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Abstract

Background: Pre-operative imaging devices generate high-resolution images but
intra-operative imaging devices generate low-resolution images. To use high-
resolution pre-operative images during surgery, they must be deformed to reflect
intra-operative geometry of brain.

Methods: We employ biomechanical models, guided by low resolution intra-
operative images, to determine location of normal and abnormal regions of brain
after craniotomy. We also employ finite element methods to discretize and solve the
related differential equations. In the process, pre- and intra-operative images are
utilized and corresponding points are determined and used to optimize parameters
of the models. This paper develops a nonlinear model and compares it with linear
models while our previous work developed and compared linear models (mechanical
and elastic).

Results: Nonlinear model is evaluated and compared with linear models using
simulated and real data. Partial validation using intra-operative images indicates that
the proposed models reduce the localization error caused by brain deformation after
craniotomy.

Conclusions: The proposed nonlinear model generates more accurate results than
the linear models. When guided by limited intra-operative surface data, it predicts
deformation of entire brain. Its execution time is however considerably more than
those of linear models.

Background
Medical imaging methods play a key role in localizing tissues and organs during sur-

gery. Pre-operative imaging devices generate high-resolution images of the tissues and

organs while intra-operative imaging devices generate their low-resolution images. The

pre-operative images however cannot be easily used during surgery since they do not

reflect correct anatomy and geometry of tissues and organ intra-operatively. This is

due to motions and deformations of soft tissues over time. The end result is that actual

positions of the tissues during surgery do not match with those reflected in their preo-

perative images. To be able to use pre-operative images intra-operatively, they should

be deformed based on the tissue geometry reflected in the intra-operative images.

However, intra-operative images are low resolution and low quality. To overcome

these limitations, intra-operative images are used along with biomechanical models to

update pre-operative images such that they reflect the tissue geometry during surgery
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[1-6]. In this process, the Finite Element Method (FEM) [7] is employed to solve the

partial differential equations that govern deformation behavior of soft tissues.

In our previous study [8], we used the finite element method to develop and com-

pare two linear models: mechanical and elastic [9-12] for image-guided neurosurgery.

We showed that accurate computation of brain deformation due to craniotomy can be

achieved by defining a load through prescribed displacements of the corresponding

points in the pre- and intra-operative images. Experimental results showed that the

mechanical model was superior to the elastic model; the brain deformation could be

estimated by the mechanical model more accurately. The execution time of the

mechanical model was however about 50% more than that of the elastic model.

In this paper, a nonlinear model is developed for estimating the brain deformation

and compared to the linear mechanical model. The mechanical model [13,14] is based

on the principle that the sum of the virtual work from the internal strains is equal to

the work from the external loads. In this formulation, the brain deformation is

assumed to be infinitesimal, the brain tissue is treated as an elastic material, and the

relation between strain and stress is linear. The nonlinear model [15], on the other

hand, is based on the equation of equilibrium that relates the covariant differentiation

of stress (with respect to the deformed configuration) to the body force per unit mass.

In this model, the brain deformation may be large, brain tissue is treated as a hyper

visco-elastic material, and the stress-strain behavior of the tissue is non-linear [16,17].

To solve the equations of the models, actual values of the organ parameters are

needed. To this end, we optimize the initial, approximate values to obtain the actual

values. The cost function for this optimization is the distance between the estimated

positions of the pre-operative anatomical landmarks and their corresponding actual

positions in the intra-operative images. One half of these landmarks are utilized in the

optimization process and the other half in the evaluation process. We compare the

models using their errors on simulated and real data sets, using the corresponding

points that are not used in the optimization process.

In the next section, the proposed models, meshing, and boundary conditions are

explained. Optimization of the parameters of the models is also described in this sec-

tion. In Section 3, the results obtained for a test sphere as a model of the brain and

real brain extracted from MRI are presented. Finally, Section 4 summarizes the conclu-

sions of the work.

Methods
Construction of 3D Model and Finite Element Mesh

Patient-specific geometric data are obtained from a set of six pre-operative and intra-

operative MRI of patients undergoing brain tumor surgery. The human studies were

reviewed and approved by the IRB office of the Brigham and Women’s Hospital (Har-

vard Medical School, Boston, Massachusetts, USA). The pre- and intra-operative

images are registered rigidly in the Surgical Planning Laboratory. In order to distin-

guish between the brain parenchyma and tumor, the corresponding regions of the

images are segmented manually using the 3D-Slicer software (open-source software for

visualization, registration, segmentation and quantification of medical data; see http://

www.slicer.org for details). The results are two-dimensional contours a sample of

which is shown in Figure 1.
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From the two-dimensional contours, the surface and volumetric patches are created

using the COMSOL3.3 software (see http://www.comsol.com for details) to represent

three-dimensional models of the surfaces and volume of the brain parenchyma and

tumor. This software is based on the finite element methods developed for solving partial

differential equations, visualization, and meshing and has strong post-processing modules.

For creating the 3D model, the slices that are near the craniotomy surfaces have higher

resolutions than the slices far from the surface. This means that for each case, we have a

specific number of slices with a specific thickness. For the craniotomy surface, we choose

more slices than the other parts because if all parts have the same number of slices, the

implementation will be time consuming or the accuracy of the model will be insufficient if

the total number of slices is small. Therefore, in the craniotomy part, the contours are

selected very close to each other and in other parts they are selected relatively far from

each other as shown in Figure 2. Also, for the tumor, we use close contours.

Figure 3 shows the final models of the tumor and the brain such that both volumes

can be seen. After creating the 3D models, automatic 4-node tetrahedral meshes with

Lagrange shape functions are generated for both of the parenchyma and the tumor

Figure 1 Segmented MRI of the head used to construct a patient specific brain mesh. (a) Tumor
segmented in a pre-operative image. (b) Another pre-operative slice of the brain. (c) Brain segmented from
image (b). (d) Contour of the brain. Pre-operative images are used to construct computational models of
the brain and tumor while the intra-operative images are used to measure the displacements of the
anatomical landmarks.
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using the COMSOL3.3 software. An example of the mesh generated by the software is

shown in Figure 4, which consists of 41,617 tetrahedral elements.

Biomechanical Models of Brain

The biomechanical models guided by low-resolution intra-operative images may be

used for updating the high-resolution pre-operative images [18,19]. These models can

be linear or nonlinear. In our previous work [8], we compared two linear models (elas-

tic and mechanical) and found that the mechanical model generated more accurate

results. In this paper, we develop a nonlinear model and compare it to the best of the

two linear models studied previously, i.e., the mechanical model. Relying on the study

of [13], the initial coefficients of the mechanical model are set to Young modules = 3

kPa and Poisson ratio = 0.45. Next, we explain the nonlinear model. The readers are

referred to our previous work [8] for the details of the mechanical model.

Non-linear Model

In this model, the brain is supposed to be a single-phase continuum undergoing large

deformations. In this analysis, the stresses and strains are measured with respect to the

current configuration. Therefore, using Almansi strain and Cauchy stress [20], the vir-

tual work principle can be written as:

 ij ij i
B

i

VV

i
S

i

S

dV f u dV f u dS= +∫∫ ∫ , (1)

Figure 2 For creating the 3D model, the slices that are near the craniotomy surfaces have higher
resolutions than the slices far from the surface. For the craniotomy surface, we choose more slices
than the other parts because if all parts have the same number of slices, the implementation will be time
consuming or the accuracy of the model will be insufficient if the total number of slices is small.
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where  ij ij
V

dV∫ is the internal virtual work of the strain, f u dVi
B

i
V
∫ is the virtual

work of the external force applied to the entire body, f u dSi
S

i
S
∫ is the virtual work of

the external force applied to the surface, and u is the displacement parameter. As the

brain deforms, the volume V and surface S in the integrals of equation (1) change. As

such, they are part of the solution and the input data can be used to set their initial

values. To find their values after deformation, appropriate finite element procedures

can be used to solve equation (1) with equation formula that describes the mechanical

property of the material, i.e., appropriate constitutive models. To this end, we use the

nonlinear model proposed by [21,22]. This model is suitable for the low strain rates

that are typical in surgical procedures and is described in equation (2).
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Figure 3 Final model of parenchyma and tumor. The models of parenchyma and tumor are created
individually and then combined to create a model of the brain.
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where τk are characteristic times, gk are the relaxation coefficients, N is the order of

polynomial in strain invariants, and J1, J2 are strain invariants as described by:

J Trace B
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where B is the left Cauchy-Green strain tensor. We use the stationary form of the

equation (2) because we solve the problem for the steady state form of deformation

when the deformation of the brain is stabilized. All details about this equation, how

their parameters are determined, and how the stationary form of the equation can be

found, are described in [22]. The initial values of the model’s parameters are taken

from [22] for n = 2, N = 2 as summarized in Table 1.

Figure 4 Patient-specific brain mesh consisting of 41,617 tetrahedral elements. After creating the 3D
models, automatic 4-noded tetrahedral meshes with Lagrange shape functions are generated for both of
the parenchyma and the tumor using the COMSOL3.3 software.

Table 1 Parameters used for the nonlinear model as the initial values for the
optimization process

Instantaneous Response Characteristic Time Characteristic Time

C100 = 263 (Pa) τ1 = 0.5 (s) τ2 = 50 (s)

C010 = 263 (Pa)

C110 = 0 (Pa) Instantaneous Elasticity Instantaneous Elasticity

C020 = 491 (Pa) g1 = 0.450 g2 = 0.365

C200 = 491 (Pa)
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Boundary Conditions

To solve the equations governing the models, boundary conditions should be specified.

To this end, we assume that the exposed surface and the nearby regions are free to

move but the remaining surfaces are fixed. The exposed surface is defined manually

using the intra-operative images. Thus, the parameter u is free to vary on the exposed

surfaces and the surfaces near it, and is zero on the remaining surfaces. However, it is

unconstrained for the inside of the volume. Figure 5 shows the boundary condition for

a sample case. The exposed surface is shown in blue and the fixed surface is shown in

red. Note that when the skull is exposed, the exposed and the nearby tissues deform.

In both models, we have conditions for the force (F) variable rather than the displa-

cement variable. Previous works suggest that this parameter is a constant (fixed) value

for each surface and determine its value for each surface by registering the intra- and

pre-operative volumes [13]. We fix this parameter for the center of the exposed surface

and let it change for the remaining exposed surface. We also use F = u for the bound-

ary conditions of the fixed boundary nodes because all of the equations lead to the

equation Ku = F (K encapsulates all coefficients of the equation) and therefore, accord-

ing to [13], the non-diagonal elements of the rigidity matrix K for which the deforma-

tion is supposed to be known are zero and the diagonal elements are one. Further

details can be found in [13].

In other words, no forces are applied to the fixed surface so the equivalent force for

this surface will be zero. The initial value of the parameter F for the center of the

exposed surface is set by examining the MR images of six patients. The exact value of

Figure 5 Boundary condition for the displacement parameter. In both models, the exposed surface is
assumed free to move and the remaining surfaces are fixed. Therefore, the parameter u is estimated for
the exposed surfaces (blue surfaces) and the surfaces close to it but it is zero for the remaining surfaces
(red surfaces).
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F for each part is determined by the optimization process as explained in the next sec-

tion. This condition is illustrated in Figure 6. The value of parameter F for the green

surface (the center of the exposed surface) is fixed, for the blue surface (the remaining

exposed surface) is unconstrained, and for the red surface (unexposed surface) is zero.

Optimization Process

The parameters of the models change from case to case. Thus, as in our previous work

[8], we use approximated parameters as the initial values and optimize them for each

case to maximize the accuracy of the results for the known deformations of each case.

As mentioned before, we propose a new approach for determining the parameter F.

The value of this parameter in the center of the exposed surface is also determined in

the optimization process. To this end, we choose a cost function defined as the sum of

the distances between the actual positions of the anatomical landmarks in the intra-

operative images and their corresponding estimated positions based on the deforma-

tion results of applying the two models on the pre-operative images.

Displacements of the landmarks are determined by an expert physician who uses the

3D-Slicer software to mark the corresponding pre- and intra-operative points. The

models are then applied to the pre-operative points and their results compared with

the corresponding actual results. Figure 7 shows the screen of the software used to

define the points. When the expert selects points on the 2 D images of the brain, the

coordinates of the point in the 3D space are shown and saved in a text file. The points

are mostly selected near the exposed surface due to larger displacements of the points

in this area relative to the other points. Note that the size of the exposed area and the

Figure 6 For both models, there are conditions for the force variable (F). The value of F for the green
surface (the center of the exposed surface) is fixed, for the blue surface (the remaining exposed surface) is
unconstrained, and for the red surface (unexposed surface) is zero.
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Figure 7 Illustration of using the 3D-Slicer software for manual selection of the landmarks by
expert radiologist. We select points from all 2 D images of the brain. a) The software saves and shows
the 3D coordinates of the selected points. b) A zoomed version of the 3D image is shown for better
illustration.
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consequent deformation of the brain are not the same in all cases. For instance, if the

tumor is large, the surgeon opens a relatively large surface of the brain and therefore,

the deformations are large. In this case, the expert selects several points for accurate

estimation of the parameters. In total, our expert has selected about 70 pairs of the

corresponding landmarks for each case. One half of the landmarks have been used in

the optimization process and the other half in the testing process. We use the Maltlab

optimization toolbox (fminsearch function) to optimize the cost function and find the

optimal values of the parameters as explained next.

In both models, we do not know the exact value of the force applied to the center of

the exposed surface of the brain. The value of this parameter determined in sample

cases is used as an initial value and the optimal value is determined by the proposed

optimization process. In addition, in the mechanical model, the two parameters

(Young modulus and Poisson’s ratio) reported in the literature are not the same for

different patients and thus they are also optimized for each case. For the nonlinear

model, in addition to the initial value for F, the parameters listed in Table 1 are used

in the optimization process except the parameters of characteristic time. This is

because we study the problem in the steady state which is independent of these para-

meters. Also, the parameters g1 and g2 lead to g1 + g2 = g in the equation of the steady

state. Therefore, these values are varied to find the minimum error.

Results
Simulation Data

For evaluation of our method, we first apply the models on a brain simulation (a

sphere with the diameter of 22 Cm). To model the skull opening, we assume that one

section of this sphere is exposed and the other sections are fixed. In the meshing pro-

cess, we use 9,028 tetrahedral meshes. Figure 8 shows an example of meshing for the

spherical brain model. For each model, we use the brain model with specific para-

meters and boundary conditions.

We specify a set of anatomical landmarks for the optimization process and another

set for the evaluation of the optimization results. After the optimization, a comparison

of the cost function for the evaluation landmarks shows whether the brain deformation

is reliably modeled and if the optimization process estimates the model parameters

accurately. In this study, we have used 10 points of the sphere for the optimization

process and another 10 points for the evaluation of the results. To implement the

models, we have used the COMSOL3.3 software which is based on the finite element

methods for solving partial differential equations.

Figure 9 shows the results of the two models for the sphere. Note that deformations

of the models are smooth and realistic, similar to those of the brain. This is because

the models solve their equations assuming that the equivalent work applied to a sur-

face is zero. Although the results are similar but as we will see next, the results of the

nonlinear model are more desirable than those of the other model. For the mechanical

and nonlinear models, the mean errors of the points used in the optimization process

are 0.1172 mm and 0.0683 mm, respectively. The mean errors of the points not used

in the optimization process are 0.2731 mm and 0.1816 mm, respectively. Therefore,

accuracy of the nonlinear model is higher than that of the mechanical model. This is

because the nonlinear model is more flexible than the linear model. In addition, the
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number of the parameters of the nonlinear model is larger than that of the mechanical

model. Consequently, the nonlinear model fits the landmark data more closely than

the mechanical model.

Table 2 shows the assumed and estimated parameters of the two models. As seen,

the optimization process estimates the parameters of the nonlinear model more closely

than those of the mechanical model. Comparing the final values of the cost function

for the points used in the optimization process and those not used in the optimization

process, we conclude that the nonlinear model is more appropriate than the linear,

mechanical model. However, the execution time of the nonlinear model is six times of

the mechanical model. The mean execution time is approximately 35 hours for the lin-

ear model and 199 hours for the nonlinear model for each case. Both models are

implemented on a PC with the 1.86 GHz CPU and 4 GB RAM.

Real Data

To evaluate the methods on the real data, we have used six image sets each containing

90 slices with 2.5 mm thickness and 286x286 pixels with 0.86 mm pixel size. Each

image set contains both of the pre-operative and intra-operative MRI studies of a brain

tumor patient who has undergone surgery.

It is commonly acknowledged that tumors are associated with ‘’stiffer’’ tissue relative

to the normal tissues. However, the volume of a tumor is usually small relative to the

volume of the brain. Thus, uncertainties about the tumor’s mechanical properties do

not significantly affect the overall displacement field. Consequently, the tumor was

simulated using the same constitutive model as ‘’healthy’’ brain tissue. Also, the

Figure 8 Sphere mesh consisting of 9,028 tetrahedral elements. After creating the 3D models,
automatic 4-noded tetrahedral meshes with Lagrange shape functions are generated for the sphere using
the COMSOL3.3 software.
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Figure 9 Deformation results of a sphere as a simple model of the brain. a) Using the linear
mechanical model and b) Using the nonlinear model. Note that the deformations predicted by the linear
mechanical model and nonlinear model are smooth, similar to the brain deformations.
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parameters of the two models for the tumor are equal to the brain’s parameters [20].

Of course, if specific model parameters are known for the tumor, they can be used in

the proposed algorithm.

Sample results for the mechanical and nonlinear models are presented in Figure 10.

The figure shows 3D results for a representative brain where large deformation is

shown in red and small deformation is shown in blue. Note that the brain deforma-

tions in the two models are smooth. The results indicate that our simulations are

realistic.

Figures 11(a)-(b) compare the 2 D contours of the tumor in the coronal sections

obtained from the intra-operative images with the results of the optimization process

for the two models. Note that the predicted results of nonlinear model show higher

levels of matching than those of the linear model. These results show the tumor slices

near the craniotomy surface. For the slices deep in the brain or the slices far from the

craniotomy, the results of the two models show similar matching; both models follow

the deformation quite well. This is because deformations of the brain tissues far from

the craniotomy are small.

Figure 12 shows the landmark locations estimated by the models and the corre-

sponding actual results from the intra-operative images. Note that the points estimated

by the nonlinear model (green points) are the closest to the intra-operative points (yel-

low points). Also, the points estimated by the linear mechanical model (pink points)

are closer to the real results than those estimated by the linear elastic model (the elas-

tic model is described in [8]. The numerical values of the maximum and mean errors

of the testing landmarks in six cases are presented in Table 3. Table 4 presents the

variations of the estimated parameters of the linear and nonlinear models in six cases

relative to the initial values. The testing landmarks are mostly near the exposed

Table 2 Assumed and estimated parameters and their variations for the models using a
sphere

Mechanical model Young modulus Poisson’s ratio Force

Assumed 0.45 3000 Fx = 1500

Fy = 1500

Fz = 1500

Estimated 0.45 ± 0.0056 3000 ± 175.6 Fx = 1500 ± 90.8

Fy = 1500 ± 87.9

Fz = 1500 ± 93.2

Nonlinear model C100 C010 C200 C020 g1+g2 Force

Assumed 263 263 491 491 0.815 Fx = -300

Fy = 300

Fz = 300

Estimated 263
±4.0401

263
±7.8404

491
±14.4139

491
±13.4578

0.815
±0.0083

Fx = -300 ± 9.1726

Fy = 300 ± 10.0278

Fz = 300 ± 8.7998

We use sphere as a simple model of the brain. Specific parameters are assumed and the resulting deformations of
specific points are used in the optimization process. Other points are used for testing of the optimization process. Then,
the parameters are changed and the optimization process is repeated to estimate the model parameters again. The
results illustrate that the brain deformation can be modeled by the proposed models and the proposed optimization
method can accurately estimate the model parameters. For each model, we have done this process and have compared
the accuracy of models using the matching errors of the points used in the optimization process and those that are not
used. Note that the optimization process estimates the parameters of the nonlinear model more accurately (with less
bias and variance) compared with the mechanical model.
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Figure 10 3D results of optimizing the parameters of the linear mechanical and nonlinear models
for the real brain data. Note that the maximum deformation is shown in red and the minimum
deformation is shown in blue. a) The result of linear mechanical model. b) The result of nonlinear model.
As seen, the brain deformation in both models is smooth.
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surface. Again, the nonlinear model shows superior performance compared with the

linear mechanical model. The errors depend on how much the brain surface is

exposed, how much the CSF drains, and in general how much the brain conditions

change due to the craniotomy. In addition, the position, the depth, and the size of the

tumor affect the results. Finally, selection of landmarks has an important effect on the

Figure 11 Comparing the 2 D contours of the tumor in the coronal sections obtained from the
intra-operative images with the results of the optimization process. Column (a), the results of the
nonlinear model, and column (b), the results of the linear mechanical model. As seen, the predicted results
of the nonlinear model show a higher level of matching. It must be noted that these results show the
tumor slices close to the craniotomy surface of the skull.
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results; for a conservative evaluation, critical landmarks with relatively large displace-

ments after opening the skull should be considered.

The execution time of the nonlinear model is approximately six times of the linear

mechanical model using a personal computer with a 1.86 GHz dual-core CPU and 4

GB RAM. This ratio is an approximation because the execution time depends on the

problem complexity, the number of slices, and the mesh resolution that are different

for different cases.

This method can be used for estimating the deformation of the brain after opening

the skull for brain surgery, and calculates the displacements of the anatomical land-

marks on the exposed surface of the brain. By optimizing the model parameters for

each patient, the prediction accuracy increases. In addition, devices like neuro-naviga-

tors and lasers can be used to determine the coordinates of pre-operative points corre-

sponding to specific intra-operative points. This method does not use intra-operative

images. Moreover, by defining a pattern for the force parameter in the proposed mod-

els based on specifications like the tumor depth and the exposed surface, approximate

parameters of the models can be determined and used in the models to estimate the

deformation of the brain without the optimization process.

Conclusion
We have presented a brain shift compensation method based on linear and nonlinear

biomechanical models guided by limited intra-operative data. To this end, we have

employed finite element methods for descritizing and solving partial differential equa-

tions that describe the brain deformation and optimized their parameters for each case

for reducing the inaccuracy due to the variations of the parameters from case to case.

Figure 12 Two groups of resulting points of each model and the corresponding real result from
the intra-operative images. The points estimated by the nonlinear model (green points) are the nearest
points to the intra-operative points (yellow points) while those estimated by the linear mechanical model
(pink points) are superior to those estimated by the linear elastic model.
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Table 3 Maximum and mean errors for the linear mechanical and nonlinear models

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Max error of the mechanical model
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=
=
=

4 0

3 4

1 7

.

.

.

Mean error of the mechanical model
Δ
Δ
Δ

x mm

y mm

z mm

=
=
=

1 2

1 2

.

.

0.4
Δ
Δ
Δ

x mm

y mm

z mm

=
=
=

1 3

1 0

.

.

0.3
Δ
Δ
Δ

x mm

y mm

z mm

=
=
=

1 3

1 7

.

.

0.1
Δ
Δ
Δ

x mm

y mm

z mm

=
=
=

0 9

1

.

.1 

0.6 
Δ
Δ
Δ

x mm

y mm

z mm

=
=
=

0 9.

0.8

0.1 
Δ
Δ
Δ

x mm

y mm

z mm

=
=
=

1 0

0 7

.

.

0.1
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Table 3 Maximum and mean errors for the linear mechanical and nonlinear models
(Continued)

Max error of the nonlinear model
Δ
Δ
Δ

x mm

y mm

z mm

=
=
=

2 5

3 1

.

.

0.3
Δ
Δ
Δ

x mm

y mm

z mm

=
=
=

3 0

3 1

.

.

0.9
Δ
Δ
Δ

x mm

y mm

z mm

=
=
=

3 2

4 0

.

.

0.3
Δ
Δ
Δ

x mm

y mm

z mm

=
=
=

2 9

2 8

.

.

0.7
Δ
Δ
Δ

x mm

y mm

z mm

=
=
=

2 6

2 4

.

.

0.4
Δ
Δ
Δ

x mm

y mm

z mm

=
=
=

3 0

2 9

.

.

1.1

Mean error of the nonlinear model
Δ
Δ
Δ

x mm

y mm

z mm

=
=
=

0 8

1 1

.

.

0.1
Δ
Δ
Δ

x mm

y mm

z mm

=
=
=

1 2

0 8

.

.

0.2
Δ
Δ
Δ

x mm

y mm

z mm

=
=
=

1 1

1 3

.

.

0.1
Δ
Δ
Δ

x mm

y mm

z mm

=
=
=

0 8

0 9

.

.

0.4
Δ
Δ
Δ

x mm

y mm

z mm

=
=
=

0 7

0 7

.

.

0.1
Δ
Δ
Δ

x mm

y mm

z mm

=
=
=

0 8

0 5

.

.

0.9

Here, pre-operative and intra-operative MRI studies of six patients undergoing brain tumor surgery are used. The pre-
and intra-operative images are registered rigidly, and then pairs of anatomical landmarks are determined by an expert
radiologist in the corresponding images. One half of the points are used in the optimization process and the other half
are used in the testing process. It should be mentioned that the overall mean of displacement in the x, y, and z
direction for the linear mechanical model are 1.2, 1, and 0.3, respectively. These values for the nonlinear model are 0.9,
0.8, and 0.3, respectively. Based on the error of the testing landmarks, the proposed methods are evaluated and
compared. Note that the nonlinear model in terms of both the maximum and the mean error in most cases has better
results than the linear mechanical model.
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Also, we have presented a new procedure for defining the force parameter for the

models.

To evaluate the proposed method, we have used simulations as well as real MRI data

of the brain. Experimental results have shown that both of the linear mechanical and

nonlinear models generate shape deformations similar to the brain deformations.

In their applications to a simulation study, the nonlinear model generated the most

accurate displacements and the linear mechanical model generated more accurate dis-

placements than the linear elastic model. In addition, in their applications to the real

data, the nonlinear model generated the best matching for the tumor while the linear

mechanical model outperformed the linear elastic model. The landmarks near the

exposed surface showed superiority of the nonlinear model based on the maximum

and mean error of the surface landmarks not used in the optimization process.

From the computation point of view, the linear mechanical model is about 66%

slower than the elastic model and six times faster than the nonlinear model. Therefore,

depending on the desired levels of speed and accuracy, one of the models can be used.

The results of our study confirm that the brain deformation can be reliably estimated

using anatomical landmarks on the exposed surface of the brain that can be easily

measured by the neuro-navigators used in the operation rooms.

Last but not least, the proposed optimization process eliminates the prediction errors

due to the variations of the model parameters from patient to patient. It also confirms

the conclusion of [23] that the results of the linear and nonlinear model are not con-

siderably different and thus, considering the execution speed of the two models, the

linear mechanical model may be selected for the modeling of the brain deformation.
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Table 4 Variations of the estimated parameters of the linear mechanical and nonlinear
models

Optimized in six cases Model

E 3000 ± 452 Mechanical

ν 0.45 ± 0.03

Resultant Force 91 – 710

C01 253 ± 45 Nonlinear

C10 253 ± 52

C20 491 ± 73

C02 491 ± 73

g1+g2 0.82 ± 0.03

Resultant Force 121 – 852

These are the results of performing models on the six cases relative to the initial values.
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