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Abstract

Objective

To evaluate a fractional order calculus (FROC) model in diffusion weighted imaging to differ-

entiate between malignant and benign breast lesions in breast cancer screening work-up

using recently introduced parameters (βFROC, DFROC and μFROC).

Materials and methods

This retrospective analysis within a prospective IRB-approved study included 51 partici-

pants (mean 58.4 years) after written informed consent. All patients had suspicious screen-

ing mammograms and indication for biopsy. Prior to biopsy, full diagnostic contrast-

enhanced MRI examination was acquired including diffusion-weighted-imaging (DWI, b =

0,100,750,1500 s/mm2). Conventional apparent diffusion coefficient Dapp and FROC param-

eters (βFROC, DFROC and μFROC) as suggested further indicators of diffusivity components

were measured in benign and malignant lesions. Receiver operating characteristics (ROC)

were calculated to evaluate the diagnostic performance of the parameters.

Results

29/51 patients histopathologically revealed malignant lesions. The analysis revealed an

AUC for Dapp of 0.89 (95% CI 0.80–0.98). For FROC derived parameters, AUC was 0.75

(0.60–0.89) for DFROC, 0.59 (0.43–0.75) for βFROC and 0.59 (0.42–0.77) for μFROC. Compari-

son of the AUC curves revealed a significantly higher AUC of Dapp compared to the FROC

parameters DFROC (p = 0.009), βFROC (p = 0.003) and μFROC (p = 0.001).
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Conclusion

In contrast to recent description in brain tumors, the apparent diffusion coefficient Dapp

showed a significantly higher AUC than the recently proposed FROC parameters βFROC,

DFROC and μFROC for differentiating between malignant and benign breast lesions. This

might be related to the intrinsic high heterogeneity within breast tissue or to the lower maxi-

mal b-value used in our study.

Introduction

Breast cancer screening programs have been established in many countries in order to reduce

the burden of breast cancer in the female population [1–3]. While substantial evidence has

been provided regarding the benefit of these programs using X-ray mammography as the

screening tool, the high rate of false positive findings triggering unnecessary invasive biopsies

and potential overdiagnosis have repeatedly been criticized [2, 4].

Current reports from organized, quality-assured breast cancer screening programs report a

substantial false-positive rate of about 50% in invasive biopsies [5]. Alternative or additive

imaging modalities to address this issue have therefore been introduced and are currently

being investigated regarding the benefit in a screening environment [6, 7]. Amongst them,

magnetic resonance imaging (MRI) has been a promising method, since abbreviated protocols

might allow the use in a screening environment and provide a high sensitivity for detecting

malignancy exceeding that of X-ray mammography [7].

In addition to contrast enhanced protocols, abbreviated unenhanced protocols omitting

contrast agent administration have been subject of different studies with promising results

regarding the differentiation between malignant and benign breast lesions [8–11]. Besides

shortening examination times, another aspect of unenhanced, abbreviated breast MRI proto-

cols represent recent reports on gadolinium deposition in the human brain after repetitive

intravenous application with unclear clinical relevance [12, 13].

One sequence of increasing interest in breast MRI protocols is the diffusion weighted imag-

ing (DWI) sequence [14–16], which is thought to visualize the free Brownian water motion

[15, 17–19]. Highly packed cell conglomerates restrict water diffusion thus leading to signal

intensity changes on diffusion weighted images.

DWI images are commonly used to calculate apparent diffusion coefficient (Dapp) maps.

Those maps allow quantifying diffusion restriction, but the clinical acceptance is limited

related to the overlap between malignant and benign lesions. Other diffusion models have

therefore been suggested aiming to improve the differentiation between tissue structures, e.g.

in order to represent the tissue heterogeneity. Increased tissue heterogeneity can be assumed

in many malignant entities and might be as well of interest in breast imaging. Malignant cell

conglomerates might demonstrate an increased heterogeneity as compared to benign lesions

since breast cancer cells have been described as morphologically highly variable [20]. One of

the diffusion models aiming to produce values that are thought to be related to tissue heteroge-

neity is the fractional order calculus model (FROC) [21–25]. Using the FROC measures βFROC,

DFROC and μFROC has recently been proposed to contribute to the differentiation of brain

tumors exceeding a conventionally calculated apparent diffusion coefficient Dapp [21].

Therefore this study aimed at investigating whether the previously proposed new FROC

derived parameters βFROC, DFROC and μFROC as a measure of tissue heterogeneity might be also

of diagnostic value in breast imaging in order to differentiate between malignant and benign

lesions using unenhanced breast MRI as compared to the apparent diffusion coefficient (Dapp).

Fractional order calculus model in diffusion weighted breast imaging
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Materials and methods

Patients

This study was conducted as a retrospective subgroup analysis of an ongoing larger prospective

multicenter study on DWI in breast imaging with written informed consent and institutional

and governmental review board approval. Preliminary results of patients in one study site that

received acquisition of a vendor specific DWI sequence (Diffusion Weighted Imaging With

Background Suppression, DWIBS) have been published regarding the usability of different

visual radiologists´ reading strategies of an abbreviated breast MRI protocol for breast cancer

screening work-up and in regards to so called radiomics analyses of the DWI ()[9, 26–28].

Mathematical analysis of the FROC derived parameters βFROC, DFROC and μFROC as evaluated

in this study here have not been part of these previously published analyses and the patients

described originate from a different study site. Since all patients belong to one multicenter

study concept, however, data, principles and background of the methods described here may

partially overlap to the previous reports [9, 26–28].

51 patients (mean age 58 years; SD ± 6.2) were analyzed out of the recruitment period

between May 2015 and February 2016. Inclusion criteria were: female participants of the

national breast cancer screening program with a BIRADS 4/5 lesion in the primary screening

X-ray mammogram; a regular subsequent screening work-up process that included clinical,

ultrasonographic (US) and, if necessary, repeat mammography examinations; final indication

for biopsy in concordance to the screening guidelines and the Breast Imaging Reporting and

Data System (BI-RADS) category 4 or 5.

MR imaging

Patients participating in the study received a MR examination prior biopsy as previously

described [26]. The MR examination consisted of a full diagnostic protocol including unen-

hanced morphologic sequences (T1-weighted, T2-weighted), contrast enhanced sequences

(0.1 mmol Gadobenate Dimeglumine (Multihance; Bracco, Mailand, Italy) per kilogram of

body weight) and diffusion weighted sequences with details described in Table 1. MR imaging

examinations were performed using a 1.5-T MR imaging unit (Aera, Siemens, Erlangen, Ger-

many) with a dedicated 18-channel breast coil. Participants were placed in prone position with

the breasts not compressed but softly fixed using foamed material.

The DWI sequence was run with multiple b-values to allow for further fitting strategies.

The upper limit of the b-values was chosen in order to provide a high specificity for displaying

suspicious lesions while preserving sufficient suppression of other tissues. The DWI sequence

was acquired prior contrast agent administration to avoid a potential influence of gadolinium

on the DWI signal. The following parameters were applied: Echo Time (ms) 80; Repetition

Time (ms) 1170; b-values 0, 100, 750, 1500 s/mm2; Spectral attenuated Inversion Recovery

(SPAIR) fat suppression; Parallel Imaging, EPI-factor 96; separation between two diffusion

gradient lobes 35.1 ms; duration of each diffusion gradient 14.1 ms; field of view 480 x 240

mm2; slice thickness 3 mm; imaging time 6:44 minutes; 50 slices.

Image analysis

For imaging analysis, a previously published methodology for FROC analyses in brain tumors

for the analysis of breast lesions was adapted [21, 22].

Regions of interest (ROIs) were drawn at the inner border of the lesion that was indicated

for biopsy by using the images acquired with b = 1500 s/mm2. ROIs were placed slice by slice

for the respective lesion creating a 3-dimensional volume for each lesion. Lesions were

Fractional order calculus model in diffusion weighted breast imaging
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correlated to the X-ray mammogram using a visual correlation by two radiologists (�blinded�,

<1 year experience, �blinded�,>5 years experience) in consensus, since correlation by means

of invasive markers (clips) was not available.

The FROC model was used to calculate the voxel intensity within a diffusion weighted

image as given by the equation

S ¼ S0exp � DFROCm
2ðbFROC� 1Þ

FROC ðgGdÞ
2bFROC D �

2b � 1

2bþ 1
d

� �� �

ð1Þ

In this equation, S0 is the signal intensity as given without diffusion weighting, DFROC is the

FROC diffusion coefficient, βFROC is the fractional order derivative in space, G is the diffusion

gradient amplitude, δ is the diffusion gradient pulse width, Δ is the gradient lobe separation

[21–23].

The apparent diffusion coefficient Dapp was calculated using a monoexponential fit using

images acquired with b = 0 s/mm2, b = 100 s/mm2 and b = 750 s/mm. The fitting of the FROC

parameters was performed in adaption to previous studies [21, 22] in a voxel by voxel manner

using the Levenberg-Marquardt non-linear fitting method [21]. The initial DFROC value was

obtained from images at b-values�750 s/mm2 using the monoexponential fit. The initial

βFROC value was set to 0.5. Using these initial values for DFROC and βFROC, the initial μFROC

value was determined by fitting Eq 1 with μFROC being the only free variable. Afterwards,

FROC parameters βFROC, DFROC and μFROC were calculated with the Levenberg-Marquardt

algorithm using the b-values 100, 750, and 1500 s/mm2. S0 was not fitted but set to the signal

value at b = 0. This fitting approach is reproducible, i.e. performing this procedure twice yields

identical results. However, DFROC and μFROC are strongly coupled in Eq 1, so that the obtained

values of these parameters were found to depend on their initial values. This limitation is

described in more detail in the Supplemental Information.

The choice of b-values in this study allowed for an additional evaluation using the IVIM

model [29]. IVIM parameters were calculated using using all b-values fitting with the

Table 1. Sequence parameters.

Slice

thickness

(mm)

FOV

(mm x

mm)

Voxel

Size

Orientation TE

(ms)

TR

(ms)

b-value s/mm2 Phase enconding

direction

Additional feature

Localizer

T1w TSE 3 384x384 1x1.3 Coronal 8 886 - RL Grappa x2

T2w fs 3 263x350 0.9x0.6 Transverse 82 8490 - RL “TIRM”

T2w TSE 3 263x350 0.9x0.6 Transverse 120 6710 - RL Grappa x2

DWI 3 480x240 2.5 x 2.5 Transverse 80 11700 b1 = 0, b2 = 100,

b3 = 750, b4 =

1500

AP SPAIR, Parallel imaging: Grappa

x2, EPI-factor 96; Number of

averages: 2

T1w DCE 1 350x263 1.0x0.6 Transverse 4.6 11 - RL 6 dynamic pre-/post-contrast

series, each 1.23 min; Grappa x2

T1w TSE 2 156/343 1.2/0.8 Transverse 4.6 30 - AP 3D

Abbreviations: TSE = Turbo Spin Echo, FOV = Field of View, TE = Echo Time, TR = Repetition Time, RL = Left-Right, AP = Anterior-Posterior,

SPAIR = Spectral Attenuated Inversion Recovery; TIRM = Turbo Inversion Recovery Magnitude, DCE = dynamic contrast-enhanced;

GRAPPA = generalized autocalibrating partially parallel acquisition, mm = millimeter.

https://doi.org/10.1371/journal.pone.0176077.t001
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Levenberg-Marquardt algorithm:

S ¼ S0½fIVIMexpð� bD�IVIMÞ þ ð1 � fIVIMÞexpð� bDIVIMÞ�;

where D�IVIM is the pseudo diffusion coefficient and fIVIM is the perfusion fraction. D�IVIM was fit-

ted, but not used for further analysis due to the observed large fit instability.

Lesion size was measured using T2-weighted images with the maximal lesion diameter

being measured in axial orientation by one reader.

To analyze a potential influence of lesion size, lesions were separated into two groups

(below and above 10 mm maximal in plane diameter) thus defining a clinical threshold. The

quantitative FROC model analysis was performed individually for these two groups.

All image processing was performed using software code developed with Matlab (Math-

Works, Natick, Massachusetts).

Histopathology

All patients participating this study underwent core-needle biopsy of the suspicious lesion as

indicated in the screening clarification process. Histopathological analyses served as the stan-

dard of reference regarding the classification in benign or malignant lesions.

Statistical analysis

For each patient, the values of the parameters (Dapp, βFROC, DFROC and μFROC) and of the

IVIM parameters were calculated for each voxel within the Volume of Interest. For both, the

malignant and the benign lesions, mean and 25% - 75% percentile were calculated and com-

pared using Mann-Whitney U test after normality testing with Shapiro-Wilk test failed.

Receiving operating characteristics (ROC) were calculated in order to evaluate the area

under the ROC curve (AUC) and to assess the performance of each individual parameter.

Significant differences were considered for a p-value <0.05. Statistics were calculated using

SigmaPlot (Systat Software; Erkrath, Germany).

Results

Cancer burden and histopathological characteristics within the study

population

Of the 51 patients in the study, 29 (58%) had a malignancy. Of the malignant lesions, most

lesions were described as invasive ductal carcinoma (IDC; n = 26; 89.6%), two lesions were

invasive lobular carcinoma (ILC; 6.8%) and one lesion was a ductal carcinoma in situ (DCIS;

3.4%). Of the benign lesions, six lesions were fibroadenoma (27.3%), five lesions were revealed

as fibrosis (22.7%), three lesions were papilloma (13.6%), two lesions each were usual ductal

hyperplasia (UDH, 9.1%), compacted breast tissue (9.1%) and fibrocystic mastopathy (9.1%),

and one lesion each was fat tissue (4.5%) and granulomatous lymphadenitis (4.5%). (see

Table 2 for details).

Lesion size

Mean lesion size for benign breast lesions was 11.54 mm (SD ± 5.16 mm) with a range from

4.9–21.7 mm. Malignant lesion had a mean lesion size of 12.54 mm (SD ± 4.03 mm) with a

range of 6.3–21.3 mm without significant difference to the benign lesion (p = 0.18).

Fractional order calculus model in diffusion weighted breast imaging
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Diagnostic performance of apparent diffusion coefficient Dapp, fractional

order calculus (FROC) derived parameters and intravoxel incoherent

motion (IVIM) derived parameter

Dapp was significantly decreased (p<0.001) in malignant lesions (median 0.97 μm2/ms; 25% -

75% percentile 0.87–1.01 μm2/ms) compared to benign lesions (1.20 μm2/ms; 1.06–1.47 μm2/

ms) (Fig 1). Analysis of the Area Under the Curve (AUC) revealed an AUC of 0.89 (95% CI

0.79–0.974) for Dapp.

Fractional Order Calculus (FROC) derived parameters βFROC and μFROC revealed no statis-

tically significant difference between malignant and benign lesions (for βFROC p = 0.278, for

μFROC p = 0.258) (Fig 1). In detail, βFROC revealed a median of 0.69 (25%–75% percentile 0.60–

0.77) for malignant and 0.75 (25%–75% percentile 0.64–0.78) for benign lesions. μFROC

resulted in a mean of 8.34 μm (25%–75% percentile 7.74–9.05) for malignant and 8.91 μm

(25%–75% percentile 7.30–10.30) for benign lesions. DFROC revealed a significant difference

between malignant and benign lesions with a DFROC of 1.03 μm2/ms (25%–75% percentile

0.94–1.2) for malignant and 1.35 μm2/ms (25%–75% 1.14–1.51) for benign lesions (p = 0.003).

The AUC analysis revealed an AUC for Dapp of 0.89 (95% CI 0.80–0.98) and for DFROC of

0.75 (0.60–0.89). FROC parameter βFROC showed an AUC of 0.59 (0.43–0.75) and μFROC

revealed an AUC of 0.59 (0.42–0.77).

Individual comparison of the AUC curves revealed a significantly higher AUC of Dapp com-

pared to the FROC parameters DFROC (area difference 0.14; p = 0.009), βFROC (area difference

0.29; p = 0.003) and μFROC (area difference 0.29; p = 0.001) (Fig 2, image examples are shown

in Fig 3).

The IVIM parameter DIVIM revealed an AUC of 0.91 (95% CI 0.82–0.99) and for fIVIM and

AUC of 0.54 (0.37–0.69) was found.

Evaluation of the size dependence of the AUC curves for the different parameters revealed

a tendency for increasing AUC with larger sizes for Dapp, DFROC and μFROC. Dividing the

lesions into groups larger or smaller than 10 mm revealed for lesions >10 mm an AUC of Dapp

of 0.92 (95% CI 0.82–1.0) and for DFROC of 0.81 (0.63–0.99). FROC parameter βFROC showed

an AUC of 0.59 (0.37–0.81) and μFROC revealed an AUC of 0.60 (0.35–0.86). For lesions

Table 2. Type and distribution of lesions within the study population.

Number Percentage

Benign Granulomatous lymphadenitis n = 1 4.%

Compacted breast tissue n = 2 9.1%

(n = 22) Ductal hyperplasia n = 2 9.1%

(52%) Fibroadenoma n = 6 27.3%

Fibrosis n = 5 22.7%

Fibrocystic mastopathia n = 2 9.1%

Papilloma n = 3 13.6%

Fat tissue n = 1 4.5%

Malignant

n = 29 Invasive ductal carcinoma (IDC)* n = 26 89.6%

(58%) carcinoma in situ (DCIS) n = 1 3.4%

Invasive lobular carcinoma n = 2 6.8%

Lesion Size Mean SD

Benign 11.54 mm 4.03 mm

(range 4.9–21.7)

Malignant 12.56 mm 5.17 mm (range 6.3–21.3)

https://doi.org/10.1371/journal.pone.0176077.t002
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Fig 1. Boxplots. Boxplots of the mean values for conventional apparent diffusion coefficient Dapp (A) and fractional order calculus (FROC)

model derived parameters DFROC (B), βFROC (C) and μFROC (D) for benign and malignant lesions. Vertical bars mark the range of the data

excepting outliers, dots mark outliers, box marks 25th– 75th percentile, horizontal bar marks median.

https://doi.org/10.1371/journal.pone.0176077.g001
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smaller than 10 mm the AUC of Dapp decreased to 0.86 (95% CI 0.61–1.0) and for DFROC an

AUC of 0.64 (0.32–0.96). FROC parameter βFROC showed an AUC of 0.66 (0.38–0.93) and

μFROC had an AUC of 0.52 (0.23–0.80).

A summary of the results is shown in Table 3.

Discussion

Here we demonstrate that using the conventional apparent diffusion coefficient Dapp in diffu-

sion weighted breast imaging provides significantly different values between malignant and

benign breast lesions. In contrast, out of the recently proposed FROC diffusion parameters

βFROC, μFROC and DFROC, only the latter parameter revealed significant differences between

D    ,    AUC=0.89
D  , AUC=0.75
µ ,  AUC=0.59
      ,  AUC=0.59

FROC

FROC

FROCβ

app

Fig 2. Receiving operator characteristics (ROC) curves. ROCs visualizing the diagnostic accuracy of the diffusion coefficient

(D) and FROC derived parameters βFROC, μFROC, and DFROC.

https://doi.org/10.1371/journal.pone.0176077.g002
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malignant and benign lesions. The other parameters derived from the fractional order calculus

model did not reliably differentiate between malignant and benign breast lesions detected in

X-ray mammography. Comparing the different parameters, Dapp resulted in a higher diagnos-

tic accuracy in terms of AUC for predicting malignancy.

This is in concordance to existing literature and emphasizes the robust nature of the Dapp

for lesion characterization in the breast. Different studies have provided evidence that Dapp val-

ues might help distinguish between malignant and benign breast lesions [14, 17–19]. However,

in a similar manner as imaging features, Dapp values show some overlap between malignant

and benign lesions providing evidence for the necessity of further research. Common

approaches to calculate the Dapp values rely on monoexponential or biexponential models of

Fig 3. Example of a breast cancer screening participant (66 years). Lesion with segmentation demonstrated as pink line. A) T2-weighted morphological

sequence; B) diffusion weighted imaging (DWI, b = 1500 s/mm2); C) diffusion coefficient map Dapp (scale given in μm2/ms); D) FROC diffusion coefficient

map (scale given in μm2/ms); E) βFROC-map demonstrating a more heterogeneous signal; F) μFROC-map demonstrating as well a relatively heterogeneous

signal within the entire breast. Histopathology: invasive ductal carcinoma (IDC).

https://doi.org/10.1371/journal.pone.0176077.g003

Table 3. Area, 95% confidence interval and asymptotic significance of ROC curves.

FROC parameters apparent diffusion coefficient

DFROC βFROC μFROC Dapp

Area 0.75 0.59 0.59 0.89

95% confidence interval 0.60–0.89 0.43–0.75 0.42–0.77 0.80–0.98

p value p = 0.002 p = 0.27 p = 0.25 p<0.0001

https://doi.org/10.1371/journal.pone.0176077.t003
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diffusion within the imaged area/voxel [30–32]. However, potential intravoxel heterogeneity

of the diffusion process might be underrepresented using these methods. A recently proposed

new approach to estimate diffusions parameters suggested to take into account potential fur-

ther diffusion derived parameters is the fractional order calculus model (FROC) [21–23].

Amongst those FROC parameters, βFROC is a parameter recently described differentiating

high- from low-grade glioblastomas by Sui et al. and described as mathematically equivalent to

a heterogeneity measure described by Bennett et al. [21, 33]. Further parameters calculated

with the FROC model are μFROC and DFROC. μFROC had previously been described as inferior

in the grading of glioblastomas [21, 22].

The potential interdependence between μFROC and DFROC, which we consider as a limita-

tion (see Supplemental Information: S1 Text: On the coupling of DFROC and μFROC; S1 Fig),

might contribute to this fact as well as the fact that our study used a spectrum of b-values in

the lower spectrum of previously described data [21–23] (see Supplemental Information: S2

Text: Choice of b-values;; S2 Fig). In addition, relevant general limitations of μFROC were

already described by Zhou et al. since the calculation of μFROC becomes increasingly unstable

regarding certain variations of βFROC [21, 22].

In contrast to a previous study in brain tumors [21], FROC parameters did not perform as

well as conventional apparent diffusion coefficient Dapp in characterizing breast lesions. This

might be related to the fact that the FROC parameter βFROC is thought to be correlated to

structural complexity [23]. Thus, there might be underlying biophysiological properties influ-

encing the applicability of this complex FROC model in certain tissue components [21–23].

FROC parameters thus might be of dedicated value in differentiating changes within a more

homogenous tissue such as the brain [21]. The breast tissue, especially in cases of fibrocystic

changes and mastopathic tissue, already presents itself in a high structural complexity without

interpreting the pure presence of structural complexity and microstructural heterogeneity as a

dedicated index of malignancy. Within such a complex tissue structure, the standard apparent

diffusion coefficient Dapp, as thought to be correlated to increasing cell density, might be of

higher diagnostic value since allowing to detect and quantify abnormal cell conglomerates

[14].

Although βFROC is thought to be related to structural complexity [23], a straightforward

link to the underlying microstructure is difficult to unveil. One difficulty is that βFROC values

smaller than one, which were found in our study and in other works (e.g. [21–23]), correspond

to an initial slope of infinite magnitude of the signal damping with respect to b at b = 0. As this

initial signal damping at b = 0 is commonly thought to reflect the apparent diffusion coefficient

averaged over the medium [34], it becomes difficult to relate the FROC parameter DFROC to

Dapp. One might argue that this initial slope is masked by the intravoxel incoherent motion

(IVIM) effect anyway [29]. But by suppressing the blood signal [35] or by using flow-compen-

sated diffusion encodings [36, 37], the IVIM effect can be suppressed so that this loophole is

not available in general. Presumably one must restrict oneself to b-values larger than a certain

threshold when using the FROC model. Maybe multi-compartment distribution models

might be useful to gain insights on appropriate thresholds [38, 39]. Although not primarily

being the scope of this manuscript, future in depth investigation of IVIM parameters as previ-

ously described to be helpful for lesion characterization might further contribute to DWI anal-

yses of the breast with DIVIM providing a high AUC.

There are certain limitations to this study. First, we did not obtain as many and high b-val-

ues as used in the previously described studies [21–23]. This might have influence on the cal-

culation of the parameters and limit the results and makes it impossible to assess the correct

functional form of the signal damping preventing a validation of the appropriateness of the

model for the applications to the data of our study. This aspect needs to be considered, since
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the diagnostic performance of our FROC parameters thus might both be an over- or underesti-

mation of the diagnostic potential of the method. A second limitation is found in the relatively

low number of study subjects for benign and malignant lesions, which is, however, in the

range of other studies investigating novel fitting methods in diffusion weighted imaging. Fur-

ther the correlation between the X-ray mammography as the primary descriptor of the lesion

and the MR mammography was done visually without invasive markers, thus miscorrelations

cannot be completely ruled out, however are considered minor due to the double consensus

reading for lesion definition by two radiologists. Since the described breast lesions are assum-

edly smaller than the investigated brain lesions. Further, signal to noise (SNR) varied substan-

tial between the FROC derived maps, which can have a bias on the accuracy and precision of

derived parameters. Another limitation is that it has been reported that the diagnostic accuracy

of quantitative DWI analyses might be influenced by lesion size, and the here reported lesions

were rather small compared to literature [40].

In conclusion, to our knowledge, this is the first description of using an advanced FROC fit-

ting model for diffusion weighted imaging of the breast. DWI derived FROC parameters

βFROC and μFROC did not show a significant improvement in differentiating between malignant

and benign breast lesions compared to apparent diffusion coefficient Dapp, which might be

related to the structural heterogeneity of breast tissue or to the maximal b-value used.
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