
Population-Specific Genetic and Expression Differentiation in

Europeans

Xueyuan Jiang1 and Raquel Assis1,2,3,4,*
1Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
2Department of Biology, Pennsylvania State University, University Park, PA 16802
3Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
4Institute for Human Health and Disease Intervention, Florida Atlantic University, Boca Raton, FL 33431

*Corresponding author: E-mail: rassis@fau.edu

Accepted: January 29, 2020

Data deposition: This project has been deposited at (https://github.com/xueyuanj/human_PBS; last accessed February 12, 2020). In addition, the

GitHub page contains all scripts used in the described analyses, as well as a README file explaining their usage.

Abstract

Much of the enormous phenotypic variation observed across human populations is thought to have arisen from events experienced

as our ancestors peopled different regions of the world. However, little is known about the genes involved in these population-

specific adaptations. Here, we explore this problem by simultaneously examining population-specific genetic and expression differ-

entiation in four human populations. In particular, we derive a branch-based estimator of population-specific differentiation in four

populations, and apply this statistic to single-nucleotide polymorphism and RNA-seq data from Italian, British, Finish, and Yoruban

populations. As expected, genome-wide estimates of genetic and expression differentiation each independently recapitulate the

known relationships among these four human populations, highlighting the utility of our statistic for identifying putative targets of

population-specific adaptations. Moreover, genes with large copy number variations display elevated levels of population-specific

genetic and expression differentiation, consistent with the hypothesis that gene duplication and deletion events are key reservoirs of

adaptive variation. Further, many top-scoring genes are well-known targets of adaptation in Europeans, including those involved in

lactase persistence and vitamin D absorption, and a handful of novel candidates represent promising avenues for future research.

Together, these analyses reveal that our statistic can aid in uncovering genes involved in population-specific genetic and expression

differentiation, and that such genes often play important roles in a diversity of adaptive and disease-related phenotypes in humans.
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Introduction

Human phenotypes vary widely across the globe. In particular,

geographically separated populations often differ in skin pig-

mentation (Loomis 1967), hair color (Rees 2003), tooth mor-

phology (Scott and Turner 1997; Hanihara and Ishida 2005),

surface area to body mass ratio (Katzmarzyk and Leonard

1998), and predisposition to diseases (Frank 2004). Much of

this phenotypic variation is thought to have arisen due to a

diversity of selective pressures experienced as early humans

peopled the world and encountered novel environments

(Sabeti et al. 2002; Voight et al. 2006), food sources (Sabeti

et al. 2002), and pathogens (Diamond 2002; Jobling et al.

2013). As a result, uncovering the genetic targets of pheno-

typic differentiation among human populations is critical both

for understanding past human adaptations (Sabeti et al.

2002) and for advancing future biomedical research (Jorde

et al. 2001; Akey et al. 2004).

Due to the abundance of whole-genome sequence and

polymorphism data for many human populations (Cann

et al. 2002; International HapMap 3 Consortium 2010;

1000 Genomes Project Consortium 2015), much work in

the past several years has focused on elucidating and under-

standing genetic differentiation that occurred during human

evolution (Li et al. 2008; Pickrell et al. 2009; Field et al. 2016).
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A common summary statistic for estimating genetic distances

between two populations is the fixation index, FST (Wright

1951), which has been used to infer human demographic

history (Hinds et al. 2005; Holsinger and Weir 2009; Keinan

et al. 2009; Patterson et al. 2012; 1000 Genomes Project

Consortium 2015) and to identify loci that may be targets

of natural selection (Bowcock et al. 1991; Akey et al. 2002;

Bersaglieri et al. 2004). However, because FST is a pairwise

metric, it cannot identify the directionality of genetic differen-

tiation nor be used as sole evidence for natural selection (Yi

et al. 2010). To address this issue, Yi et al. (2010) developed

the Population Branch Statistic (PBS), a summary statistic that

utilizes pairwise FST values among three populations to quan-

tify genetic differentiation along each branch of their corre-

sponding three-population tree. Genes with large PBS values

on one branch represent loci that underwent population-

specific genetic differentiation consistent with relaxed selec-

tive constraint or positive selection (Yi et al. 2010). PBS has

been applied to corroborate previously established targets of

selection, including genes associated with skin pigmentation

(Lamason et al. 2005) and dietary fat sources (Mathias et al.

2012), as well as to identify novel candidates for high-altitude

adaptation in Tibetans (Yi et al. 2010).

However, because natural selection acts on phenotypes,

analysis of genetic data only enables assessment of its indirect

effects. For this reason, it may be advantageous to study se-

lection more directly by exploiting the recent availability of

RNA-seq data for several human populations (Lappalainen

et al. 2013). Specifically, phenotypic evolution is thought to

often occur through modifications in gene expression (King

and Wilson 1975; Wang et al. 1996; Wray et al. 2003; Carroll

2005, 2008; Raj et al. 2010). Thus, studying gene expression

differentiation among human populations may increase

power for identifying loci underlying population-specific phe-

notypes. Indeed, like genetic differentiation, gene expression

levels vary considerably across human populations (Cheung

et al. 2005; Stranger et al. 2007) and often reflect population

structure (Brown et al. 2018). Moreover, human genes with

large PBS values are enriched for expression quantitative trait

loci (Quiver and Lachance 2018).

In the present study, we simultaneously explore

population-specific genetic and expression differentiation

in four human populations: the Toscani in Italia (TSI), British

in England and Scotland (GBR), Finnish in Finland (FIN), and

Yoruba in Nigeria (YRI). For these analyses, we employ sin-

gle-nucleotide polymorphism (SNP; 1000 Genomes Project

Consortium 2015) and RNA-seq (Lappalainen et al. 2013)

data from each population. First, we use FST (Wright 1951)

and its analog for estimating quantitative trait differentia-

tion, PST (Leinonen et al. 2006), to quantify and examine

genome-wide patterns of genetic and expression differen-

tiation in the four human populations. Next, we adapt the

approach of PBS (Yi et al. 2010) to PST, and extend its

computation to a four-population tree, enabling us to

estimate both genetic and expression differentiation in

each of the four human populations. Last, we apply this

branch-based statistic to study population-specific genetic

and expression differentiation, and uncover candidate

genes and functional modules underlying adaptation in

TSI, GBR, and FIN populations.

Results

Genome-Wide Patterns of Genetic and Expression
Differentiation in Four Human Populations

A first goal of our study was to estimate genetic and expres-

sion differentiation among TSI, GBR, FIN, and YRI populations.

To address this problem, we used SNP data (1000 Genomes

Project Consortium 2015) to calculate the FST (Wright 1951),

and RNA-seq data (Lappalainen et al. 2013) to calculate the

PST (Leinonen et al. 2006), of every gene between each pair of

the four human populations. We calculated FST using

Hudson’s formula (Hudson et al. 1992) and computed the

ratio of averages to minimize bias (Reynolds et al. 1983;

Weir and Cockerham 1984; International HapMap 3

Consortium 2010; Bhatia et al. 2013; see Materials and

Methods for details). Due to environmental effects on PST,

we followed the approach of Leinonen et al. (2006) in calcu-

lating PST under two contrasting scenarios: one in which en-

vironmental and nonadditive genetic effects account for half

of the observed expression variation (h2 ¼ 0:5), and a second

in which only additive genetic effects contribute to the ob-

served expression variation (h2 ¼ 1; see Materials and

Methods for details). Examinations of Pearson’s linear (r)

and Spearman’s nonlinear (q) correlations revealed small

(�10�2) but significantly positive relationships between FST

and PST in TSI–FIN, TSI–YRI, GBR–YRI, and FIN–YRI population

pairs (supplementary tables 1 and 2, Supplementary Material

online), consistent with previous observations that genetic

and expression differentiation are weakly or moderately asso-

ciated (Makova and Li 2003; Nuzhdin et al. 2004; Sartor et al.

2006; Assis and Bachtrog 2013, 2015; Hunt et al. 2013).

To explore genome-wide patterns of genetic and expres-

sion differentiation among the four human populations, we

independently used FST and PST to construct gene trees and

then infer population trees supported by majorities of these

gene trees (see Materials and Methods for details). Population

trees inferred from FST and PST (with h2 ¼ 0:5 and h2 ¼ 1)

have the same topology (fig. 1), indicating that there is con-

sistency between relationships estimated from genome-wide

patterns of genetic and expression differentiation despite their

weak correlations with one another. Further, the topology of

the inferred population trees recapitulates known relation-

ships among these four populations, in that TSI and GBR

are most closely related to one another, FIN is an outgroup

to TSI and GBR, and YRI is an outgroup to all three European

populations. These results mirror those from similar studies of

FST (Hinds et al. 2005; Jakobsson et al. 2008; Li et al. 2008;
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Auton et al. 2009; Holsinger and Weir 2009; Keinan et al.

2009; Patterson et al. 2012; 1000 Genomes Project

Consortium 2015), as well as findings that gene expression

data often display population structure comparable to that of

genetic data (Cheung et al. 2005; Stranger et al. 2007; Brown

et al. 2018).

Yet, there is greater support for the inferred population

tree when using FST (fig. 1A) than when using PST (fig. 1B

and C) as input. This effect is not surprising, given the complex

and dynamic nature of gene expression data. Specifically,

gene expression levels can vary across space (e.g., cell type),

time (e.g., age), and condition (e.g., disease). Additionally, the

experimental methodology used to collect and quantify these

data may influence expression levels as well. This contrasts

with the relatively static nature of genetic data. Further,

whereas our calculation of FST for a gene was often based

on allele frequencies at multiple SNPs across the gene, our

calculation of PST for a gene was based on a single

measurement. Therefore, differing levels of support observed

for the inferred population trees may reflect higher accuracy

and lower variance in estimating FST given the more represen-

tative and larger samples available for genetic data.

To investigate this effect, we examined the association be-

tween the number of SNPs in a gene and the difference be-

tween topologies of the gene tree constructed with FST and

the population tree. In particular, if mismatches between

gene trees constructed with PST and the population tree are

often due to the small sample size of expression data, then we

also expect gene trees constructed with FST to be different

from the population tree when the number of SNPs is small.

To quantify the difference between each gene tree con-

structed with FST and the population tree, we used the

Robinson–Foulds (RF) distance, which is the sum of the num-

ber of unique clades in the two trees being compared

(Robinson and Foulds 1981). Here, RF ¼ 0 when the tree

topologies are identical, RF ¼ 2 when there is one unique

clade in each tree, and RF ¼ 4 when the tree topologies are

distinct. As hypothesized, there is an inverse relationship be-

tween RF and the number of SNPs, in that we tend to get RF

¼ 0 when the number of SNPs is largest, RF ¼ 2 when the

number of SNPs is intermediate, and RF ¼ 4 when the

number of SNPs is smallest (supplementary fig. 1,

Supplementary Material online; P < 0:01 for all pairwise

comparisons, two-sample permutation tests; see Materials

and Methods for details). Hence, whereas genome-wide pat-

terns of genetic and expression differentiation likely reflect

true population relationships (fig. 1), gene-level values of

FST, and particularly of PST, should be interpreted with

caution.

Estimation of Population-Specific Genetic and Expression
Differentiation on a Four-Population Tree

Next, we sought to quantify population-specific genetic and

expression differentiation of genes in each of the four human

populations. For a three-population tree, population-specific

genetic differentiation of a gene along each branch can be

estimated with PBS (Yi et al. 2010; fig. 2A), which applies

equation (11.20) in Felsenstein (2004) to FST. In particular,

considering the unrooted three-population tree shown in

figure 2A, the PBS value of a particular gene in population

W is estimated as PBSW ¼ 1
2 ðEW,X þ EW,Y – EX,YÞ, where

EW,X, EW,Y, and EX,Y denote the log-transformed FST between

populations W and X, W and Y, and X and Y, respectively (Yi

et al. 2010; see Materials and Methods for details). In a recent

study, equation (11.20) in Felsenstein (2004) was also applied

to expression distances between orthologous genes to esti-

mate branch lengths corresponding to lineage-specific expres-

sion divergence on a three-species tree (Assis 2019).

Analogously, by substituting PST for FST in the formula for

PBS (Yi et al. 2010), we can obtain the PBS corresponding

to gene expression differentiation in population W on the

three-population tree. To distinguish between these two

PBS in our study, we will refer to the calculation with FST as

“genetic PBS,” and the calculation with PST as “expression

PBS.”

To enable quantification of population-specific genetic and

expression differentiation in four human populations, we

FIG. 1.—Relationships among TSI, GBR, FIN, and YRI populations inferred from genome-wide patterns of genetic and expression differentiation.

Population trees supported by the majority of gene trees constructed using (A) FST, (B) PST with h2 ¼ 0:5, and (C) PST with h2 ¼ 1. Numbers indicate

proportions of corresponding nodes in all gene trees (see Materials and Methods for details).

Population-Specific Genetic and Expression Differentiation in Europeans GBE

Genome Biol. Evol. 12(4):358–369 doi:10.1093/gbe/evaa021 Advance Access publication February 6, 2020 360

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa021#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa021#supplementary-data


extended the derivation of PBS to a four-population tree

(fig. 2B). Henceforth, we will denote PBS as PBS3 when ap-

plied to a three-population tree (fig. 2A) and as PBS4 when

applied to a four-population tree (fig. 2B). To derive PBS4,

suppose that we have four populations W, X, Y, and Z that

are related by the unrooted tree depicted in figure 2B. Then,

we can compute four PBS4 values for a particular gene, one

corresponding to its population-specific differentiation in each

population. Because the PBS4 value for a gene in a population

represents its differentiation that occurred in the lineage of

that population, it can be estimated by the length of the ex-

ternal branch corresponding to the population. We can obtain

the length of each external branch by first computing four

distances: those between populations W and X (EW,X), W and

Y (EW,Y), X and Y (EX,Y), and X and Z (EX,Z). Then, we can use

these distances to compute the length of each external

branch by following the schematic pictured in figure 2B. For

example, the PBS4 value of the gene in population W is cal-

culated as PBS4,W ¼ 1
4 2ð EW,X þ EW,Y þ EW,Z – EX,Y – EX,ZÞ.

Using this formula, we computed the genetic PBS4 and ex-

pression PBS4 of each gene in TSI, GBR, FIN, and YRI popula-

tions (supplementary tables 3–5, Supplementary Material

online; see Materials and Methods for details).

Population-Specific Genetic and Expression Differentiation
of Genes with Copy Number Variations

Gene duplications and deletions are key contributors to hu-

man genetic diversity (Sudmant et al. 2015). Moreover, be-

cause they are large-scale mutation events that may impact

gene dosage, duplications and deletions have been implicated

in numerous human diseases (Sebat et al. 2004; Kumar et al.

2008; Sharp et al. 2008; Weiss et al. 2008), as well as in

adaptive events in many diverse species (Kaessmann 2010;

FIG. 2.—Schematic for calculating the PBS value of a gene in population W. Depicted are scenarios in which population-specific differentiation of a gene

has occurred in population W of a set of (A) three populations W, X, and Y and (B) four populations W, X, Y, and Z. In each case, population-specific

differentiation results in elongation of external branch W (red). To estimate the length of external branch W, we unroot the tree (top of each panel) and apply

the formula shown (bottom of each panel) to pairwise genetic (FST) or expression (PST) distances between populations. We can use an analogous approach

to estimate lengths of other external branches.
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Chen et al. 2013). For these reasons, genes harboring copy

number variations (CNVs) are thought to be more frequently

targeted by natural selection than those without CNVs

(Freeman et al. 2006; Nguyen et al. 2006). Indeed, genes

with CNVs often display signatures of adaptation (Sudmant

et al. 2015), and fixation of duplications and deletions has

been associated with natural selection in many species

(Freeman et al. 2006; Nguyen et al. 2006; Han, Demuth,

et al. 2009; Jiang and Assis 2017). Therefore, we hypothe-

sized that genes with CNVs would have larger genetic and

expression PBS4 values than genes without CNVs. To test this

hypothesis, we compared the distributions of maximum PBS4

values of genes with and without known human CNVs larger

than 50 bp (fig. 3; MacDonald et al. 2014; see Materials and

Methods for details). As expected, both genetic and expres-

sion PBS4 values are significantly elevated in genes with CNVs

(fig. 3; P < 0:05 for all pairwise comparisons, two-sample

permutation tests; see Materials and Methods for details).

Though the magnitudes of the effects are modest, genes

with CNVs also contain more SNPs than those without

CNVs (P < 0:001, two-sample permutation test; see

Materials and Methods for details), which is expected to de-

crease their genetic PBS4 values (Yi et al. 2010). Taken to-

gether, these findings suggest that genes with CNVs tend

to undergo increased population-specific genetic and expres-

sion differentiation that is consistent with positive selection.

However, increased population-specific genetic and ex-

pression differentiation of genes with CNVs may not only

be attributed to positive selection, but alternatively to relaxed

selective constraint. To disentangle these mechanisms, we

examined levels of background selection in genes with and

without CNVs. Background selection reduces genetic diversity

at linked deleterious sites (Charlesworth et al. 1993), and is

therefore weaker in regions with reduced selective constraint.

As a result, if genes with CNVs primarily evolve under relaxed

selective constraint, then we expect a reduction in their levels

of background selection relative to those of genes without

CNVs. To determine whether this is the case, we compared

distributions of median B values (McVicker et al. 2009) in

genes with and without CNVs. We found no significant dif-

ference between groups (supplementary fig. 2A,

Supplementary Material online, P > 0:05, two-sample per-

mutation test; see Materials and Methods for details), sug-

gesting that overall levels of selective constraint do not differ

between genes with and without CNVs. Further, because FST

is correlated with background selection (Charlesworth et al.

1997), we performed a follow-up analysis in which we explic-

itly accounted for background selection when comparing the

genetic PBS4 of genes with and without CNVs. Specifically,

we corrected FST for background selection using estimated B

values (see supplementary Methods, Supplementary Material

online, for derivation) and recalculated the background

selection-corrected FST and genetic PBS4 of each gene. Even

after this correction, genetic PBS4 is elevated in genes with

CNVs (supplementary fig. 2B, Supplementary Material online,

P < 0:001, two-sample permutation test; see Materials and

Methods for details). Whereas B values are not perfect meas-

ures of selective constraint, particularly for short evolutionary

timescales, these findings better support the hypothesis that

increased population-specific differentiation in genes with

CNVs is due to positive selection than to relaxed selective

constraint.

Relationship of Population-Specific Genetic and Expression
Differentiation to Gene Function in Europeans

A natural question that emerges from our study is whether

there are functional drivers of population-specific genetic and

expression differentiation. In answering this question, it was

important to exclude YRI, as it is an outgroup to the three

European populations and therefore contains greater overall

population-specific genetic and expression differentiation that

cannot be polarized. Hence, we only considered TSI, GBR, and

FIN populations. To globally assess functional modules contrib-

uting to population-specific genetic and expression differenti-

ation in these populations, we utilized annotation data from

the GO Consortium (Ashburner et al. 2000; GO Consortium

FIG. 3.—PBS4 values of genes with CNVs. Distributions of (A) genetic PBS4 values calculated from FST, (B) expression PBS4 values calculated from

PST with h2 ¼ 0:5, and (C) expression PBS4 values calculated from PST with h2 ¼ 1 of genes without (gray) and with (blue) CNVs. *P < 0:05 and

**P < 0:001 (see Materials and Methods for details).
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2018). In particular, GO terms classify genes by their molecular

functions, cellular components, and biological processes

(Ashburner et al. 2000; GO Consortium 2018). Though GO

terms refer to intracellular gene functions that cannot be di-

rectly related to phenotypes that natural selection acts on,

they can aid in elucidating the classes of gene functions that

may be associated with population-specific genetic and ex-

pression differentiation. To examine these associations, we

ranked genes by their genetic and expression PBS4 values in

each European population, performed GO enrichment analy-

sis on ranked lists, and extracted significantly overrepresented

GO terms (supplementary tables S6–S14, Supplementary

Material online; see Materials and Methods for details).

After correcting for multiple testing, there are no signifi-

cantly enriched GO terms for genetic PBS4 in any of the pop-

ulations (supplementary tables S6–S8, Supplementary

Material online). However, there are many significantly

enriched GO terms for expression PBS4 in all three populations

(supplementary tables S9–S14, Supplementary Material on-

line). Enriched GO terms for expression PBS4 calculated

from PST with h2 ¼ 0:5 and h2 ¼ 1 are similar, consistent

with our previous comparisons (see figs. 1 and 3).

Moreover, several enriched GO terms are shared among the

three related populations, and numerous related terms are

enriched in individual populations. Though most GO terms

are quite general and have limited interpretability, it appears

that population-specific expression differentiation in

Europeans often affects genes involved in signal transduction

and immunity. This is not surprising, as such processes are

frequent targets of natural selection (Barreiro and Quintana-

Murci 2010; Fumagalli et al. 2011; Enard et al. 2016).

To glean further insight into the individual genes potentially

driving population-specific genetic and expression differentia-

tion in Europeans, we performed literature searches on genes

with the largest genetic and expression PBS4 values in each

population (tables 1 and 2). In both TSI and GBR, the gene

with the largest genetic PBS4 value is MCM6, or

Minichromosome Maintenance Complex Component 6.

MCM6 is part of a protein complex essential for the initiation

of eukaryotic genome replication (Labib et al. 2000). Two of its

introns contain enhancers for its upstream gene LCT, or

Lactase, one of which has a mutation prevalent in European

populations that is thought to confer lactose tolerance in adult-

hood (Enattah et al. 2002; Troelsen et al. 2003). Interestingly,

LCT also has the second-largest genetic PBS4 in GBR, and sev-

eral genetic studies have identified both MCM6 and LCT as

targets of recent positive selection in Europeans (Bersaglieri

et al. 2004; Voight et al. 2006; Ranciaro et al. 2014; Cheng

et al. 2017). In FIN, the gene with the largest genetic PBS4 value

is HLA-DPA1, or Major Histocompatibility Complex, Class II, DP

Alpha 1. As a member of the HLA gene family, HLA-DPA1 plays

an important role in antigen presentation (Bottazzo et al. 1983)

and is believed to be evolving under balancing selection in

humans (Hughes and Nei 1988, 1989; Takahata and Nei

1990; Hughes and Yeager 1998; Yasukochi and Satta 2013).

In TSI, the gene with the largest expression PBS4 value

(calculated from PST with h2 ¼ 0:5 and h2 ¼ 1) is PRKCB, or

Protein Kinase C Beta. PRKCB is involved in numerous signal-

ing pathways, including apoptosis (Reyland 2009) and B cell

activation during immune response (Lutzny et al. 2013). As a

result, mutations in PRKCB are associated with many cancers

(Lutzny et al. 2013; Wallace et al. 2014; Antal et al. 2015) and

autoimmune diseases (Han, Zheng, et al. 2009; Sheng et al.

2011; Kawashima et al. 2017). The association with autoim-

mune diseases is particularly intriguing, as such genes are of-

ten targets of recent positive selection (Barreiro and Quintana-

Murci 2010; Ramos et al. 2014). It is hypothesized that muta-

tions that cause autoimmune response today may have con-

ferred pathogen resistance in the past (Barreiro and Quintana-

Murci 2010). In GBR, the gene with the largest expression

PBS4 value (calculated from PST with h2 ¼ 0:5 and h2 ¼ 1)

is PRRX1, or Paired Related Homeobox 1. PRRX1 is a DNA-

associated protein that is involved in the establishment of di-

verse mesodermal muscle types during development (Martin

et al. 1995). It has also been connected with numerous can-

cers (Takahashi et al. 2013; Guo et al. 2015; Hirata et al. 2015;

Jurecekova et al. 2016; Takano et al. 2016; Zhu et al. 2017)

and is thought to mediate metastasis (Oca~na et al. 2012;

Takahashi et al. 2013; Guo et al. 2015; Zhu et al. 2017). In

FIN, the genes with the two largest expression PBS4 values are

VDR followed by FZD1 when PST was calculated with h2 ¼ 0:5,

and FZD1 followed by VDR when PST was calculated with

h2 ¼ 1. VDR, or Vitamin D Receptor, interacts with vitamin D

in the small intestine to facilitate calcium transportation into

Table 1

Genes with Top Five Genetic PBS4 Values in TSI, GBR, and FIN

TSI GBR FIN

1 MCM6 MCM6 HLA-DPA1

2 DCUN1D4 LCT RNF114

3 DARS CCNT2 TRIM47

4 CCNT2 R3HDM1 HSPA2

5 PRDM4 ZNF615 FAHD2B

Table 2

Genes with Top Five Expression PBS4 Values (PST with h2 ¼ 0:5 and

h2 ¼ 1) in TSI, GBR, and FIN

TSI GBR FIN

h2 ¼ 0:5 h2 ¼ 1 h2 ¼ 0:5 h2 ¼ 1 h2 ¼ 0:5 h2 ¼ 1

1 PRKCB PRKCB PRRX1 PRRX1 VDR FZD1

2 TBC1D1 TBC1D1 CD28 CD28 FZD1 VDR

3 BMPR1A KLF3 MOB1B INSR TMEM144 PLAC8

4 KLF3 MGAT5 BTBD3 BTBD3 ACTN1 FAM134B

5 MGAT5 FAM65B GLDC TBXT PLAC8 SYNJ2
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circulation (Holick 2006). Skin exposure to solar ultraviolet radi-

ation produces about 90% of the vitamin D that an individual

requires (Holick 2006), and living at high latitudes has been

associated with vitamin D deficiency due to decreased ultraviolet

radiation (Kimlin 2008; Chaplin and Jablonski 2009). Therefore,

it is possible that expression differentiation of VDR may contrib-

ute to high latitude adaptation in FIN. FZD1, or Frizzled Class

Receptor 1, is a receptor for Wnt signaling proteins (Kennerdell

and Carthew 1998). It has been associated with several cancers

(Kirikoshi et al. 2001; Benhaj et al. 2006; Zhang et al. 2015) and

specifically with chemoresistance (Flahaut et al. 2009), thus

making it a promising therapeutic target.

Materials and Methods

Gene Expression Analyses

We obtained RNA-seq data from lymphoblastoid cell lines in

TSI, GBR, FIN, and YRI populations from the GEUVADIS proj-

ect (Lappalainen et al. 2013). These data comprise 93 individ-

uals in TSI, 94 individuals in GBR, 95 individuals in FIN, and 89

individuals in YRI, all of whom are from the 1000 Genomes

Project (1000 Genomes Project Consortium 2015). We ex-

cluded data from the population of Utah Residents with

Northern and Western European Ancestry (CEU) because

they were collected from an older cell line and have been

shown to display expression patterns that are inconsistent

with their relationships to other populations (Yuan et al.

2015). We quantified the abundance of transcripts using

featureCounts (Liao et al. 2014) with default parameters

and the GRCh37 human genome (Zerbino et al. 2018) as

our reference. To normalize count data, we used the “median

ratio” method (Anders and Huber 2010) by implementing the

estimateSizeFactors function in DESeq2 (Love et al. 2014).

Next, we calculated the Fragments Per Kilobase of transcript

per Million mapped reads (FPKM) of each gene using DESeq2

(Love et al. 2014). We removed genes that contained fewer

than ten reads in each sample (lowly expressed), were located

on sex chromosomes, or were not protein coding. For the

remaining 13,075 genes, we log-transformed their FPKM val-

ues by log(FPKM þ 1). We computed the PST for each gene

as PST ¼
r2

between

r2
between

þ2h2 r2
within

(Leinonen et al. 2006), where r2
between

is expression variance between populations, r2
within is expres-

sion variance within populations, and h2 is heritability. For our

analysis, we used h2 ¼ 0:5 and h2 ¼ 1 as was done previ-

ously (Leinonen et al. 2006), though we note that the patterns

in figure 1 do not change as a function of h2. When h2 ¼ 1,

PST reduces to QST (Spitze 1993), another common metric for

differentiation of quantitative traits between populations.

Population-Genetic Analyses

We downloaded the 1000 Genomes Project phase 3 data set

(1000 Genomes Project Consortium 2015) for TSI, GBR, FIN,

and YRI populations from ftp://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/, last accessed February 12, 2020. To be conservative

in our analyses, we only included the 371 individuals also

present in the GEUVADIS Project (Lappalainen et al. 2013).

After filtering out insertions, deletions, and monomorphic

sites, we were left with 30,734,317 biallelic SNPs. Though

we used SNPs of all allele frequencies, limiting our analysis

to those with minor allele frequencies>0.01 did not alter our

findings. We calculated Hudson’s FST for each SNP as FHudson
ST

¼
ðp1�p2Þ2�

p1ð1�p1Þ
n1�1 � p2ð1�p2 Þ

n2�1

p1ð1�p2Þþp2ð1�p1Þ (Reynolds et al. 1983; Weir and

Cockerham 1984; Bhatia et al. 2013). Then, we combined

SNPs within the entire annotated region of each gene and

computed the “ratio of averages” for Hudson’s FST (Reynolds

et al. 1983; Weir and Cockerham 1984; Bhatia et al. 2013).

Because negative FST values are not defined (Wright 1951)

and have no biological interpretation (Akey et al. 2002), we

followed the standard of setting all negative FST ¼ 0 (e.g., Nei

1990; Akey et al. 2002).

Phylogenetic Analyses

To infer population trees, we first constructed gene trees us-

ing the NEIGHBOR program in the PHYLIP package

(Felsenstein 2005). We constructed gene trees using either

FST or PST as input distances between populations.

Application of the UPGMA algorithm in the NEIGHBOR pro-

gram yielded totals of 12,977 gene trees for FST and 13,075

gene trees for PST. Next, we used gene trees as input for the

CONSENSE program in the PHYLIP package (Felsenstein 1993)

and obtained rooted population trees supported by the ma-

jority of gene trees based on FST and PST. Specifically, the

nodes in gene trees are included if they continue to resolve

the population tree and do not contradict with more fre-

quently occurring nodes. The number above each node in

figure 1 represents its proportion in all gene trees.

Calculation of PBS4

We first computed the genetic or expression distance be-

tween populations as EA,B ¼ � log ½1 � ZSTðA ; BÞ�, fol-

lowing the approach of Cavalli-Sforza (1969), where ZST

represents either FST or PST between populations A and B.

We used these as input for calculations of genetic and expres-

sion PBS4 values. Negative branch lengths were set to 0.

Gene Ontology Enrichment Analyses

Genes were ranked by their genetic PBS4 and expression PBS4

values in each population (provided in supplementary tables

S3–S5, Supplementary Material online). We performed Gene

Ontology (GO) enrichment analysis on each ranked list of

genes with the web-based GOrilla tool at http://cbl-gorilla.

cs.technion.ac.il/; last accessed February 12, 2020 (Eden

et al. 2007, 2009), which searches for enriched GO terms
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that appear densely at the top of a ranked list of genes (Eden

et al. 2007, 2009). For each run, we chose “Homo sapiens”

as the organism, set the running mode to “Single ranked list

of genes,” selected all ontologies (process, function, and

component), and set the threshold P ¼ 10�3.

Statistical Analyses

All statistical analyses were performed in the R software envi-

ronment (R Core Team 2013). Two-sample permutation tests

were used to assess differences between all pairs of distribu-

tions compared in figure 3 and supplementary figures 1 and 2,

Supplementary Material online. For each test, we performed

1,000 permutations, using the difference between medians of

groups as the test statistic. In particular, we computed the

difference between the medians of the two groups for each

permutation, and the P value of the permutation test as the

proportion of times the absolute value of this difference was

greater than or equal to the absolute value of the observed

difference in the data. Student’s t-tests were used to assess

the statistical significance of correlation coefficients shown in

supplementary tables 1 and 2, Supplementary Material online.

Discussion

Identifying drivers of human phenotypic differentiation is cru-

cial to understanding adaptive events that occurred in the

past, as well as to developing population- and individual-

targeted treatments for diseases in the future (Jorde et al.

2001; Sabeti et al. 2002; Akey et al. 2004). Though previous

research (Sabeti et al. 2002; Akey et al. 2004; Voight et al.

2006) has made use of abundant whole-genome and poly-

morphism data for many human populations (International

HapMap 3 Consortium 2010; 1000 Genomes Project

Consortium 2015) to answer this question, simultaneously

studying genetic and expression differentiation may provide

unique insights into direct phenotypic targets of natural selec-

tion. In particular, it is thought that phenotypic evolution

more often occurs through changes in gene regulation and

expression, rather than their protein-coding sequences (King

and Wilson 1975; Wang et al. 1996; Wray et al. 2003; Carroll

2005, 2008; Raj et al. 2010). For this reason, gene expression

differentiation might better reflect phenotypic differentiation.

Therefore, a major advantage of the present study is that we

utilized both genetic and expression data to address questions

about population-specific differentiation in humans. Further,

results from our combined analysis suggest that population-

specific genetic and expression differentiation in humans may

be attributed to several important biological processes, most

notably signal transduction and immunity, and also pinpoint

many candidate genes for future studies of human pheno-

typic variation in adaptation and disease.

Yet, there are three key limitations of the data analyzed

here that must be considered when interpreting our findings

in the context of human evolution. The first is that there is

only a single estimate of the expression level of a gene in each

population, which is particularly problematic given the com-

plex and dynamic nature of gene expression data. In contrast,

there are multiple SNPs per gene in each population, and

genetic data are static. Therefore, we expect our estimates

derived from expression data to have lower accuracy and

higher variance than those from genetic data. Indeed, we

found that gene trees constructed with FST match the topol-

ogy of the inferred population tree more often than those

constructed with PST and, further, that mismatches between

topologies of gene trees constructed with FST and the inferred

population tree are associated with fewer SNPs. Hence, it is

also not surprising that genetic and expression PBS4 do not

have common outlier genes (supplementary tables S3–S5,

Supplementary Material online), and gene-level values of ex-

pression (and in some cases genetic) PBS4 should thus be

interpreted with caution. In spite of this issue, a handful of

genes with the largest expression PBS4 are well-known can-

didates of adaptation, such as VDR (Kimlin 2008; Chaplin and

Jablonski 2009). Moreover, at a genome-wide level, the dis-

cordance between findings derived from genetic and expres-

sion data illustrates the importance of integrating both types

of data into population-genetic studies. Nevertheless, future

availability of larger sample sizes for gene expression data in

multiple human populations will be invaluable for accurately

pinpointing genic targets of population-specific expression

differentiation in humans.

The second caveat is that TSI, GBR, and FIN are closely

related European populations. As a result, genetic distances

among them are small, which can lead to noise in gene-level

analyses. Moreover, due to shared ancestry and gene flow

among these closely related populations, their genetic and

expression differentiation are likely to be correlated. This

limitation is clearly demonstrated by MCM6 having the larg-

est genetic PBS4 value in both TSI and GBR, which are the

most closely related of the three European populations stud-

ied. Thus, though genome-wide patterns of genetic and ex-

pression differentiation are consistent with population

relationships, caution needs to be taken when making infer-

ences based on the genetic and expression PBS4 values of

individual genes. Despite this limitation, several genes with

the largest genetic PBS4 values, such as MCM6 and HLA-

DPA1, are well-established targets of natural selection

(Hughes and Nei 1988, 1989; Takahata and Nei 1990;

Hughes and Yeager 1998; Bersaglieri et al. 2004; Voight

et al. 2006; Yasukochi and Satta 2013; Ranciaro et al.

2014; Cheng et al. 2017), and novel candidates therefore

may represent promising avenues for future research.

Nevertheless, phenotypic differences among distantly re-

lated populations are better described than those among

closely related populations, making it inherently more diffi-

cult to interpret our findings in the context of human phe-

notypes. Therefore, future availability of RNA-seq data from
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additional populations, particularly those that are more dis-

tantly related, will be critical to studying population-specific

variation and its role in both human evolution and disease.

The third limitation is that the RNA-seq data used in this

study were obtained from lymphoblastoid cell lines. In partic-

ular, the enrichment of immune-related functions in genes

with high levels of population-specific expression differentia-

tion may be attributed to usage of this cell line, rather than

reflecting widespread evolutionary patterns of immunity

genes across tissues. Yet, it is important to note that associ-

ations between increased population-specific expression dif-

ferentiation and immunity are consistent with previous

findings. Specifically, immunity genes are among the fastest

evolving genes in the human genome, likely due to adapta-

tions to rapidly changing environments and introductions of

novel pathogens (Barreiro and Quintana-Murci 2010;

Fumagalli et al. 2011; Enard et al. 2016). Therefore, though

observed patterns of population-specific expression differen-

tiation may not be representative of those in other cell types,

genes with high population-specific expression differentiation

should be further studied to examine their potential roles in

human evolutionary history and disease. Regardless, future

availability of RNA-seq data for multiple cell or tissue types

in several populations will be invaluable for capturing complex

patterns of population-specific expression differentiation and

pinpointing genic targets of phenotypic variation among hu-

man populations.

In spite of the noted issues with the data analyzed here, a

major advantage of our study is the design of PBS4, a novel

summary statistic that can be used to estimate population-

specific differentiation of a quantitative trait in four popula-

tions. PBS4 requires minimal assumptions about the data and

can be used to rapidly estimate population-specific differen-

tiation on a genome-wide scale. Further, because PBS4 uti-

lizes data from four populations, branch lengths are more

likely to represent true population-specific differentiation

than differentiation that occurred ancestral to two popula-

tions, as is possible in a three-population scenario (Assis

2019). Therefore, though the data set used in our study is

not ideal in many respects, PBS4 can easily be applied to

existing or future data sets to estimate population-specific

differentiation of a wide array of genetic, expression, and

other measurable traits in humans and other species. In par-

ticular, we envision that application of PBS4 to future human

RNA-seq data from multiple cell lines or tissues and in many

populations of varying divergence levels will shed light on

complex questions about human evolutionary history and

disease processes.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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