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Upon injury, prolonged inflammation and oxidative stress may cause pathological wound
healing and fibrosis, leading to formation of excessive scar tissue. Fibrogenesis can occur
in most organs and tissues and may ultimately lead to organ dysfunction and failure. The
underlying mechanisms of pathological wound healing still remain unclear, and are con-
sidered to be multifactorial, but so far, no efficient anti-fibrotic therapies exist. Extra- and
intracellular levels of free heme may be increased in a variety of pathological conditions
due to release from hemoproteins. Free heme possesses pro-inflammatory and oxidative
properties, and may act as a danger signal. Effects of free heme may be counteracted by
heme-binding proteins or by heme degradation. Heme is degraded by heme oxygenase
(HO) that exists as two isoforms: inducible HO-1 and constitutively expressed HO-2. HO
generates the effector molecules biliverdin/bilirubin, carbon monoxide, and free iron/ferritin.
HO deficiency in mouse and man leads to exaggerated inflammation following mild insults,
and accumulating epidemiological and preclinical studies support the widely recognized
notion of the cytoprotective, anti-oxidative, and anti-inflammatory effects of the activity of
the HO system and its effector molecules. In this review, we address the potential effects of
targeted HO-1 induction or administration of HO-effector molecules as therapeutic targets
in fibrotic conditions to counteract inflammatory and oxidative insults.This is exemplified by
various clinically relevant conditions, such as hypertrophic scarring, chronic inflammatory
liver disease, chronic pancreatitis, and chronic graft rejection in transplantation.

Keywords: heme oxygenase, heme, HO-effector molecules, fibrosis, therapy

INTRODUCTION
Tissue injury can occur after physical, chemical, or infectious
insults, such as burns, trauma, and toxins. Wound healing is a
dynamic and complex process involving the coordinated action of
different cell types. The quality of the wound healing process is
dependent on different factors, including the severity of the insult
and the inflammatory and redox status of the wound. Pathological
wound healing can lead to two extreme cases: chronic, non-healing
wounds or fibrosis, which ultimately may lead to excessive scar-
ring. Both types of complications related to pathological wound
healing have major impact on patient quality of life in terms of
aesthetical and functional problems.

Numerous clinical and experimental observations have demon-
strated that prolonged inflammation and oxidative stress may
cause pathological wound healing and the development of fibrosis.
However, the underlying mechanisms still remain largely unclear.
Inflammation is a complex response of the innate immune system
in vascularized tissues initiated to protect the organism against
invading pathogens as well as to restore tissue homeostasis at the
wound site.

WOUND HEALING AND FIBROSIS – WHEN GOOD TURNS
BAD
The primary goal of tissue repair is to restore tissue integrity
and homeostasis. Hereto, wounding initiates a complex cascade

of events to stop blood loss, to eliminate invading pathogens, and,
ultimately, to promote tissue integrity and homeostasis (Chettibi
et al., 1999; Hunt et al., 2000).

Wound healing occurs in three distinct, but overlapping phases:
(1) inflammation, (2) regeneration, and (3) remodeling, and
involves a well-coordinated sequence of cellular responses.

The inflammatory phase is preceded by blood clot formation
and coagulation to stop blood loss and to reduce pathogen inva-
sion. This fibrin-containing clot also serves as an early provisional
extracellular matrix (ECM) to provide structural support for cel-
lular attachment and proliferation. Coagulation also triggers the
production of pro-inflammatory agents, and activation of the
complement system. This leads to increased blood vessel perme-
ability, chemokine expression, vascular adhesion molecule expres-
sion, and recruitment of immune cells. At the wound site, granulo-
cytes and macrophages are pivotal for the innate immune system-
mediated elimination of invading pathogens through the gener-
ation of reactive oxygen species (ROS; Fialkow et al., 2007), and
the production of pro-inflammatory chemokines and cytokines
(Ryan et al., 2004).

The temporal and spatial pattern of inflammation resolution is
crucial for proper wound healing and is characterized by reduced
levels of pro-inflammatory adhesion molecules and cytokines
and a decreasing number of inflammatory cells at the site of
injury.
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This is followed by the initiation of the regenerative phase
that mediates re-epithelialization, neovascularization, and wound
closure. In particular, fibroblasts produce and deposit ECM com-
ponents to substitute the provisional matrix. Also, recruited
keratinocytes and endothelial cells are crucial to this process.

When the wound area is fully re-epithelialized, remodeling
takes over from regeneration. Fibroblasts differentiate into myofi-
broblasts causing wound contraction and ECM reorganization by
synthesis and deposition of ECM components and by providing
matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs
(TIMPs), which ultimately leads to wound closure. At the end of
this phase, myofibroblasts present in the granulation tissue disap-
pear by apoptosis, producing a rather acellular scar. It is important
to realize that scar formation is a natural part of the wound healing
process, as normal scar tissue, which mainly consists of connec-
tive tissue, represents a stable restoration of the skin (for a recent
review, see Guo and Dipietro, 2010).

Prolonged inflammatory conditions accompanied by oxida-
tive stress may interfere with the normal wound healing process,
leading to an extended presence of myofibroblasts and excessive
scar formation, a process known as fibrosis. Fibrosis is not only
restricted to dermal wound healing, but also occurs in palatal tis-
sue, lungs, heart, liver, intestine, and joints, and causes major med-
ical problems ranging from disfigurement to progressive disability
and even death.

Despite the fact that disorders that are associated with fibro-
sis account for up to 45% of deaths in the developed world, no
successful anti-fibrotic therapies exist (Wynn, 2008).

Extensive research has shown that the heme–heme oxy-
genase (HO) system is closely involved in the regulation of
various (patho)physiological processes, in particular in cellu-
lar adaptation to oxidative stress, and the anti-inflammatory
response.

In this review, we address the role of heme, HO-1 and HO-
effector molecules in inflammation and fibrosis with an empha-
sis on hypertrophic scarring, chronic inflammatory liver disease,
chronic pancreatitis, and transplantation complications.

INFLAMMATION AND SCARRING – WHEN BAD TURNS UGLY
A prolonged inflammatory phase is considered a major cause of
fibrosis and excessive scar formation. A clear link between inflam-
mation and fibrosis has been revealed through embryonic studies.
Mammalian embryos heal without scar formation, if wound heal-
ing occurs without influx of inflammatory cells (Ashcroft et al.,
1999), indicating that inflammatory cell recruitment to the wound
site is a prerequisite for scar formation. Wound healing stud-
ies in different knockout and transgenic mouse models (Fathke
et al., 2004; Duffield et al., 2005; Oakley et al., 2005; Tabibiazar
et al., 2006; Saito et al., 2008; Goren et al., 2009), athymic mice
(Gawronska-Kozak et al., 2006), and in vivo antisense knockdown
studies (Mori et al., 2006, 2008; Mathew et al., 2007) further sup-
port this notion. Also, an overwhelming amount of data have
shown that inflammatory cells emigrating from blood, such as
granulocytes, macrophages, and helper T cells, provide signals
that promote granulation and fibrosis, including ROS, ECM depo-
sition, and chemokines and cytokines (reviewed in Martin and
Leibovich, 2005).

Clinical data demonstrate elevated inflammatory profiles in
patients with pathological scarring (Harty et al., 2003; Martin and
Leibovich, 2005). Also, chronic wounds demonstrate impaired res-
olution of the inflammatory phase, and thus remain in a chronic
inflammatory state (Loots et al., 1998). Time is a critical factor
for abnormal scar formation, as long-lasting wound healing sig-
nificantly increases the risk of hypertrophic or excessive scarring
(Deitch et al., 1983).

The continuous presence of inflammatory mediators results in
increased secretion of growth factors, extending the proliferative
phase via the prolonged presence of myofibroblasts (Singer and
Clark, 1999). This in turn causes excessive deposition of ECM
components, exaggerating the outcome of the proliferative phase
and contributing to hypertrophic scarring or fibrosis (Aarabi et al.,
2007). Thus, the inflammatory cell-derived ROS generated during
the early inflammatory phase must be tightly controlled by cellular
anti-oxidative and anti-inflammatory systems, as impaired ROS
clearance exacerbates wound healing (Frantz et al., 1993; Steiling
et al., 1999).

The unifying hallmark of fibrotic disorders is abnormal and
excessive deposition of ECM components. As exemplified in the
following sections, the broad range of affected organs, the progres-
sive and often irreversible nature of fibrosis, and the large number
of affected patients combined with ineffective treatment poses
a challenge to the development of novel therapeutic approaches
toward limiting fibrosis.

HYPERTROPHIC SCARRING
The skin is the organ with the largest surface area in the body,
functioning as a barrier against the external milieu, and is impor-
tant in protecting the body against pathogens and dehydration.
Other functions include temperature regulation, tactile sensation,
and vitamin D synthesis.

Upon cutaneous injury, dermal wound healing is crucial for
restoration of the damaged skin barrier. In most cases, wound
healing will result in the formation of a visible scar. However,
prolonged inflammation and high levels of oxidative stress (e.g.,
due to infections) may result in excessive deposition of predomi-
nantly collagen I (Sidgwick and Bayat, 2012), leading to fibrosis
and excessive scarring that in skin is manifested as a hyper-
trophic or a keloid scar. Both keloids and hypertrophic scars are
characterized by excessive collagen deposition and are discolored
with a rough, stiff appearance, but whereas hypertrophic scars
are confined to the original wound area, keloids overgrow these
boundaries. Hypertrophic scars may occur in persons of any age
and at any site, whereas keloids develop with higher risk in certain
ethnic groups (Brissett and Sherris, 2001). Almost all abnormal
scars are associated with prolonged inflammation caused by for-
eign body reaction, bacterial infections, tattoos, burns, injections,
bites, cuts,vaccination, trauma, surgery,or infections. Importantly,
immunological alterations have been reported in hypertrophic
scars, including abnormal growth factor and cytokine levels (van
der Veer et al., 2009).

Often patients report itching and pain as major issues besides
the aesthetical and functional problems (Bock et al., 2006). These
complications may require surgical corrections, which may then
lead to further scarring complications.
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FIBROSIS IN CHRONIC INFLAMMATORY LIVER DISEASE AND CHRONIC
PANCREATITIS
Liver and pancreas are two major abdominal organs which have
specific exocrine and endocrine functions within the gastrointesti-
nal tract and in control of the body’s metabolic homeostasis.

The liver is not only a major regulator of systemic metab-
olism but also has key functions in detoxification of endoge-
nous and exogenous toxins. Hepatic fibrosis is mainly caused
by chronic hepatitis B and C, alcoholic liver disease, and fatty
liver disease/non-alcoholic steatohepatitis (extensively reviewed in
Hernandez-Gea and Friedman, 2011). Albeit from different ori-
gins, these disorders have similar early pro-inflammatory features,
which can progress into hepatic fibrosis and ultimately into end
stage liver cirrhosis. Hepatic fibrosis can be regarded as a result of
the hepatic wound healing response to repeated injury. If hepatic
injury sustains, failure of liver regeneration occurs and results in
fibrosis, in which activated hepatic stellate cells (HSCs) play a key
role via excessive production of ECM components. More specifi-
cally, HSC activation is the result of a complex sequence of events
such as secretion of pro-inflammatory cytokines by other hepatic
cells such as liver tissue macrophages (Kupffer cells). Ultimately,
hepatic fibrosis and cirrhosis lead to a replacement of healthy
hepatic tissue with scars and regenerative nodules, causing loss
of liver function.

The pancreas is a major gland organ and has crucial exocrine
functions in the gastrointestinal digestive tract. In addition, it is
a major endocrine organ and produces the glucose-regulating
peptide hormones insulin and glucagon. Chronic pancreatitis is
a progressive inflammatory disease (Witt et al., 2007), which is
most commonly caused by chronic alcoholism or is of idiopathic
origin. Similar to the liver, pancreatic stellate cells (PSCs) play a
key role in pancreatic fibrogenesis (Omary et al., 2007). Normally,
PSCs regulate the synthesis and degradation of ECM proteins and,
thereby, the maintenance of the healthy tissue architecture. Upon
pancreatic injury, PSCs differentiate into an activated phenotype
which is secreting excessive amounts of ECM components and
leads to the formation of fibrotic tissue (Omary et al., 2007). Per-
sistent inflammation of the pancreas causes permanent structural
deterioration with tissue fibrosis and ductal obstruction, and sub-
sequently irreversible, declined exocrine and endocrine function
(pancreatic insufficiency).

FIBROSIS ASSOCIATED WITH GRAFT REJECTION
During transplantation, cells, tissues, or organs are transferred
between organisms from one individual to another or from one
site to another in the same individual to correct the loss or dys-
function of an organ (e.g., kidney, liver, skin). A major problem
in transplantation biology is the immunological barrier between
donor and recipient, which may cause graft rejection. Based on
clinical and pathological criteria, graft rejection has been classified
into three major forms: hyperacute, acute, and chronic graft rejec-
tion (Azimzadeh et al., 2011). Hyperacute rejection starts within
minutes of transplantation and exhibits thrombosis of graft ves-
sels and ischemic necrosis due to circulating recipient antibodies,
and organ failure occurs hours after transplantation. Moreover,
acute graft rejection generally occurs within days or weeks after
organ transplantation and leads to graft failure within the first

year post-transplantation. This form of rejection has been primar-
ily linked to a T cell-mediated reaction of graft destruction. Finally,
chronic transplant rejection (CTR) is less well defined and results
from multifactorial, pathological events, involving both immuno-
logical and non-immunological factors. Immune cells such as T
cells and macrophages, chemokines, pro-inflammatory cytokines,
and allo-antibodies have all been linked to the initiation and pro-
gression of the rejection process (Cornell et al., 2008; Ashoor
and Najafian, 2012). Organs subjected to CTR generally display
fibrotic scarring and vascular damage due to transplant vasculopa-
thy (TV), which has similar features to atherosclerosis (Mitchell,
2009; Racusen and Regele, 2010).

Together, impaired resolution of inflammation and/or elevated
levels of ROS may facilitate fibrosis and scar formation. It is now
commonly accepted that the heme–HO system is a key player in
the control of the inflammation and oxidative stress (Keyse and
Tyrrell, 1989; Willis et al., 1996; Rushworth and O’Connell, 2004;
Pae et al., 2008).

THE HEME–HO SYSTEM
The microsomal enzyme heme oxygenase (HO) catalyzes the
oxidative degradation of free heme, and generates carbon monox-
ide (CO), ferrous iron (Fe2+), and biliverdin (Tenhunen et al.,
1968; Maines, 1988). Two genetically distinct HO isoforms exist:
an inducible form, HO-1, and the constitutively expressed HO-2
(Immenschuh and Ramadori, 2000). Accumulating data demon-
strate that the HO enzymes execute anti-inflammatory, anti-
apoptotic, and anti-proliferative functions through the effector
molecules generated by heme catabolism (reviewed in Willis et al.,
1996; Abraham and Kappas, 2008). Biliverdin is almost instanta-
neously converted into bilirubin by biliverdin reductase, and the
free iron is rapidly scavenged by co-induced ferritin (Wagener
et al., 2003a). CO, Fe2+/ferritin, and biliverdin/bilirubin affect dif-
ferent biological processes (Abraham and Kappas, 2008), including
resolution of inflammation (Willoughby et al., 2000); however,
the executed effects depend on the generated amounts and the
microenvironment (Wagener et al., 2003b).

HEME AS A MOLECULAR SWITCH
Heme (iron protoporphyrin IX) is composed of an iron atom
conjugated to a porphyrin group. Heme is synthesized by every
mammalian cell, and enables in physiological concentrations a
wide range of essential biological functions, by acting as the
prosthetic group for hemoproteins (hemoglobin, cyclooxygenases,
peroxidases) and cellular signaling (reviewed in Wagener et al.,
2003b).

However, upon injury, free heme is released from hemopro-
teins, causing severe tissue damage (Nath et al., 1995; Balla et al.,
2000; Ryter and Tyrrell, 2000; Jeney et al., 2002), predominantly by
generating ROS through the Fenton reaction (Halliwell and Gut-
teridge, 1984) and oxidative modifications of proteins (Nath et al.,
1995; Jeney et al., 2002). Also, local accumulation of high levels
of free heme, e.g., in blood clots, or atherosclerotic lesions (Hasan
and Schafer, 2008), overwhelms cellular detoxification systems by
prolonged oxidative stress, which may cause ROS-dependent oxi-
dation of lipids, proteins, and DNA, subsequently damaging cells
and tissues (Balla et al., 1991, 1993; Jeney et al., 2002).
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Furthermore, accumulating evidence shows that heme besides
being a pro-oxidant in high concentration also possesses pro-
inflammatory properties, because heme increases the expression
of vascular adhesion molecules ICAM-1, VCAM-1, and E-selectin
(Wagener et al., 1997, 1999, 2001a; Tolosano et al., 2002; Belcher
et al., 2006), upregulates vascular permeability (Wagener et al.,
2001b), promotes leukocyte recruitment (Wagener et al., 2001b;
Porto et al., 2007), and induces the release of pro-inflammatory
cytokines (Natarajan et al., 2007; Cosgrove et al., 2011; Hao et al.,
2011). Administration of large amounts of heme has been demon-
strated to not only result in oxidative and inflammatory stress
(Wagener et al., 2001a,b; Tolosano et al., 2002), but also to exac-
erbate different disease settings (Pamplona et al., 2007; Seixas
et al., 2009; Larsen et al., 2010). Together, this heme-induced
injury has been associated with pathological manifestations of
different conditions, e.g., malaria (Pamplona et al., 2007). Interest-
ingly, increased heme levels have also been associated with fibrosis
formation (Tolosano et al., 2002; Kovtunovych et al., 2010).

Furthermore, independent studies have supported a role for
heme in wound healing. In moderate concentrations, heme stim-
ulates vasoconstriction, pro-coagulation, complement activation,
platelet aggregation, and cell differentiation (Nakajima et al.,
1999). Also, low concentrations of free heme down-regulates the
levels of pro-inflammatory cytokines, contributing to the resolu-
tion of inflammation, likely by inducing HO-1 expression (Ma
et al., 2007; Cambos et al., 2010; Cambos and Scorza, 2011).

Consequently, heme can be considered as a molecular switch,
since different concentrations of free heme generate different cellu-
lar responses (Wagener et al., 2003a). In small amounts, it provides
essential cellular functions and cytoprotection via HO-1 induc-
tion, whereas in high concentrations, free heme can cause severe
tissue injury. It is thus of importance to control the levels of free
heme at sites of injury.

THE HEME–HO SYSTEM AND INFLAMMATION – FRIENDS OR FOE?
The dose-dependency of the effects mediated by free heme under-
scores the importance of proper control of the cellular levels hereof
by the HO system.

High levels of free heme in the vascular system have been
suggested to be involved in the initiation and progression of
atherosclerosis, a chronic inflammatory vascular disease with
fibrotic plaque pathology (Hasan and Schafer, 2008). Heme-
induced oxidative stress induces expression of immediate early
gene early growth response (Egr)-1 protein (Hasan and Schafer,
2008) that has been directly linked to vascular pathologies (McCaf-
frey et al., 2000; Blaschke et al., 2004). Importantly, this induction
is inhibited by CO (Hasan and Schafer, 2008), underscoring the
importance of the heme–HO feedback loop as a mechanism to
counteract pathological levels of free heme. Heme also triggers
vascular pro-inflammatory processes by promoting foam cell for-
mation through oxidative modification of low-density lipoprotein
(LDL) and apolipoprotein B100, which are major risk factors for
the development of atherosclerosis (Tsimikas and Miller, 2011).

In contrast, free heme is an inducer of the expression of
stress-sensitive genes, including HO-1, ferritin, Hsp70 as well as
chemokines, and adhesion molecules (Theodorakis et al., 1989;
Wagener et al., 1997; Kanakiriya et al., 2003; Iwasaki et al., 2006).

Also, the local release of large amounts of free heme upon injury
induces inflammatory processes, suggesting that heme acts as a
danger signal (Wagener et al., 2003a; Figueiredo et al., 2007).

Furthermore, the induction of HO-1 by increased levels of
heme at the site of injury also functions as a feedback system
by improving the anti-inflammatory response, as HO activity
counteracts a diverse range of cellular stresses (Abraham et al.,
1988).

Recently, we and others have demonstrated a clear link between
HO activity and diverse (pathological) cellular processes, as HO
activity has been shown to be cytoprotective and anti-apoptotic
as well as to reduce oxidative stress and inflammation in a mul-
titude of different cellular and rodent models (Willis et al., 1996;
Soares et al., 1998; Brouard et al., 2000; Rucker et al., 2001; Wagener
et al., 2003a, 2010; Ryter and Choi, 2009; Gozzelino et al., 2010).
These effects are mediated through the actions of the effector mol-
ecules generated by HO activity (Abraham and Kappas, 2008), as
biliverdin and bilirubin possess strong anti-oxidant properties and
CO is implicated in different signaling cascades and vasodilatation
(Siow et al., 1999).

Moreover, overexpression of HO-1 counteracts the cytotoxic,
pro-oxidative and pro-inflammatory effects caused by heme via
down-regulating inflammatory adhesion molecules and abrogat-
ing tissue influx of leukocytes (Wagener et al., 1999, 2001b, 2003b;
Rucker et al., 2001). On the contrary, inhibition of HO activity
intensifies the heme-mediated oxidative and inflammatory injury
in vitro and in vivo (Hayashi et al., 1999; Vachharajani et al., 2000;
Rucker et al., 2001; Takahashi et al., 2007, 2009; Figure 1).

This is further exemplified by studies in HO-1 knockout
mice and a patient with genetic HO-1 deficiency, in which an
increased expression of vascular adhesion molecules and more
severe inflammation was observed (Yachie et al., 1999; Kawashima
et al., 2002; Wagener et al., 2003a; Kartikasari et al., 2009; Feren-
bach et al., 2010; Radhakrishnan et al., 2011). Recent studies also

FIGURE 1 | One hour after administration of heme (750 μM) or lysed

red blood cells (rbc) to mouse livers, influx of leukocytes was evident

by immunohistological staining. After saline administration, no
leukocytes were detected. Importantly, inhibition of HO activity before
heme exposure (24 h pretreatment, SnMP) exacerbated leukocyte influx
(for more details, see Wagener et al., 2001b).
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suggest that HO-2 is important for the resolution of inflamma-
tion, as HO-2 deficient mice demonstrate slower corneal epithelial
wound healing and an amplified inflammatory response (Bellner
et al., 2008, 2009, 2011; Halilovic et al., 2011; Marrazzo et al., 2011).

In contrast, transgenic HO-1 mice are better protected from
oxidative stress, inflammation, and vascular dysfunction as well as
fibrotic tissue formation post-infarction (Wang et al., 2010).

Also, clinical studies have suggested that swift activation of HO-
1 gene expression might be important to cope with cellular stresses.
Several HO-1 gene promoter polymorphisms have been discov-
ered, determining the levels of HO-1 induction in humans (Exner
et al., 2004). The clinical relevance of the HO-1 promoter vari-
ability has been demonstrated in independent studies and higher
HO-1 induction has been associated with lower incidence for
cardiovascular and inflammatory diseases (Wagener et al., 2008;
Grochot-Przeczek et al., 2012).

Thus the degradation of the pro-inflammatory and pro-
oxidative heme molecules by HO, the signaling actions of CO,
the anti-oxidant properties of bilirubin combined with the scav-
enging of the pro-oxidant free iron by ferritin may all contribute
to the anti-inflammatory effects of the HO system.

By degrading heme, the HO system efficiently converts the
pro-oxidative and pro-inflammatory heme molecule into anti-
inflammatory and anti-oxidant molecules, thereby contributing
to improved wound healing. This suggests that the heme–HO
system executes regulatory functions in a diverse range of cel-
lular processes with a direct influence on a timely execution of the
inflammatory phase, including resolution of inflammation, apop-
tosis, and proliferation. Differential protection against oxidative
and pro-inflammatory insults may also explain clinical differences
in fibrogenesis.

PHARMACOLOGICAL REGULATION OF HO-1 AND ITS
EFFECTOR MOLECULES AS THERAPEUTIC TARGETS IN
INFLAMMATION AND FIBROSIS
A rapidly growing body of experimental evidence shows that spe-
cific overexpression of HO-1 has protective effects in inflammation
and fibrosis (Bauer et al., 2008). Accordingly, pharmacological
induction of HO-1 or administration of its effector molecules
may be a promising therapeutic approach for the treatment of
inflammatory disorders associated with fibrosis in various organs.
However, to apply HO-1 for specific therapeutic interventions a
number of important issues have to be taken into consideration.

ANTI-INFLAMMATORY EFFECTS OF HO-1 ARE MEDIATED IN A CELL
TYPE-SPECIFIC MANNER
HO-1 gene expression is up-regulated in a wide range of cell types
and tissues. The specific anti-inflammatory effects of HO-1, how-
ever, seem to be dependent on its coordinate up-regulation in a cell
type- and cell-context-specific manner. Notably, the regulation of
HO-1 expression in mononuclear/myeloid and in endothelial cells
appears to be of major importance for the immunomodulatory
and anti-inflammatory functions of this enzyme.

The key immunomodulatory role of HO-1 in mononuclear
cells has been shown in conditional knockout mice, in which the
HO-1 gene has been specifically deleted in myeloid cells. In this
report, various pathological immune reactions in experimental

infectious and autoimmune conditions have been demonstrated
in vivo (Tzima et al., 2009). HO-1 has also been demonstrated to
play a major role in the function of dendritic cells, which are a bone
marrow-derived myeloid cell population involved in mediating
adaptive immune responses (Remy et al., 2009; Park et al., 2010).
Moreover, HO-1 appears to be of major significance for modu-
lating inflammatory responses in endothelial cells. This has been
shown in the initial reports on HO-1 knockout mice (Poss and
Tonegawa, 1997) and in the first human case of genetic HO-1 defi-
ciency (Yachie et al., 1999). In either case, the endothelium revealed
specific pathological alterations, which have been ascribed to an
increased endothelial sensitivity to oxidative stress. Accordingly,
it was reported that genetic HO-1 deficiency exhibited pheno-
typic alterations of the vascular endothelium, causing accelerated
formation of arterial thrombosis (True et al., 2007).

REGULATION OF HO-1 GENE EXPRESSION
To apply HO-1 induction by specific pharmacological com-
pounds for therapeutic interventions, it is not only important to
understand the physiological functions of HO-1 and its products.

It is also important to understand the specific regulatory path-
ways that up-regulate HO-1. Although primarily known to be
induced by oxidative stress, HO-1 is also up-regulated by a vari-
ety of stress-independent stimuli including various well-known
pharmacologic compounds (Immenschuh and Ramadori, 2000;
Li et al., 2007). Regulation of HO-1 is mainly, but not exclu-
sively governed on the transcriptional level. Accordingly, a large
variety of transcription factors has been shown to be involved in
HO-1 induction. In particular, redox-dependent transcription fac-
tors such as Nrf2, which is a master regulator of the anti-oxidant
response, activator protein-1 (AP-1) and nuclear factor (NF)-κB,
but also other nuclear factors such as Egr-1, upstream regulatory
factor-2 (USF-2), and specificity protein (SP)-1 have been shown
to mediate HO-1 induction (Ryter et al., 2006; Paine et al., 2010).
A key role in governing HO-1 expression has also been recognized
for the transcriptional repressor Bach1. Bach1 is a heme-binding
protein, the activity of which is primarily regulated via intracellu-
lar levels of free heme (Ogawa et al., 2001; Igarashi and Sun, 2006).
As both, Bach1 and Nrf2, interact with the anti-oxidant response
element (ARE), which is the major cis-acting regulatory DNA ele-
ment in the HO-1 gene promoter, the interplay of these two nuclear
factors appears to be of major importance for inducible HO-1
gene expression. Whether and how Bach1 mediates the specific
regulation of HO-1 if compared to other ARE-dependent stress
response genes such as (NADPH):oxidoreductase-1 (NQO1) or
glutathione-S-transferase (GST)-1 is a subject for currently on-
going investigations (Dhakshinamoorthy et al., 2005; MacLeod
et al., 2009; Okada et al., 2010). The complexity of HO-1 gene
regulation is further illustrated by the array of signaling cascades
including protein kinase Cs (PKCs) and mitogen-activated pro-
tein kinases (MAPKs) that are involved in the regulation of this
gene (for a review, see Paine et al., 2010). In addition, some of
these pathways such as p38 MAPK appear to have contradictory
cell-specific regulatory effects on HO-1 gene expression (Naidu
et al., 2009) indicating that HO-1 is governed by a highly com-
plex interplay of various signaling modules. Macrophage-specific
up-regulation of HO-1 gene expression in inflammation has been
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demonstrated in various experimental models (Paine et al., 2010).
As an example, HO-1 in liver tissue macrophages (Kupffer cells) is
up-regulated in response to the cytokine adiponectin via an IL-10
dependent pathway (Mandal et al., 2010). Moreover, macrophage-
specific induction of HO-1 by various toll-like receptors (TLR)
ligands, including lipopolysaccharides (LPS), requires activation
of the Tec kinase Bruton’s tyrosine kinase (Vijayan et al., 2011).

TARGETED PHARMACOLOGICAL HO-1 INDUCTION AS THERAPY FOR
INFLAMMATION AND FIBROSIS
Numerous compounds have been shown to provide therapeutic
effects via HO-1 induction. However, rather than giving an exhaus-
tive list of compounds that may up-regulate HO-1 for therapeutic
purposes in inflammatory disorders, we refer to more specific
overviews on this topic (Li et al., 2007; Abraham and Kappas,
2008; Vijayan et al., 2010).

Briefly, cobalt-protoporphyrin (CoPPIX), which has been
extensively applied in various experimental models to induce HO-
1, does not seem an ideal compound for targeted therapeutic
HO-1 up-regulation due to possible toxicity. Interestingly, sys-
temic administration of heme (e.g., heme arginate) to healthy
individuals has been shown to increase HO-1 levels in serum
(Doberer et al., 2010), and has been used in the clinics for years in
the treatment of porphyria (Tenhunen and Mustajoki, 1998; Ma
et al., 2011). More research is warranted to explore the potential
induction of systemic HO activity in the human setting by heme
arginate.

Natural products such as quercetin or theaflavin (Loke et al.,
2008, 2010) are less toxic and may be more appropriate for poten-
tial therapeutic applications in inflammatory disorders. Interest-
ingly, Loke et al. (2010) recently demonstrated increased expres-
sion of endothelial HO-1 in aortic lesions and subsequently atten-
uation of aortic lesion formation in quercetin-fed ApoE knockout
mice, underscoring the potential of targeted HO-1 induction in
clinical therapies.

Curcumin is another naturally occurring compound with
a broad range of pharmacological activities, including anti-
oxidative, anti-inflammatory, anti-carcinogenic, anti-diabetic, and
anti-viral effects (Motterlini et al., 2000; McNally et al., 2007),
mediating cellular protection against ROS (Barzegar and Moosavi-
Movahedi, 2011; Wang et al., 2012; Yin et al., 2012) by up-
regulating HO-1 through Nrf2 (Balogun et al., 2003). Recent
studies have shown beneficial effects of curcumin in a liver injury
model (Cerny et al., 2011), and curcumin treatment reduced
radiation-induced lung fibrosis (Lee et al., 2010).

Moreover, macrophage-specific (Wijayanti et al., 2005) HO-
1 induction by defined compounds such as 4-(2-aminoethyl)-
benezensulfonyl fluoride (AEBSF) and endothelial cell-specific
HO-1 induction by statins (Grosser et al., 2004; Lee et al., 2004),
might be useful for such therapeutic applications.

Another key issue that needs attention when applying HO-1
induction for therapeutic applications deals with the question at
what stage of the inflammatory phase HO-1 should be induced
to afford its salutary protective effects. Importantly, HO-1 induc-
tion after the onset of an inflammatory disorder or in full-blown
inflammation seems to be not effective in certain circumstances.
This has been shown in an experimental model of dextran-sulfate-

induced colitis, in which HO-1 failed to have anti-inflammatory
effects if induced after the onset of this disease (Paul et al., 2005)
or in an experimental model of acute pancreatitis (Nakamichi
et al., 2005). Therefore, the time point of targeted HO-1 induction
for therapeutic applications needs further attention. Alternatively,
administration of HO-effector molecules may mediate more direct
anti-inflammatory effects.

EXPOSURE TO HO-EFFECTOR MOLECULES CO AND BILIRUBIN:
POSSIBLE AMELIORATING EFFECTS ON INFLAMMATION AND FIBROSIS
A wide array of preclinical and epidemiological evidence sug-
gests that the protective properties of HO can also be medi-
ated via its effector molecules bilirubin, CO, and co-induced
ferritin. In inflammatory and fibrotic models both CO and biliru-
bin demonstrated significant protection (recently reviewed in
Grochot-Przeczek et al., 2012).

CO exerts its cytoprotective effects through different mech-
anisms, including anti-flammatory (Neto et al., 2006; Chora
et al., 2007), vasodilatory (Sammut et al., 1998), anti-coagulative
(Chlopicki et al., 2006), anti-apoptotic (Wang et al., 2007), and
anti-fibrotic pathways (Neto et al., 2006). CO deliverance is
achieved through inhalation (Mayr et al., 2005; Moore et al., 2005),
CO saturated physiological solutions (Nakao et al., 2006), and
CO-releasing molecules (CO-RMs; Motterlini et al., 2002).

Interestingly, there are recent attempts to translate the promis-
ing findings with CO inhalation and administration of CO-RMs
toward the human setting (Motterlini and Otterbein, 2010). The
CO-RMs have been demonstrated to provide cytoprotective effects
in different in vitro (Clark et al., 2003; Sandouka et al., 2005;
Sawle et al., 2005; Srisook et al., 2006; Zobi et al., 2010) and
in vivo (Vera et al., 2005; Sandouka et al., 2006; Zhou et al., 2009;
Wei et al., 2010) models, which urge for translation toward the
clinic.

However, the potential safety issues with these compounds
must be thoroughly addressed. CO-RMs are complexes of heavy
metal, like nickel, cobalt, iron, or ruthenium surrounded by car-
bonyl groups that are released as CO under the appropriate con-
ditions (Motterlini et al., 2002, 2003). Ruthenium-based CO-RMs
have recently been suggested to generate cytotoxic, CO-depleted
by-products in vitro (Winburn et al., 2012). However, the devel-
opment of water-soluble CO-RMs (Clark et al., 2003; Foresti et al.,
2004), the use of other transition metals, e.g., manganese, in the
chemical structure of CO-RMs (Motterlini et al., 2002; Crook et al.,
2011), and even the use of CO-RMs devoid of transition metals
(Motterlini et al., 2005) may promote the development of clinically
safe CO-RMs due to less confounding effects.

Bilirubin is another generated HO-effector molecule with
promising clinical applications. Besides being a powerful anti-
oxidant (Stocker et al., 1987), several studies have shown that
biliverdin/bilirubin administration has cytoprotective effects dur-
ing ischemia–reperfusion injury and graft rejection after trans-
plantation (Clark et al., 2000; Fondevila et al., 2004). Also, bilirubin
exerts immunomodulatory and anti-inflammatory effects (Willis
et al., 1996) by down-regulating expression of inflammatory
cytokines and adhesion molecules (Nakao et al., 2004), as well as
by reducing immune cell infiltration (Hayashi et al., 1999; Nakao
et al., 2004).

Frontiers in Pharmacology | Drug Metabolism and Transport May 2012 | Volume 3 | Article 81 | 6

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org/Drug_Metabolism_and_Transport
http://www.frontiersin.org/Drug_Metabolism_and_Transport/archive


Lundvig et al. The heme oxygenase system in anti-fibrotic therapy

Individuals with Gilbert’s syndrome have a polymorphism in
the UGT1A1 promoter and are protected against cardiovascu-
lar complications (Schwertner and Vitek, 2008). This polymor-
phism results in slower glucuronidation and therefore dimin-
ished excretion of bilirubin, leading to elevated bilirubin levels.
Unfortunately, bilirubin is not available for human use. We and
others postulated that experimentally induced mild hyperbiliru-
binemia would mimic the positive effects seen in Gilbert’s syn-
drome (McCarty, 2007; Dekker et al., 2011). In a double-blind,
placebo-controlled crossover design, we demonstrated that ele-
vating bilirubin levels using the HIV protease inhibitor atazanavir
indeed ameliorates vascular function in type 2 diabetes mellitus
patients (Dekker et al., 2011). In addition, the redox status in these
patients was improved following induction of mild hyperbiliru-
binemia (Dekker et al., 2011). This demonstrates for the first time
the potential beneficial power of bilirubin as a novel mechanism
in humans. We expect that these clinically significant protective
effects of HO-effector molecules in humans strongly encourage
more translational research toward the protective properties of HO
and its effector molecules in inflammatory and fibrotic conditions.

Finally, three examples of inflammatory disorders, which are
linked to organ fibrosis and in which HO-1 and its effector
molecules may be of therapeutic use, are discussed in more detail.

The heme–HO system in hypertrophic scarring
Except for fast healing wounds, such as shallow scratches, most
wounds will result in visible scar formation, which is a natural
part of the wound healing process. However, in some individuals –
depending on geographic and ethnographic distribution as well as
the character of the injury – excessive deposition of ECM occurs,
resulting in the formation of a raised, discolored hypertrophic
scar.

The involvement of the HO system is evident from knockout
mouse models being devoid of HO-1 or HO-2, respectively. Both
models demonstrate delayed wound healing due to poor response
toward inflammatory and oxidative insults (Braun et al., 2002; Seta
et al., 2006; Deshane et al., 2007; Bellner et al., 2008, 2009, 2011;
Patil et al., 2008; Kovtunovych et al., 2010; Halilovic et al., 2011).
Also, pharmacological inhibition of HO activity has a negative
impact on dermal wound healing (Grochot-Przeczek et al., 2009).

Also in dermal wound healing, the duality of heme is evident.
Local accumulation of free heme liberated by spontaneous degra-
dation of hemoglobin at the wound site may promote free radical
formation and oxidative damage (Balla et al., 1991, 2000; Jeney
et al., 2002). We have postulated that this injury-derived heme
may be the trigger that initiates the inflammatory and the innate
immunity response (Wagener et al., 2003a). To rapidly cope with
oxidative stress, dermal fibroblasts are capable to rapidly induce
HO-1 expression as a feedback response, and keratinocytes contain
high levels of HO-2 (Applegate et al., 1995). When HO-1 levels are
increased at the wound site resolution of inflammation will take
place and the wound healing cascade can enter the next phase.

Pre-induction of HO by daily heme administration
(30 mg/kg/day i.p.) in a mouse excisional wound healing model
enhances wound contraction by increasing cellular prolifera-
tion and collagen synthesis (Ahanger et al., 2010). HO-1 induc-
tion also resulted in reduced transcription of pro-inflammatory
cytokines, e.g., TNFα, and an up-regulated transcription of the

anti-inflammatory cytokine interleukin-10 (Ahanger et al., 2010).
This demonstrates that low levels of heme may promote wound
healing via induction of HO-1, whereas high levels of heme may
prolong oxidative and inflammatory stress and result in a pro-
fibrotic environment. Indeed, up-regulation of HO-1 expression
in keratinocytes in transgenic mice bearing the HO-1 gene under
the control of keratin 14 promoter resulted in improved neovascu-
larization and accelerated wound healing (Grochot-Przeczek et al.,
2009). Also, adenoviral mediated HO-1 gene delivery significantly
improved dermal wound healing (Grochot-Przeczek et al., 2009).

Together, these data suggest that increased levels of HO-1 may
improve wound healing and reduce dermal scarring.

Also, (myo)fibroblast apoptosis is essential in normal and
hypertrophic scarring, as fibroblasts in pathological wound heal-
ing remain in the wound area and deposit excessive amounts of
ECM components, contributing to fibrogenesis. At low concentra-
tions, curcumin has been shown to induce HO expression, whereas
HO-1 expression and activity was negligible at high curcumin
doses (Scharstuhl et al., 2009). Despite this, HO-1 expression
has been demonstrated to protect against fibroblast apoptosis
induced by high concentrations of curcumin through the actions
of effector molecules biliverdin/bilirubin (Scharstuhl et al., 2009).
Importantly, pre-induction of HO-1 with low doses of curcumin
also protected fibroblasts against curcumin-induced apoptosis
(Scharstuhl et al., 2009). This suggest that curcumin in high doses
may affect pathological scar formation through affecting fibroblast
apoptosis, while HO-1 and its effector molecules can fine-tune this
response.

The heme–HO system as therapeutic target in hepatic and
pancreatic fibrosis
The current therapeutic options in specific treatment of both
hepatic (Popov and Schuppan, 2009) as well as pancreatic fibro-
sis (Braganza et al., 2011) are only limited and novel therapeutic
options are urgently needed. Interestingly, independent groups
have demonstrated that specific overexpression of HO-1 had an
inhibitory effect on chronic viral hepatitis (Zhu et al., 2008; Hou
et al., 2010) as one of the major causes of hepatic fibrosis. Exposure
to high levels of heme has been demonstrated to result in inflam-
matory leukocyte influx and fibrosis into the liver (Wagener et al.,
2001b; Tolosano et al., 2002). Moreover, in a more recent study
pharmacological HO-1 induction via CoPPIX has been shown to
prevent liver fibrosis in a Mdr2 knockout mice (Barikbin et al.,
2012). Importantly, in this report up-regulation of HO-1 not only
reduced activation of HSCs, but also reversed established hepatic
fibrosis in this mouse model.

Heme exposure has also shown to strongly promote inflam-
mation in the pancreas, as illustrated by increased vascular per-
meabilization (Wagener et al., 2001b). HO-1 might also serve as a
therapeutic target in pancreatic fibrosis. Schwer et al. (2008) have
shown that up-regulation of HO-1 by curcumin inhibited PSC
proliferation, which plays a crucial role in the progression of pan-
creatic fibrosis. These findings have been extended in a more recent
report, in which PSC proliferation was inhibited via activation of
the p38 MAPK/HO-1 pathway (Schwer et al., 2010). Moreover,
these authors also indicated that the protective effect on PSC may
be mediated via HO-1-dependent up-regulation of the cell cycle
inhibitor p21/CIP-1 (Schwer et al., 2010).
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The heme–HO system in CTR
A late but severe clinical complication after solid organ transplan-
tation is CTR, which is currently considered the major limiting
factor for long-term graft survival in particular in kidney and heart
transplantation (Mitchell, 2009). A hallmark of CTR is TV, also
termed graft vascular disease or allograft arteriopathy, in which
the success rate of current therapeutic regimens including treat-
ment with immunosuppressive drugs is very poor (Cornell et al.,
2008). Pathologic features of TV include diffuse concentric inti-
mal hyperplasia and adventitial sclerosis due to proliferation of
various cell types of the vascular wall.

Survival of cardiac xenografts has been shown to be critically
dependent on the expression of endothelial HO-1 (Soares et al.,
1998). Accordingly, targeted overexpression of HO-1 via a gene
therapy approach has been demonstrated to protect against TV
and to cause a prolonged survival of chronic allogenic rejection of
aortic vascular transplants in a rat model (Chauveau et al., 2002).
Additionally, HO-1 activity has been shown to reduce atheroscle-
rosis (Bouche et al., 2002; Ferran, 2006; Du et al., 2007), which
could further contribute to a higher transplantation success rate.

Although the underlying mechanisms of how HO-1 mediates
its protective effects are not well understood, one major beneficial
effect of HO-1 may be its anti-proliferative effects in the vascula-
ture (Valenzuela and Reed, 2011), which has previously also been
shown in an experimental angioplasty rat model (Duckers et al.,
2001). In corroboration, an increasing number of studies have
proven HO-1 activity to be important for transplant graft sur-
vival (Ollinger and Pratschke,2010),as HO-1 expression induction
improves recipient immune tolerance (see reviews of Soares and
Bach, 2007; Blancou et al., 2011) and donor graft survival after
ischemia/reperfusion injury (for recent reviews, see Ferenbach
et al., 2010; Sass et al., 2012).

The beneficial effects of HO-1 activity have been linked to
the induction level of HO-1, as HO-1 gene promoter poly-
morphisms affect transplantation outcome (Immenschuh and
Ramadori, 2000; Baan et al., 2004; Geuken et al., 2005; Holweg
et al., 2005; Courtney et al., 2007; Gerbitz et al., 2008). However, it is
not only the direct effect of HO-1 on limiting heme levels in injury
sites that mediates the beneficial outcome of HO-1 activity. Also,
the cytoprotective and anti-inflammatory effects of the end prod-
ucts generated by heme degradation, CO and biliverdin/bilirubin,
have proven pivotal in improving the success of graft transplanta-
tion (Soares et al., 1998; Immenschuh and Ramadori, 2000; Kato
et al., 2003; Nakao et al., 2004; Lee et al., 2007; Brugger et al., 2010).

The implication of heme-mediated regulation of the expres-
sion of the transcription factor and inflammatory mediator Egr-1

in atherosclerosis may have a significant impact on the success rate
of graft survival after transplantation, as atherosclerosis is one of
the causative agents for graft rejection and transplantation failure.
Interestingly, HO-1 effects have been associated with its functional
interaction with the cyclin-dependent kinase inhibitor p21/CIP-1,
which belongs to the Cip/Kip protein family of cell prolifera-
tion inhibitors (Duckers et al., 2001). In addition, the function
of p21/CIP-1 has been demonstrated to up-regulate the cellular
anti-oxidant response via direct binding to the master HO-1 gene
transcriptional regulator Nrf2 (Chen et al., 2009). These findings
are in keeping with a recent report showing a major regulatory
role for p21/CIP-1 in endothelial cell proliferation in atheroscle-
rosis (Obikane et al., 2010), and may suggest that the interplay of
p21/CIP-1 with HO-1 and/or Nrf2 is involved in the pathogenesis
of TV.

Together, this exemplifies that the HO system is of major inter-
est for the development of future therapeutic approaches that take
advantage of pharmacological induction of HO-1 in endothe-
lial cells. As a precedent, it has recently been demonstrated in a
rodent atherosclerosis model that HO-1 induction by the pharma-
cological compound probucol had salutary effects via inhibition
of vascular smooth muscle cell proliferation (Wu et al., 2006).
Also, the importance of transcriptional regulation of HO-1 fur-
ther underscores the clinical significance of the HO-1 promoter
polymorphisms on therapy success, and the need for personalized
medicine in the future.

FUTURE PERSPECTIVES
In this review we showed examples clearly demonstrating
that excess levels of heme may promote pro-oxidant, pro-
inflammatory, and subsequently fibrotic processes, in which the
HO system may have counter-regulatory effects. These effects may
occur via degradation of pro-inflammatory free heme and by the
cytoprotective and anti-inflammatory effects of the HO-effector
molecules CO and biliverdin/bilirubin. Promising (pre)clinical
data support the utilization of HO and its effector molecules as
novel therapeutic targets to reduce tissue inflammation, oxida-
tive stress, and fibrosis. However, in order to translate this
toward the clinical setting, safe and potent inducers of HO-1 are
needed.
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