 15min or 24 h after photothrombosis showed a
significant reduction in loss of brain tissue compared to
non-treated controls (37.1 ± 6.0; 20.6 ± 4.8 and 17.9
± 5.1% reduction in cortical volume compared to the
contralateral hemisphere for RB, n = 9;
RB-SPG-15min, n = 8 and RB-SPG-24 h, n = 6,
respectively.
CBF: Stimulation at 1mA (200ms) did not induce a
significant increase in vascular diameter or rCBF (n =

7), however stimulation at 2mA resulted in a significant
increase in both vascular diameter and rCBF in 12 of
14 (86%) rats. Prolonging the pulse duration to 500ms
was associated with an additional significant increase
in diameter and rCBF (Figure 1C). No significant
changes in vascular diameter or rCBF were observed
in non-stimulated animals during 3 h of recordings (n
= 6).

Seylaz et al. (57) Healthy Rats (n = 6) Invasive electrical
stimulation

Frequency: 25–50Hz
Intensity: 100–200 uA
Pulse: 1ms Parameter: train
duration, 1 s on, 1 s off

Sphenopalatine
ganglion

CBF CBF: The stimulation of the sphenopalatine ganglion
provoked an increase in CBF in the ipsilateral parietal
cortex by ∼50%

Suzuki et al. (58) Healthy Rats (n = 31) Invasive electrical
stimulation

Frequency: 3, 10, 30, 60Hz
Intensity: 5 V Pulse: 0.5ms
Parameter: continuous 90 s
stimulation

Sphenopalatine
ganglion

CBF CBF: Stimulation at 10Hz induced a marked increase
of the cortical blood flow (CoBF) on the ipsilateral side,
whereas no change was observed on the contralateral
side. It reached a maximum mean value of 42.5% at
46 s, and then slightly declined during the remaining
stimulation period. Electrical stimulation of the
postganglionic fibers at different frequencies revealed a
maximal increase in the CoBF at 30Hz in the control
situation (47.2%), but at 10Hz after scopolamine
administration (51.6%)

Talman (59) Healthy Rats (n = 12) Invasive electrical
stimulation

Frequency: 4Hz
Intensity: 2–20V
Pulse: 2ms
Parameter: 80 s with a
continuous current

Sphenopalatine
ganglion

CBF CBF: At a maximal stimulus (4 V for 80 s) CBF
increased 40.4% from a basal value of 27.7 ± 2.7 LDU
to a maximum of 38.9 ± 4.3 LDU (pb0.03) during the
stimulus

CBF, cerebral blood flow; CoBF, cortical blood flow; DFA, dorsal facial area; LDU, laser doppler units; LV, lesion volume; MABP, mean arterial blood pressure; MCAO, middle cerebral artery occluded; mNSS modified neurological severity

score; rCBF, regional cerebral blood flow; SPG, sphenopalatine ganglion; TTC, 2,3,5-triphenyltetrazolium chloride; txSPGi, treatment Sphenopalatine-intact; VNS, vagus nerve stimulation.

Frontiers
in
N
eurology

|w
w
w
.frontiersin.org

1
0

N
ovem

b
er

2021
|Volum

e
12

|A
rticle

753182

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


B
aker

et
al.

R
esults

From
TrialP

ub
lications

and
Innovations

TABLE 4 | Characteristics of non-invasive animal studies.

References Experimental

model

Intervention Protocol of stimulation Ganglion target Outcomes of

interest

Results

Borsody et al.
(43)

Healthy Sheep (n =

6),
Dogs (n = 5)

Non-invasive magnetic
stimulation

Frequency: 5, 10, 20Hz
Intensity: 0.5, 1.0, 1.5 T
Pulse: 280 µs Parameter: 5min
stimulation duration with 30min
recovery

Geniculate
ganglion

CBF CBF: CBF was maximized at 120% baseline CBF at
10Hz frequency and 1.5 T

Borsody et al.
(44)

Stroke Dogs (n =

12)
Non-invasive magnetic
stimulation

Frequency: 10Hz
Intensity: 1.8 T
Pulse: 280 µs
Parameter: 5min stimulation
duration with 30min recovery

Geniculate
ganglion

Infarct volume CBF Infarct volume: The size of ischemic core was
statistically smaller in the stimulation group in
comparison to the control group (P < 0.01) that
showed an enlargement of ischemic core volume over
time
CBF: Average CBF was decreased to ≈70% of
baseline levels in the ischemic hemisphere region of
interest, and perfusion stayed at those depressed
levels in the control group, whereas it was returned to
normal by facial nerve stimulation (P < 0.01)

Chi et al. (45) Stroke Rats (n = 24) Non-invasive electrical
stimulation

Frequency: 2/15Hz
Intensity: 1.0mA
Pulse: N/A Parameter:30min
stimulation duration

Vagus nerve Infarct volume
Neurological score
CBF

Infarct volume: ratio of hemispheric infarct was
significantly lowered by EA (13.60 ± 2.20%, P < 0.05),
and there was no significant difference in the NEA
(35.48 ± 3.23%)
Neurological score: Lower neurological scores were
observed in the EA group as compared to the NEA
group
CBF: EA induced a constant and stable increase in the
CBF to the ischemic area, with a significant difference
compared with the other two groups at 20, 25, 30min
(P < 0.05).

Gulturk et al. (51) Healthy Rabbits
(n = 22)

Non-invasive electrical
stimulation

Frequency: 10Hz
Intensity: 5 V
Pulse: 0.5ms
Parameter: 90 continuous
stimulation

Trigeminal
ganglion

CBF CBF: The maximum increase in right and left CCoBF
was 15.6% and 15.1% respectively. The CCoBF values
of right hemisphere group were comparable to that of
the left hemisphere group.

Gürelik et al. (52) Healthy Rabbits
(n = 40)

Non-invasive electrical
stimulation

Frequency: 10Hz
Intensity: 5 V
Pulse: 0.5ms
Parameter: 90 continuous
stimulation

Trigeminal
ganglion

CBF CBF: In experiment group, CBF increased together
with the beginning of electrical stimulation. The flow
values were remained high as long as the stimulation.
Treatment group had 15% increase in CBF as
compared to sham and difference was statistically
significant.

Sanchez et al.
(56)

Healthy Pigs (n =

24)
Non-invasive magnetic
stimulation

Frequency: 10Hz
Intensity: 1.3 T, 1.6 T, 1.9 T
Pulse: 280 µs
Parameter: 2, 3.5, 5min
stimulation

Geniculate
ganglion

CBF CBF: The increase in CBF occurred throughout the
brain without obvious preference for the hemisphere
ipsilateral to stimulation. With stimulation powers ≥ 1.3
Tesla power and durations ≥ 2min, CBF increased in
the range of 30–90% above the pre-stimulation
baseline in most stimulation trials. On average, the
CBF increased by 77% over baseline.

CBF, cerebral blood flow; CCoBF, cerebral cortical blood flow; EA, electroacupuncture; MABP, mean arterial blood pressure; NEA, no electroacupuncture.
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TABLE 5 | Characteristics of included human studies.

References Experimental

subjects

Control group Intervention Protocol of stimulation Ganglion target Outcome of interest Results

Khurana et al. (60)
(ImpACT-1)

Ischemic stroke
patients (n = 98)

Historical control
(n = 165)

Invasive electrical
stimulation

Frequency: 10Hz
Intensity: 5 to 25mA
Pulse: 100–400 s
Parameter: 3–4 h for 5–7
consecutive days

Sphenopalatine
ganglion

mRS NIHSS mRS: Patients treated with SPG
stimulation had an average mRS lower by
0.76 than the historical controls(CMH test
p = 0.001).
NIHSS: The binary NIHSS success rate
was 45%(38/84) in ImpACT-1 compared
to 23.6%(39/165) in the NINDS controls (p
= 0.0006). Functional outcomes were
better in people treated with the Ischemic
Stroke System

Bornstein 2019
(ImpACT-24A) (61)

Ischemic stroke
patients (n = 202)

Sham stimulation
(n = 101)

Invasive electrical
stimulation

Frequency: 10Hz
Intensity: 5 to 25mA
Pulse: 100–400 s
Parameter: 4-h session for 5
consecutive days

Sphenopalatine
ganglion

Improved mRS score*;
Substantial neurological
recovery** Functional
independence***

(1) No statistical significance improve
3-month disability above expectations
(2) Cortical involvement subtype showed
statistical significance in improved mRS
score, substantial neurological recovery
but not functional independence

Bornstein 2019
(ImpACT-24B) (62)

Ischemic stroke
patients (n = 555)

Sham stimulation
(n = 519)

Invasive electrical
stimulation

Frequency: 10Hz
Intensity: 5 to 25mA
Pulse: 100–400 s
Parameter: 4-h session for 5
consecutive days

Sphenopalatine
ganglion

Improved mRS score*;
Functional independence***;

(1) No statistical significance improve
3-month disability above expectations
(2) Cortical involvement subtype showed
statistical significance in improved mRS
score but not functional independence

Saver et al.
(ImpACT-24M) (63)

Ischemic stroke
patients (n = 50)

Historical control
(n = 50)

Invasive electrical
stimulation

Frequency: 10Hz
Intensity: 5 to 25mA
Pulse: 100–400 s
Parameter: 4-h session for 5
consecutive days

Sphenopalatine
ganglion

CBF NIHSS CBF: Stimulation was associated with
increase in CBF velocity and flow volume
in the CCA during both peak systole and
end-diastole with a 44% increase mean
from baseline (p < 0.0001)
NIHSS: The normalized change in NIHSS
from day 1 to day 7 was significantly more
favorable in the SPG stimulation than
control patients. Evolution of the NIHSS in
the SPG stimulation patients was from
median 5 (IQR, 4–5) on day 1 to median 1
(IQR, 1–2) on day 7.

Sanchez et al. (52) Healthy volunteers
(n = 37)

N/A Non-invasive magnetic
stimulation

Frequency: 10Hz
Intensity: 1.0, 1.3, 1.6, 1.9T
(0.8 and up)
Pulse: 280 µs
Parameter: Stimulation for
3min after limit reached.

Geniculate
ganglion

CBF CBF: Clear responders to stimulation (i.e.,
a CBF increase of ≥ 25%) represents
about a third of all volunteers.

*Improved mRS score at 3 months beyond expectation.

**(NIHSS score ≤1 or improved ≥9) at 3 months.

***(mRS 0–2) at 3 months.

CCA, common carotid artery; mRS, Modified Rankin scale; NIHSS, NIH Stroke scale; SPG, Sphenopalatine ganglion.
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the current window-of-efficacy (19), with extended door-to-
treatment times leaving only 3–22% of AIS patients eligible for
mechanical thrombectomy (66), and <5% eligible for tPA (67).
Primary outcomes within ganglion stimulation trials should be
focused on increasing the efficacy of mechanical thrombectomy
for AIS patients that miss the current window-of-efficacy. The
upcoming trial (NCT04014621) looking at penumbra “freezing”
suggests future ImpACT studies involving invasive approaches
may soon follow this suggestion.

However, if the goal of future trials is to stop the evolution
of the penumbra prior to recanalization, it is key that ganglion
stimulation protocols add minimal delay to the already extensive
door-to-treatment time. The design of the current clinical
stimulation devices and associated procedures are limited in
their ability to accomplish this. The ImpACT-24B trial saw a
1.2-h difference in time from “last known well” on NIHSS to
the first stimulation session between sham and control groups;
this is likely due to the procedure associated with finding
the ideal stimulation intensity, a step inherently missing from
the sham procedure. Even without this optimization step, the
implantation of the invasive device takes a reported average of
20min, not including time for setting a sterile environment. This
substantially eats away at thrombectomy’s window-of-efficacy or
the even shorter 60-min window for tPA induction (33, 68).
Transfer time from intake hospitals to stroke centers is an
ideal time for rapid ganglion stimulation, however, requirements
associated with invasive implantation limit their applicability
in an ambulatory care setting. Even the non-invasive methods
used by Sanchez et al. (56) require TMS coils, which are
often large and require substantial energy supply to induce
magnetic fields.

The requirement of highly trained physicians, specialized
imaging, and sterile fields further limit the currently studied

innovations. Current invasive techniques for ganglion
stimulation can be employed only by specialized physicians,
demonstrated by 58% of implantations in the ImpACT-24B trial
being performed by surgeons and anesthesiologists, with the
remaining performed by neurologists (62). Implanting the device
also requires an advanced optical guidance system that would
likely only be available to stroke centers, limiting its ability to be
implemented in peripheral hospitals prior to transfer.

The research to date on ganglion stimulation is extremely
promising, but further innovation is required to find a
workable integration of ganglion stimulation into current clinical
procedures. An inherent focus must be on limiting the evolution
of the penumbra and minimizing the size of the ischemic core,
with the primary goal of elongating the window-of-efficacy for
mechanical thrombectomy or tPA. Solutions should look to
benefit these current treatment options instead of supplanting
them, and find a way to be used primarily at peripheral non-
stroke centers.
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