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Abstract
Single B cell screening strategies, which avoid both hybridoma fusion and combinatorial

display, have emerged as important technologies for efficiently sampling the natural anti-

body repertoire of immunized animals and humans. Having access to a range of methods to

interrogate different B cell subsets provides an attractive option to ensure large and diverse

panels of high quality antibody are produced. The generation of multiple antibodies and hav-

ing the ability to find rare B cell clones producing IgG with unique and desirable characteris-

tics facilitates the identification of fit-for-purpose molecules that can be developed into

therapeutic agents or research reagents. Here, we describe a multi-parameter flow cytome-

try single-cell sorting technique for the generation of antigen-specific recombinant monoclo-

nal antibodies from single IgG+ memory B cells. Both mouse splenocytes and rabbit PBMC

from immunised animals were used as a source of B cells. Reagents staining both B cells

and other unwanted cell types enabled efficient identification of class-switched IgG+ mem-

ory B cells. Concurrent staining with antigen labelled separately with two spectrally-distinct

fluorophores enabled antigen-specific B cells to be identified, i.e. those which bind to both

antigen conjugates (double-positive). These cells were then typically sorted at one cell per

well using FACS directly into a 96-well plate containing reverse transcriptase reaction mix.

Following production of cDNA, PCR was performed to amplify cognate heavy and light

chain variable region genes and generate transcriptionally-active PCR (TAP) fragments.

These linear expression cassettes were then used directly in a mammalian cell transfection

to generate recombinant antibody for further testing. We were able to successfully generate

antigen-specific recombinant antibodies from both the rabbit and mouse IgG+ memory B

cell subset within one week. This included the generation of an anti-TNFR2 blocking anti-

body from mice with an affinity of 90 pM.
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Introduction
Since Kohler and Milstein first described a method for the generation of monoclonal antibodies
(mAbs) via their hybridoma technology in 1975 [1], mAbs have become both essential research
reagents and highly successful therapeutic molecules. In 2014 five out of the top ten best selling
drugs were antibody-based including Humira™, the highest seller. At the time of writing this, a
total of 43 antibodies have received FDA approval for use as therapeutics and many more are
currently in development [2]. As disease targets become more challenging to modulate through
antibody intervention due to their high sequence conservation across species (making immuni-
sation difficult), restricted anatomical location (e.g. CNS), difficulty in purifying a soluble form
(e.g. GPCRs) and the need to sometimes target disease state-specific transient or unstable con-
formations, it is preferable to have access to a number of antibody discovery technologies that
allow for a diverse panel of molecules to be generated and tested. This includes both immunisa-
tion-dependent and independent methods. Such a strategy increases the chances of discovering
those antibodies with highly desirable characteristics, providing the best chance of delivering
effective antibody treatments for patients suffering with serious disease.

Although the hybridoma method has revolutionised the use of monoclonal antibodies, the
technology is relatively inefficient (5 × 10−6 efficiency with conventional PEG fusion) due to its
reliance on a fusion event [3]. As a result, many B cells do not get sampled and the potential
diversity in an immune repertoire is consequently not interrgoated. Display methodologies,
such as phage and yeast display, have also been widely used as a technology for producing
monoclonal antibodies [4,5]. However, the random combination of antibody variable region
genes which occurs during library construction results in the loss of natural cognate heavy and
light chain pairings that are evolved and selected for in vivo during an immune response [6,7].
As a result of this random pairing, antibodies from naïve antibody libraries typically require in
vitromaturation to impart increased affinity and stability prior to progression as a therapeutic
molecule.

In recent years, there has been an emergence of a number of single-B cell technologies that
allow the direct sampling of the immune repertoire (reviewed by Tiller) [8]. These platforms
retain the natural heavy and light chain pairing and avoid the inefficient hybridoma fusion
step, thereby enabling efficient mining of the immune B cell population. This facilitates the dis-
covery of rare antibodies that may possess unique highly desirable properties as well as the gen-
eration of large and diverse panels of antibodies. The preservation of the natural heavy and
light chain pairings during cloning of antibody genes favours the generation of recombinant
antibodies with an attractive affinity, specificity and stability profile. Of note are techniques
that sample IgG-secreting cells such as plasma cells, including the fluorescent foci method [9]
and a number of microengraved array technologies [10–16]. Despite the attraction of sampling
the plasma cell repertoire from niches such as the bone marrow, the methods for single cell iso-
lation are currently reliant on manual micromanipulation and are therefore low throughput.

Flow cytometry has been used to isolate single plasmablasts from blood of human donors
taken 7 days following an immunization, vaccination or infection. Plasmablasts appear tran-
siently in the periphery during this time and provide an enriched population of antigen-specific
B cells from which to select [6–8,17,18]. However, sorting does not incorporate an antigen-
binding step and despite the enriched population, recovery of antigen specific recombinant
antibodies from these plasmablasts can be as low as 10% of sorted cells [7].

Other than work by Manz et al. [19] and more recently Carroll and Al-Rubeai [20] and Tad-
deo et al. [21], flow cytometry has not been applied routinely to the identification of antigen-
reactive IgG-secreting cells. This is mainly due to the lack of surface immunoglobulin, preclud-
ing the option of staining specific cells with a target antigen. However, FACS has been
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successfully employed in the identification of antigen-specific memory B cells, expressing sur-
face IgG as part of the B cell receptor [22–31]. Weitkamp et al. (2003) [30] used fluorescent
virus-like particles (VLPs) to identify and sort single rotavirus-specific human B cells into sin-
gle wells of a 96-well plate before culturing to induce antibody secretion. Amanna and Slifka
[22] devised a FACS method for the identification and quantitation of tetanus and diphtheria
antigen-specific memory B cells in clinical samples. However, they did not extend this to single
cell sorting and further analysis. di Niro et al. [31] described rotavirus-specific B cell sorting
immediately followed by single cell RT-PCR recovery of cognate heavy and light chain variable
regions and subsequent recombinant antibody production. More recently, Franz et al. [23]
described the use of labelled tetrameric tetanus toxin C-fragment to identify and sort rare
memory B cells from healthy volunteers. This work, and the vast majority of other published
data describing single cell sorting of antigen-specific B cells and plasmablasts, appears to be
largely restricted to humans where large samples of blood can be easily taken and prepared for
FACS sorting. The human system is also well furnished with an extensive array of highly char-
acterised antibody reagents for identifying cell subsets. There are much fewer examples in the
literature of using non-human animal species, that allow for immunization with a broad spec-
trum of molecules, being used as a source of target-specific B cells for subsequent single cell
sorting using flow cytometry. Lalor et al. [32] were one of the first to describe a multiparameter
flow cytometric sorting protocol in rodents followed by variable region gene recovery and anal-
ysis. However, this was performed using the hapten (4-hydroxy-3-nitrophenyl) acetyl (NP) in
C57BL/6 mice followed by focused analysis of the dominant V186.2 heavy chain variable
region gene only. Despite this early development, there have been few published examples of
flow cytometric sorting of antigen-specific memory B cells from immunized animals for the
purpose of monoclonal antibody discovery. Townsend et al. [29] described the identification of
rare antigen-specific murine B cells through the use of antigen conjugated with two different
fluorophores (FITC and PE). The two-colour system provided increased accuracy in subset
identification and minimised the non-specific staining of other cells. Again, their work did not
cover single cell sorting and variable region gene recovery. Tiller et al. [33] described the recov-
ery of Ig genes from single sorted mouse B cells but in this case the FACS protocol did not
incorporate an antigen-staining step and it can be assumed that such an approach would be an
inefficient method for recovery of antigen-specific monoclonal antibodies from the IgG+ mem-
ory B cell pool.

Here, we describe a multi-parameter flow cytometric single cell sorting technique for the
generation of antigen-specific recombinant monoclonal antibodies from immunised mice and
rabbits (see Fig 1 for method schematic). In combination with several B cell-surface markers
and negative stains (dump channel), two-colour antigen staining enabled efficient identifica-
tion and sorting of specific B cells from mouse spleen and rabbit PBMC. In the mouse system,
the technique included an upfront magnetic activated cell sorting (MACS) step using an anti-
CD45R (B220) reagent to enrich for B cells in the spleen of immunised mice. Due to the lack of
availability of equivalent reagents in the rabbit system, a MACS step was not included for this
example. Mouse B220+ B cells were stained with anti-CD19 and anti-IgG antibodies (positive B
cell stain). This was combined with staining of unwanted cells using an antibody panel incor-
porating reactivity to naïve B cells (IgM, IgD), T cells (CD4, CD8), neutrophils (GR-1), macro-
phages (F4/80) and dead cells (7AAD). The inclusion of antigen that had been conjugated to
two different fluorophores (spectrally distinct) into the staining panel allowed for accurate
identification of IgG+ antigen-specific memory B cells in the flow cytometer. With the absence
of a general B cell marker, the rabbit system was restricted to positively staining with antigen
(labelled with two fluorophores) and IgG only. However, we were able to include markers for
staining unwanted IgM+ cells, T cells and dead cells. Following identification of antigen-
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Fig 1. Schematic representation of the single-B cell sorting protocol used for antibody discovery from
immunised mice. The following steps were undertaken: 1. Mice were immunised and a splenocyte
suspension prepared. 2. B cells from the mouse splenocyte preparation were enriched using anti-mouse
CD45Rmicrobeads (Miltenyi Biotech) and LS MACS columns (Miltenyi Biotech) according to manufacturers’
instructions. 3. Following enrichment, cells were stained with the following antibodies: rat anti-mouse IgG
brilliant violet 421 (BD biosciences), rat anti-mouse IgM PE-Cy7 (Bio legend), rat anti-mouse IgD APC-Cy7
(Bio legend), rat anti-mouse CD19 AF700 (BD biosciences) (2 μg per 108 Cells), and rat anti-mouse CD4,
CD8, GR1 and F4/80 FITC (BD biosciences)(dump channel). Human TNFR2 extracellular domain was
labelled with PE and APC using Lightning Link PE and APC labelling kits (Innova Bioscience) and added to
the cell suspension. 4. FACS was performed on a BD FACS ARIA III with single human TNFR2-specific IgG+

B cells being deposited into the well of a 96-well PCR plate. 5. cDNA from single B cells was prepared using
Superscript III reverse transcriptase (Invitrogen) primed with oligo (dT). Antibody variable-region genes were
then recovered via two rounds of PCR followed by a third round to generate transcriptionally-active PCR
(TAP) products in a manner similar to that described in Clargo et al.9 employing an Aviso Onyx liquid handling
robot to facilitate set-up. 6. Heavy and light chain TAP fragments were transiently co-transfected into Expi293
cells using ExpiFectamine (Life Technologies). After 7 days expression, supernatants were harvested for
further characterisation.

doi:10.1371/journal.pone.0152282.g001
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specific IgG+ memory B cells, single cells, or in some cases up to 3 cells (during the rabbit sort),
were sorted directly into a well of a 96-well plate containing reverse transcriptase reaction mix.
Following production of cDNA, 3 rounds of antibody-specific PCR was performed to amplify
heavy and light chain variable region genes and generate a transcriptionally-active PCR (TAP)
fragments that could be used directly in a mammalian cell transfection to generate recombi-
nant antibody. This recombinant antibody, produced from HEK-293 cells, was then tested for
reactivity with target antigen. We were able to generate antigen-specific antibodies in both the
rabbit and mouse system with an overall efficiency of up to 38.5% (antigen-specific recombi-
nant antibodies per sorted single cell). In summary, this method allowed us to generate large
panels of antigen-specific recombinant antibodies, derived from IgG+ memory B cells, from
immunised mice and rabbits within one week. Antibodies produced using this method repre-
sent useful reagents in their own right as well as potential starting points from which to engi-
neer and humanise sequences in preparation for clinical development.

Materials and Methods

Immunisations
Approval for use of animals for immunisation was provided through the UCB Pharma, UK
Animal Welfare and Ethical Review Body (AWERB) and the license was granted by the UK
Home Office. At the end of the study the mice were anesthetised with isoflurane, terminal
bleeds taken and then sacrificed using a Schedule 1 method in accordance with the Animals
Scientific Procedures Act (ASPA). Rabbits were terminally anaesthetised with a Euthatal solu-
tion in accordance with Animals Scientific Procedures Act (ASPA).

Five Balb/c mice were immunised subcutaneously with 100 μg of purified human IL-25
(IL7-E) (Peprotech) or human TNFR2 extracellular domain (residues 1–256) (generated in
house) per injection with CFA for the first dose and IFA for subsequent boosts. The animals
received 2 booster injections at 2 week intervals. Splenocytes and blood for sera analysis were
prepared from animals harvested 7 days following the final boost. New Zealand White rabbits
were immunised subcutaneously with 500 μg of purified mouse WISP-1-rabbit Fc fusion pro-
tein (generated in house) emulsified with CFA for the first dose and IFA for subsequent boosts.
The animals received 2 booster injections at 3 week intervals. PBMC for FACS and sera analy-
sis were prepared from whole blood of animals harvested 14 days following the final boost.

Preparation and staining of mouse B cells for sorting
Mouse splenocytes were harvested using a gentleMACS Dissociator (Miltenyi Biotech). The
cells were then pushed through a cell strainer (Fisher Scientific) to generate a single cell suspen-
sion before being used for FACS or being frozen in 10% DMSO in FCS. Spleens from all 5 mice
were combined prior to FACS. Splenocytes were washed in a 10-fold excess of Hanks balanced
salt solution without Mg2+ or Ca2+ (Life Technologies), 1% FCS (Life Technologies), 25mM
HEPES (Sigma), 1mM EDTA (Sigma)(described as buffer solution below). Cells were then
blocked using mouse Fc block reagent (Miltenyi Biotech) following the manufacturers’ instruc-
tions. Following this, B cells were enriched using anti-mouse CD45R microbeads (Miltenyi
Biotech) and LS MACS columns (Miltenyi Biotech) according to manufacturers’ instructions.
Following enrichment, cells were resuspended in buffer solution and stained with 1 μg (unless
stated otherwise) per 108 cells of the following antibodies: Rat anti-mouse IgG brilliant violet
421 (BD biosciences), rat anti-mouse IgM PE-Cy7 (Bio legend), rat anti-mouse IgD APC-Cy7
(Bio legend), rat anti-mouse CD19 AF700 (BD biosciences) (2 μg per 108 Cells), and rat anti-
mouse CD4, CD8, GR1 and F4/80 FITC (BD biosciences) (dump channel). Human IL-25
(Peprotech) and TNFR2 extracellular domain (residues 1–256) (generated in house) were
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labelled with PE and APC using Lightning Link PE and APC labelling kits (Innova Bioscience)
following manufacturers’ guidelines. In each case, the two antigen preparations labelled with
both fluorophores were pre-mixed and used at 2 μg total protein per 108 cells. Cells were incu-
bated in the dark for 20 minutes at room temperature and then washed twice in buffer before
being finally re-suspended in buffer for FACS sorting.

Preparation of rabbit B cells for sorting
Rabbit whole blood was mixed 1:1 in PBS and the mixture layered onto Lympholyte mammal
(Cedarlane) in a 50 ml sterile Falcon tube (Fisher Scientific). This was centrifuged at 1500 x g
for 30 minutes at 5°C. The PBMC layer was removed using a pipette and used for FACS or fro-
zen down in 10% DMSO in FCS. PBMCs were washed in a 10 fold excess of Hanks balanced
salt solution without Mg2+ or Ca2+ (Life Technologies), 1% FCS (Life Technologies), 25mM
HEPES (Sigma), 1mM EDTA (Sigma) (described as buffer solution below). Mouse anti rabbit
IgM biotin (BD biosciences) was pre incubated with 5 fold excess PE-Cy7 streptavidin, follow-
ing a 20 minute incubation a 10 fold excess of biotinylated human albumin was added to the
mix to remove any free PE-Cy7 streptavidin. Mouse anti-rabbit CD4, CD8 and a Pan T-cell
antibody (ABD serotec) were labelled with PerCP using a Lightning Link kit (Innova Biosci-
ences) following the manufacturers’ instructions. Cells were resuspended in buffer and stained
with 1 μg per 108 cells with the following antibodies: mouse anti-rabbit IgG PE (Southern bio-
tech), mouse anti rabbit IgM biotin-streptavidin PE-Cy7 complex, mouse anti-rabbit CD4,
CD8 and a Pan T-cell antibody PerCP. Mouse WISP-1 (R & D Systems) was labelled with
Alexa 647 and Alexa 488 using Microscale labelling kits (Life technologies) following the man-
ufacturer’s instructions. Both labelled antigen preparations were used at 1 μg per 108 cells. Cells
were incubated in the dark for 20 minutes at room temperature and then washed twice in
buffer before being finally resuspended in buffer for FACS sorting.

Mouse single B cell sorting
Compensation for the mouse sorting experiments was carried out by labelling mouse spleno-
cytes separately with rat anti-mouse CD45R labelled with the different flourophores that were
used in the experiment. Comparison to an unstained control sample provided a clear positive
and negative population for each fluorophore colour allowing compensation to be calculated
using the BD FACS DIVA software.

FACS sorting was carried out on a BD FACS ARIA III, using a 100 μm sort nozzle at no
greater than 2000 events per second. Five minutes prior to running and sorting the samples,
2% v/v 7AAD (BD biosciences) was added to the samples in order to identify and eliminate
dead cells. Sorting was controlled using BD FACS DIVA software. Post sort analysis was per-
formed using FlowJo software (Tree Star).

Lymphocytes were identified by size and granularity using FSC-A versus SSC-A. Single lym-
phocytes were identified and gated using FSC-W versus FSC-A. T-cells, macrophages and neu-
trophils were identified and eliminated from sorting gates (dump channel). CD19+, IgG+,
IgM-, IgD- B cells were identified and gated. Finally a gate was drawn around the double-posi-
tive antigen-specific population. All antigen-specific single B cells were sorted at single-cell per
well into reverse transcription mix chilled to 4°C in 96-well PCR plates.

Rabbit single B cell sorting
Compensation for the rabbit sorting was done using anti-mouse compensation beads (BD bio-
science) and a series of mouse antibodies covering all the fluorophores used in the experiment
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and a comparison made to an unstained cell sample. Compensation was again calculated using
the BD FACS DIVA software.

FACS sorting was carried out on a BD FACS ARIA III, using a 100 μm sort nozzle at no
greater than 2000 events per second. Five minutes prior to running and sorting the samples,
2% v/v 7AAD (BD biosciences) was added to the samples to identify and eliminate dead cells.
Sorting was controlled using BD FACS DIVA software. Post sort analysis was performed using
FlowJo software (Tree Star). Lymphocytes were identified by size and granularity using FSC-A
versus SSC-A. Single lymphocytes were identified and gated using FSC-W versus FSC-A. T-
cells were identified and eliminated (dump channel). IgG+, IgM- B cells were identified and
gated on. Finally, a gate was drawn around the double-positive mWISP-1 antigen-specific pop-
ulation. All positive cells were sorted into reverse transcription mix chilled to 4°C at either 1
cell or 3 cells per well in a 96-well PCR plate.

cDNA generation and transcriptionally active PCR (TAP)
Details of transcriptionally active PCR (TAP) including oligonucleotide and DNA fragment
sequences are provided in published patent applications WO2010/097435 [34] and WO2010/
097437 [35] and in Clargo et al. [9]. Briefly, cDNA from single B cells was prepared using
Superscript III reverse transcriptase (Invitrogen) primed with oligo (dT). Antibody variable-
region genes were then recovered via two rounds of PCR using either KOD DNA polymerase
(EMDMillipore) or TaqPlus Precision DNA polymerase (Agilent) (mouse primary PCR). A
primary PCR utilized gene-specific primers at both the 5’ and 3’ ends. The 5’ oligonucleotide
set bound either at the 5’ end of the leader sequence (for rabbit variable regions) or at the 5’
end of the framework 1 region of the mature variable region sequence (for mouse variable
regions). The 3’ reverse primer set annealed to CH1 or Cκ region respectively. In the secondary
PCR, a single 5‘ forward oligonucleotide that annealed to a “tail” encoded at the 5’ end of the
primary PCR product was used with a 3’ primer set that annealed in the J region. Not only did
the secondary oligonucleotides introduce restriction sites to facilitate downstream cloning, but
they also provided ~25 base-pair overlap regions; at the 5’ end with a human cytomegalovirus
(HCMV) promoter fragment (plus a leader sequence for rat-derived fragments that were gen-
erated with the framework 1 primer set) and at the 3’ end with a heavy or light chain constant
region fragment. Then, in a tertiary PCR, variable region DNA, HCMV promoter fragment
and constant region fragment containing a poly-adenylation sequence were combined and
amplified to produce two separate linear transcriptionally-active PCR (TAP) products, one
encoding the heavy chain and the other the light chain. Rabbit variable regions were recom-
bined with rabbit constant regions in the expression cassette whereas mouse variable regions
were assembled with mouse constant regions to produce recombinant IgG molecules. PCR set
up was performed using an Aviso Onyx liquid handling robot.

Recombinant antibody expression
Heavy and light chain transcriptionally active PCR fragments were transiently co-transfected
into Expi293 cells (Life technologies) using Expi293 fectamine (Life Technologies) as per man-
ufacturers’ instructions. These were incubated for 7 days at 37°C in a 5% CO2 environment
before the supernatants were harvested by centrifugation for further characterisation.

IgG expression assessment
IgG levels in expi293 supernatants were assessed for both mouse and rabbit via ELISA. Briefly,
goat anti-species Fc fragment-specific polyclonal antibodies (Jackson Immunoresearch) were
coated onto 96 well ELISA plates at 2 μg/ml. Plates were blocked with 1% PEG5000 (Sigma) in
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PBS before four half-log serial dilutions of each transient expression sample were prepared and
applied to the plates along with a dilution series of a purified rabbit or mouse IgG standard.
Following washing, goat anti-species Fab fragment-specific antibodies conjugated to horserad-
ish peroxidase (Jackson Immunoresearch) were added at a 1:5000 dilution. Plates were devel-
oped with 3, 30, 5, 50-Tetramethylbenzidine (TMB) (Sigma) before being read at 630nm on a
synergy 2 microplate reader (BioTek). Sample concentrations were then calculated by interpo-
lating sample values from the standard curves.

Recombinant IgG antigen-binding assays
Binding of mouse-derived antibodies to target (IL-25 or TNFR2) was determined by ELISA.
Briefly, 96-well ELISA plates were coated with 2 μg/ml of the target protein. Plates were
blocked with 3% BSA (Life Technologies) in PBS. Recombinant TAP samples containing
mouse IgG were added to the plates and finally the plates were revealed with goat anti-mouse
Fc fragment-specific antibodies conjugated to horseradish peroxidase (Jackson Immunore-
search) at a 1:5000 dilution. Plates were developed with TMB before being read at 630nm on a
Synergy 2 microplate reader (Bio Tek). Positive binders were determined based on the produc-
tion of an absorbance value which was at least 4-fold higher than that produced by samples
containing no antibody (background).

Binding of rabbit-derived antibodies was determined via homogenous fluorescence assay.
Briefly, mouse WISP-1 (R & D systems) was biotinylated using Lightning link biotin (innova
Bioscience) according to manufacturers’ instructions and coated onto SuperavidinTM beads
(Bangs laboratories). Coated beads were then incubated with TAP supernatants containing
recombinant rabbit IgG and anti-rabbit Fc-Alexa Fluor 647 (Jackson Immunoresearch) at a
1:5000 dilution for 1 hour. Plates were then read on an FMAT ABI 8200 (Applied Biosystems).
Binders were determined as antibodies that showed a mean fluorescence signal greater than
zero on WISP-1-coated beads and no signal on uncoated beads.

Secondary PCR product sequencing and diversity assessment
To determine the sequence diversity from the sorted mouse B-cells, we performed DNA
sequencing of the secondary PCR products. This was achieved using the secondary forward
oligonucleotide for both the heavy and kappa chains as a primer. CDR3 sequences were
extracted and used to assess diversity. Sequence diversity was assessed using a Principal
Components Analysis (PCA) [[36]] similar to that described in Clargo et al. [9]. This pro-
vides a means to reduce the dimensionality of the data and generate an easy to interpret
2-dimensional data plot that illustrated the extent of diversity in our recombinant antibody
panel. The relative position of the data points on the 2-D plot can be considered to be directly
proportional to sequence identity across the data set based on the VH CDR3. Identical
sequences resulted in the co-localization of data points on the 2-D plot (shown with multiple
identifier flags) and related sequence families (those containing 80% sequence identity or
higher in VH CDR3) have been identified either by using a single colour for the data points
(IL-25Fig) or by collectively circling data points (TNFR2Fig). All other sequences were con-
sidered unique.

For the TNFR2 antibody panel, information regarding sequence uniqueness and functional-
ity could be visualized on the same plot. TNF-blocking activity was indicated by shape type
and colour of the data point (blue diamonds represent blocking antibodies, red squares repre-
sent non-blockers and black circles were antibodies where blocking data could not be reliably
generated) and affinity was indicated by size of the data point (larger being of higher affinity).
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BIAcore analysis
Surface plasmon resonance was performed using a BIAcore T200 (GE Healthcare). All experi-
ments were performed at 25°C. Goat F(ab’)2 anti-mouse Fcγ (Jackson Immunoresearch) was
immobilised on a CM5 Sensor Chip (GE Healthcare) via amine coupling chemistry to a capture
level of ~5000 response units. HBS-EP+ buffer (10 mMHEPES pH 7.4, 0.15 M NaCl, 3 mM
EDTA, 0.05% (v/v) surfactant P20, (GE Healthcare) was used as the running buffer. A 10‒50 μl
injection of each antibody sample (0.1‒5 μg/ml) was used to achieve ~100 RU of capture. Two
3 min injections of human TNFR2 (generated in-house) at 10 nM and 100nM were passed
over the captured antibody. Affinity was estimated following a 15 min dissociation phase. To
determine blocking activity, binding of TNFR2 was followed by a 1 min injection of human
TNF (generated in house) at 150 nM, at a flow-rate of 30 μl/min. The surface was regenerated
at a flow-rate of 10 μl/min by two 60 s injections of 40 mMHCl and a 30s injection of 5 mM
NaOH. Double referenced background subtracted binding curves were analyzed using the
T200 Evaluation software (version 1.0) following standard procedures. Kinetic parameters and
estimated affinity values for most antibodies were determined from fitting a BIAcore algorithm
using a single cycle kinetics 1:1 binding model except 4G3, 3C11, 3A9 and 3F7 which were fit-
ted using a bivalent model and affinity estimates derived from ka1 and kd1.

Results

1. Antigen-Specific Mouse Memory B-Cell Sorting
Following immunisation, B cells were purified from splenocyte preparations using anti-B220
MACS. B cells were then stained using the antibody panel described in the materials and meth-
ods and summarised in Table 1. The panel of spectrally-distinct reagents was designed to maxi-
mise the ability to identify and sort human IL-25 or TNFR2-specific mouse memory B cells.
The panel included the use of an anti-CD19 reagent, a positive B cell lineage marker, an anti-
IgG monoclonal pool (specific to individual isotypes) to ensure staining of the class-switched
population of memory B cells and negative stains for IgM and IgD to exclude naïve B cells. To
increase the purity of the B cell subset further, a “dump channel” reagent set comprising anti-

Table 1. Summary of antibody reagents used for identification of IgG+ antigen-specific mouse B cells.

Marker/Reagent Cell type Fluorophore

B220 (CD45R) B-cells MACS bead

CD19 B-cells AF700

IgG Memory B-cells BV421

Antigen Ag specific B-cell PE

Antigen Ag specific B-cell APC

IgM Naïve B-cells PE-Cy7

IgD Naïve B-cells APC-Cy7

CD4 T-cells FITC

CD8 T-cells FITC

GR-1 Neutrophils FITC

F4/80 Macrophages FITC

7AAD Dead cells

An optimised panel of fluorophore-labelled reagents was developed to maximise the potential of identifying

the IgG+ antigen-specific subset of B cells. Both B cell-specific and non-B cell specific (dump channel)

reagents were employed.

doi:10.1371/journal.pone.0152282.t001
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CD4/CD8, anti-GR1 and anti-F4/80 was included to eliminate T cells, neutrophils and macro-
phages respectively. We also included 7AAD to identify and remove dead cells. By including
this extensive panel we were able to exclude contaminating cell types that may be able to bind
antigen with low affinity (naïve B cells), those cell types that bind antigen non-specifically or
those cells that masquerade as B cells (Bell and Gray, 2003). By using APC and PE conjugates,
two intensely bright fluorophores, the antigen-specific B cell subset was extremely well-defined
within the FACS software and a sorting gate could be easily drawn around this population
prior to sorting. Figs 2 and 3 shows a number of FACS staining plots which ultimately lead to
the identification of the IL-25-specific (Fig 2, gate P1) and TNFR2-specific (Fig 3, gate P2)
IgG+ memory B cells. Fig 3, also highlights the total IgG+ memory B cell population (gate P1).

The inclusion of antigen, labelled with two separate fluorophores, enabled us to sort those
cells that were capable of binding both versions, thereby increasing the probability of identify-
ing B cells that were highly specific to IL-25 or TNFR2.

For both the IL-25 and TNFR2 experiments, B cells from the double-positive antigen-spe-
cific population (Fig 2G, gate P1 (IL-25) and Fig 3G, gate P2 (TNFR2)) were sorted at single-
cell per well into three 96-well plates containing reverse transcription reaction mix. To demon-
strate the efficiency of the antigen staining step in the TNFR2 experiment, B cells from the total
IgG+ memory B cell population (Fig 3F, gate P1) were sorted at single-cell per well into an
additional 96-well plate. cDNA was generated from single cells and then heavy and light chain
antibody variable region genes were amplified via two-stage PCR using gene-specific primers.
In a third round of PCR variable region DNA products were combined with DNA fragments
harbouring a promoter fragment and a mouse constant region fragment and amplified using
pull-through primers to generate transcriptionally-active PCR (TAP) products for both the
VH and VL. These PCR products were then used directly to transfect expi293 cells for the
expression of antibody at 1 mL scale in 48-well blocks. Recombinant IgG-containing superna-
tant were harvested from cultures and then tested for binding against human IL-25 and human
TNFR2 respectively via ELISA. The percentage of wells producing IgG and the percentage of
those wells that demonstrated antigen-specificity is shown in Table 2 (IL-25) and Table 3
(TNFR2).

As shown in Table 2, transient expression of IgG from TAP products was successful from
53% of the sorted cells. Of these, 73% demonstrated binding to IL-25 via ELISA. In total, the
IL-25 sorting experiment generated 112 IL-25-specific recombinant antibodies identified by
ELISA. This represents an overall efficiency of 39% of sorted cells. Fig 4 illustrates the range of
expression levels observed and highlights those wells that exhibited IL-25 binding (green bars).
As can be seen, binding was observed in samples with a broad range of concentrations.

In addition to sorting the antigen-specific population, in the TNFR2 experiment we also
sorted single cells from the total IgG+ memory B cell population (without gating on antigen).
As shown in Table 3, the recovery and generation of recombinant IgG was similar for both the
total IgG memory B cell gate (Fig 3F, gate P1) (24%) and the antigen-specific IgG+ memory B
cells gate (Fig 3G, gate P2) (33%). However, antigen specificity was only recovered in the
recombinant antibodies produced from gate P2 where the two-colour antigen stain was incor-
porated into the sorting parameters. This demonstrates the importance of a reliable and robust
antigen-staining step when sorting from the diverse and extensive IgG+ memory B cell pool. A
total of 75 hTNFR2-specific recombinant antibodies were identified by ELISA. This repre-
sented 79% of those wells that gave rise to recombinant IgG and an overall efficiency of 26% of
sorted cells.
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Fig 2. Gating strategy for the identification of antigen-specific mousememory B cells from IL-25 immunisedmice. Following cell enrichment using
CD45Rmicrobeads (Miltenyi Biotech), cells were analysed in a BD FACS ARIA III. A gate was drawn around the lymphocyte population (gated population
represented 47.6% of events) (A). FSC-W and FSC-A were then used to eliminate doublets (gated population represented 99% of events) (B). T cells,
macrophages, neutrophils and 7AAD+ dead cells were eliminated in the “dump channel” (gated population represented 95.8% of events) (C). CD19+ B cells
were identified (gated population represented 99% of events) (D). IgG+/IgM- B cells were then gated on (gated population represented 1.49% of events) (E).
To further eliminate naïve B cells, IgD staining allowed gating for IgG+/IgD- cells, (gated population represented 91% of events) (F). Finally, dual-colour
antigen staining allowed a gate (P1) to be drawn around the double-positive population (gated population P1 represented 0.283% of events) (G). Single cells
from gate P1 were sorted into a 96-well plate for single-cell RT-PCR.

doi:10.1371/journal.pone.0152282.g002
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Fig 3. Gating strategy for identification of antigen-specific mousememory B cells from TNFR2 immunisedmice. Following cell enrichment using
CD45Rmicrobeads (Miltenyi Biotech), cells were analysed in a BD FACS ARIA III. A gate was drawn around the lymphocyte population (gated population
represented 34.9% of events) (A). FSC-W and FSC-A were then used to eliminate doublets (gated population represented 95.1% of events) (B). T cells,
macrophages, neutrophils and 7AAD+ dead cells were eliminated in the “dump channel” (gated population represented 95.4% of events) (C). CD19+ B cells
were identified (gated population represented 97.2% of events) (D). IgG+/IgM- B cells were then gated on (gated population represented 0.899% of events)
(E). To further eliminate naïve B cells, IgD staining allowed gating for IgG+/IgD- cells (gated population (gate P1) represented 96.3% of events) (F). In order to
demonstrate the importance of the antigen staining step, we sorted single cells from the total IgG+/IgD- cell population (gate P1). Finally, dual-colour antigen
staining allowed a gate (P2) to be drawn around the double-positive antigen-specific population (gated population P2 represented 0.95%of events) (G).
Single cells from gate P2 were sorted into a 96-well plate for single-cell RT-PCR.

doi:10.1371/journal.pone.0152282.g003

Monoclonal Antibody Discovery via Antigen-Specific Memory B Cell Sorting

PLOS ONE | DOI:10.1371/journal.pone.0152282 March 29, 2016 12 / 26



2. Characterisation of mouse antibodies
In order to determine the diversity of the anti-IL-25 antibody panel, we performed DNA
sequencing of the heavy chain variable region PCR products. This allowed us to rapidly identify
CDR3 sequences for 50 of the IL-25-binding antibodies. Cloning and sequencing would likely
have enabled the generation of full-length variable region sequences for all of the specific anti-
bodies. However, the direct sequencing of the PCR product represented a straight forward and
rapid way to approximate the diversity in the isolated antibody set and for this reason conven-
tional cloning and subsequent sequencing was not pursued in this study. Despite only having
data for a limited number of antibodies, significant diversity in our antibody panel was
observed. Fig 5 illustrates a PCA analysis where the position of a data point within 2-dimen-
sional space provides a measure of sequence similarity. Related sequences which constituted an
antibody family were defined as those which shared a heavy chain CDR3 amino acid sequence
containing 80% or higher sequence identity. Families are indicated through the use of a single
colour on the PCA plot. We identified 23 unique families of antibody from the 50 analysed
sequences. This demonstrates that the method described here is capable of producing highly
diverse panels of recombinant antibody.

We performed a similar diversity assessment with the recombinant antibodies produced
from the TNFR2 sorting experiment. However, we were also interested in determining the

Table 2. Summary of recombinant IgG expression and antigen binding activity of antibodies derived
from the IL-25-specific IgG+ B cell population.

Population % IgG recoveries as TAP
transients

% Antigen-specific IgG
recovered

Antigen-specific memory B-cells (Fig
2G, gate P1)

53% 73%

Three 96-well plates containing single IL-25-specific memory B cells (sorted from gate P1, Fig 3G) were

subjected to RT-PCR to recover variable region genes and generate transcriptionally-active PCR (TAP)

products. Following generation of recombinant IgG from expi293 cells (Life Technologies), supernatants

were tested by ELISA for the presence of IgG and for their ability to bind to recombinant human IL-25.

Percentage of wells producing recombinant IgG and percentage of those demonstrating antigen binding is

shown.

doi:10.1371/journal.pone.0152282.t002

Table 3. Summary of recombinant IgG expression and antigen binding activity of antibodies derived
from the total IgG+ population and the TNFR2-specific subset of cells.

Population % IgG recoveries as TAP
transients

% Antigen-specific IgG
recovered

Total IgG+ memory B cells (Fig 3F, gate
P1)

24% 0%

Antigen-specific memory B cells (Fig
3G, gate P2)

33% 79%

One 96-well plate containing single memory B cells from gate P1 (total IgG+ population) (Fig 3F) and three

96-well plates of single B cells from gate P2 (TNFR2-specific population) (Fig 3G) were subjected to

RT-PCR to recover antibody variable region genes and generate transcriptionally-active PCR (TAP)

products. Following generation of recombinant IgG from expi293 cells (Life Technologies), supernatants

were tested by ELISA for the presence of IgG and for their ability to bind to recombinant human TNFR2.

Percentage of wells producing recombinant IgG and percentage of those demonstrating antigen binding is

shown.

doi:10.1371/journal.pone.0152282.t003
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quality of the recombinant antibodies. Therefore, following determination of antibody concen-
tration in the expi293 supernatants (concentrations ranged between 80 ng/mL to 5000 ng/mL,
data not shown), we performed a BIAcore experiment with the culture supernatants to gain
some insight into the affinity of the antibodies. Only a subset of the antibodies which showed
binding activity in the ELISA also showed a binding response in the BIAcore experiment (35
from 75 antibodies). The BIAcore experiment enabled us to determine estimates of affinity and
KD values are shown in Fig 6. As can be seen, an affinity range between 90 pM and 52 nM was
estimated for this panel of anti-human TNFR2 antibodies. In order to determine if any of the
antibodies could block the interaction of TNFR2 with its ligand, we included a human TNF
binding step following the dissociation phase of the TNFR2 molecule in the BIAcore experi-
ment. Blockers were identified as those antibodies which prevented the association of TNF
with TNFR2. Fig 6 highlights those antibodies that were capable of blocking ligand binding
(blue diamonds). Only those antibodies with a sufficiently high concentration and slow off-rate

Fig 4. Recombinant IgG concentration range produced from IL-25 B cell sorting experiment. Heavy
and light chain TAP fragments produced from single-sorted B cells were transiently co-transfected into
Expi293 using ExpiFectamine (Life Technologies). After 7 days expression, supernatants were harvested
and the concentration of mouse IgGmeasured using an sandwich ELISA with a purified mouse IgG standard.
Data is shown for all wells that producedmeasurable antibody production. Green bars indicate those that
were determined to bind IL-25 and red and black-check bars represent those which did not show binding to
IL-25.

doi:10.1371/journal.pone.0152282.g004

Fig 5. Diversity assessment of mouse anti-human IL-25 antibodies. For each antibody, VH CDR3 sequences were aligned in a pairwise manner to
generate a sequence distance value. We performed a Principal Components Analysis (PCA)34 as a means to reduce down the dimensionality of this data
and generate an easy to interpret 2-dimensional data plot that illustrated the extent of diversity in our recombinant antibody panel. Data for principle
component (PC) 1 and 2 are shown on the X and Y axis respectively. Clustering analysis was performed and families of closely related sequences were
assigned on the basis of sequence identity in the VH CDR3 regions of 80% or higher. Each separate antibody family has been represented by a unique
colour.

doi:10.1371/journal.pone.0152282.g005
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were capable of generating blocking data under the conditions used in this work. Cloning of
variable regions and re-expression at a higher concentration would likely have allowed for a
more complete blocking data set to have been generated. We successfully produced blocking
data for nine recombinant antibodies. Of these nine antibodies, it was interesting to note that
seven demonstrated the ability to prevent TNF binding to TNFR2 and the 4 highest affinity
antibodies, including the 90 pMmolecule, appeared to possess blocking activity. The data dem-
onstrates that a single-B cell FACS approach can be employed for the generation of both block-
ing and non-blocking monoclonal antibodies with a range of affinities.

As with the IL-25 sorting experiment we wanted to assess the diversity of the anti-TNFR2
antibody panel. We performed DNA sequencing on the amplified heavy chain variable region
gene PCR fragments of the antibodies which had exhibited binding in the Biacore experiment.
In order to visualise the data, we performed a PCA which also provided an overview of the
affinity range and blocking activity of the antibodies. Fig 7 shows the CDR3 sequence analysis
of the VH genes from 26 antibodies. As noted previously, cloning of variable region genes

Fig 6. Affinity analysis of TAP-derived recombinant antibodies. Heavy and light chain TAP fragments were transiently co-transfected into Expi293 using
ExpiFectamine (Life Technologies). After 7 days of expression, supernatants were harvested and the on-rate (ka), off-rate (kd) and affinity constant (KD) of
mouse IgG against human TNFR2 was estimated on a BIAcore T200 applying a BIAcore 1:1 binding model except 4G3, 3C11, 3A9 and 3F7 which were
fitted using a bivalent model and affinity estimates derived from ka1 and kd1. Blue diamonds represent blocking antibodies, red squares represent non-
blockers and black circles were antibodies where blocking data could not be reliably generated.

doi:10.1371/journal.pone.0152282.g006
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would likely have facilitated the generation of the complete sequencing dataset for all 35 anti-
bodies. However, despite the lack of data for some antibodies, including one blocker and one
non-blocker, we were still able to make an assessment of diversity in our recombinant antibody
panel. As can be seen, based on having a VH CDR3 sequence identity of 80% or higher, 14
unique families of antibody were identified. Analysis of the blocking antibodies suggested the
presence of 2 distinct families of antibody. As expected, the confirmed non-blocking antibody
that we successfully recovered sequence data for, appeared to lie in a completely distinct cluster
to the blocking antibodies.

Both the IL-25 and TNFR2 experiments demonstrate that the FACS method described here
represents a robust and reliable method capable of generating panels of highly diverse and
functional antibodies from mice within a short time frame.

3. Antigen-specific rabbit memory B-cell Sorting
Antibodies specific for rabbit B cell and other immune cell markers are less readily available
and for this reason we employed a smaller panel of reagents to identify the antigen-specific
subset of B cells. Due to the lack of reagents, we were also unable to apply a pre-enrichment
step using B cell-specific beads (e.g. MACS) prior to flow cytometry. In this case, PBMCs from

Fig 7. Diversity assessment of mouse anti-human TNFR2 antibodies. For each antibody, VH CDR3 sequences were aligned in a pairwise manner to
generate a sequence distance value. We performed a Principal Components Analysis (PCA)34 as a means to reduce down the dimensionality of this data
and generate an easy to interpret 2-dimensional data plot that illustrated the extent of diversity in our recombinant antibody panel. Data for principle
component (PC) 1 and 2 are shown on the X and Y axis respectively. Clustering analysis was performed and families of closely related sequences were
assigned on the basis of sequence identity in the VH CDR3 regions of 80% or higher. Clusters containing multiple sequences have been circled. All other
sequences were considered unique. Identical sequences being co-located on the 2-D plot but indicated with multiple identifier flags. Blue diamonds
represent blocking antibodies, red squares represent non-blockers and black circles were antibodies where blocking data could not be reliably generated.
The size of the data point markers are indicative of affinity, with large markers representing high affinity (maximum of 90 pM) and smaller markers
representing lower affinity (minimum of 52 nM).

doi:10.1371/journal.pone.0152282.g007
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rabbits immunised with mouse WISP-1 were used as a source of B cells. PBMCs were stained
using the antibody panel described in the materials and methods and summarised in Table 4.
As with the mouse B cell experiment, we employed an anti-IgG stain to identify the class-
switched memory B cell subset which were capable of expressing IgG. However, we were
unable to introduce a positive B cell surface marker stain due to lack of availability of reagents.
To facilitate the rabbit sorting experiment we included an anti-IgM stain to identify naïve B
cells and a dump channel consisting of a number of anti-T cell reagents. We also included
7AAD to enable identification and removal of dead cells.

Following staining, cells were assessed using a BD FACS Aria III multi parameter flow
cytometer. FACS plots showing the cell staining data and subset identification are shown in Fig
8. Antigen-specific IgG+/IgM- B cells were identified (see Fig 8, gate P1) and sorted at either
one or three cells per well of a 96-well PCR plate containing reverse transcription reaction mix
(44 wells at both one and three cells per well, 88 wells in total). We included a three-cell per
well sort as we reasoned that due to the lack of reagents for detecting both specific positive and
negative B cell markers, the observed antigen-reactive population may be less pure than that
identified in the well-defined mouse system, i.e. that some contaminating non-B cells may be
present in the P1 gate (Fig 8). Having performed the sort, cDNA generation and PCR was car-
ried out as described above with the mouse experiment. TAP was performed using rabbit con-
stant regions generating expression cassettes capable of producing rabbit IgG following
transfection of Expi293 cells.

The resulting recombinant antibodies, present in culture supernatant, were then screened
for binding to mouse WISP-1 using a homogeneous fluorescence-based binding assay where
biotinylated WISP-1 protein was immobilised on SuperavidinTm beads. Table 5 summarises
the percentage of wells that yielded IgG following TAP product transfection and expression
and the percentage of those wells that went onto demonstrate antigen binding in an ELISA.

As can be seen, recombinant IgG expression recovery was lower than that observed for
mouse and we only observed IgG production and antigen binding in wells that received 3 cells
prior to RT-PCR. The heavy and light chain variable region gene recovery was significantly
lower than we typically achieve with single-cell RT-PCR from rabbit B cells [9]. Despite this, of
the 8 recombinant antibodies that were successfully generated, 6 demonstrated WISP-1 bind-
ing. The data suggests that not all cells in the P1 gate are of B cell lineage but of those which
are, a large percentage appear to be antigen-specific. Further characterisation of these antibod-
ies was not undertaken.

Table 4. Summary of antibody reagents used for identification of IgG+ antigen-specific rabbit B cells.

Marker/Reagent Cell type Fluorophore

IgG Memory B-cells PE

Antigen Ag specific B-cell Alexa-Fluor 488

Antigen Ag specific B-cell Alexa-Fluor 647

IgM Naïve B-cells PE-Cy7

CD4 T-cells PerCP

CD8 T-cells PerCP

Pan-T cell T cells PerCP

7AAD Dead cells

An optimised panel of fluorophore-labelled reagents was developed to maximise the potential of identifying

the IgG+ antigen-specific subset of B cells in rabbit PBMC samples. Both B cell-specific and non-B cell

specific (dump channel) reagents were employed.

doi:10.1371/journal.pone.0152282.t004
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Fig 8. Gating strategy for identification of antigen-specific rabbit memory B cells.Cells were analysed in a BD FACS ARIA III. A gate was drawn
around the lymphocyte population (gated population represented 59.8% of events) (A). FSC-W and FSC-A were then used to eliminate doublets (gated
population represented 95.7% of events) (B). 7AAD+ dead cells and T cells were eliminated in the “dump channel” (gated population represented 97.1% of
events) (C). IgG+/ IgM- B cells were identified and gated on (gated population represented 2.67% of events) (D). Finally, a gate (P1) was drawn around the
double-positive mWISP-1 antigen-specific population (gated population represented 0.262% of events) (E). Cells from gate P1 were sorted into a 96-well
PCR plate at either one or three cells per well for subsequent RT-PCR.

doi:10.1371/journal.pone.0152282.g008

Table 5. Summary of recombinant IgG expression and binding recoveries.

Population Cells per well sorted % IgG recoveries as TAP transients % WISP-1-specific IgG recovered

Antigen-specific memory B-cells (gate P1) 1 0% 0%

Antigen-specific memory B-cells (gate P1) 3 18% 75%

One 96-well plate containing 44 wells filled with single B cells and 44 wells filled with three B cells from gate P1 (as shown in Fig 8) were subjected to

RT-PCR to recover antibody variable region genes and generate transcriptionally-active PCR (TAP) products. Following generation of recombinant rabbit

IgG from HEK-293 cells, supernatants were tested by ELISA for the presence of IgG and for their ability to bind to mouse WISP-1 in a homogeneous

fluorescence-based FMAT binding assay.

doi:10.1371/journal.pone.0152282.t005
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Discussion
A number of single B cell technologies that allow the efficient sampling of the B cell repertoire
of an immunized animal have emerged in recent years [8]. These technologies have provided
significant advantages over traditional hybridoma approaches. Circumventing the inefficient
fusion event which is required to produce a hybridoma means that, in principle, an entire B
cell repertoire can be sampled using single B cell technologies. This ultimately equates to more
efficient identification of rare B cells producing antibodies with favourable profiles. Also,
because these methods are not reliant on a myeloma fusion partner, they can be applied to mul-
tiple species, including humans, where reagents allow for identification and isolation of the sin-
gle B cells. This provides more flexibility with regard to which animal species is used for
producing antibodies and results in larger and more diverse panels of antibody from which to
select molecules with desirable characteristics. This is particularly advantageous in therapeutic
antibody development where the criteria for success are extensive. The technique described
here, particularly when used in conjunction with complementary technologies sampling other
B cell subsets, facilitates the generation of multiple “starting points” from which amino acid
sequences can be engineered and humanized to produce therapeutic candidates. These candi-
dates can then be screened for activity, stability, expression, specificity, epitope targeting etc
before selecting a lead molecule with the most attractive profile for clinical development.

In this study, we describe the use of a multiparameter flow cytometry method to isolate nat-
urally-occurring, antigen-specific IgG+ memory B cells, directly from the spleen and blood of
immunized mice and rabbits respectively. Staining of both B cells and non-B cells allowed for
highly pure populations of antigen-specific B cells to be identified. The use of antigen, labelled
with two spectrally-distinct fluorophores, allowed for sensitive identification of those cells
capable of dual-binding the target molecule with high specificity rather than cells binding non-
specifically to one of the protein-fluorophore conjugates. In both Figs 2 and 3 (mouse) and Fig
8 (rabbit), antigen-staining on a single colour can be observed and so the dual-antigen stain
helped to enrich the true positive population. A similar concept was described by Townsend
et al. [[29]]. However, they used the technique for analysis of cell populations only whereas we
have extended the approach, employing a broader panel of fluorescent reagents, to identify and
sort individual antigen-specific B cells for subsequent recombinant monoclonal antibody
generation.

The mouse system is relatively well furnished with a range of antibody reagents that enable
both positive identification of B cells and the staining and elimination of non-B cell subsets
such as T cells, neutrophils and macrophages which are likely to be present in the same
immune tissue samples that are the source of B cells. Importantly, Bell and Gray [37] demon-
strated that so-called “antigen-capturing cells” of non-B cell lineage exist in mice. These cells,
which include macrophages, monocytes, neutrophils and dendritic cells, are able to capture cir-
culating IgG through FcγRI molecules, which if the antigen-specific IgG component is at a
high enough concentration, can subsequently result in capture of antigen onto the cell surface.
By incorporating both positive and negative cell stains into the mouse protocol, we were able to
exclude the non-B lymphocyte antigen-capturing cells allowing for the accurate identification
of the B cell subset. Combining this with a dual-antigen labelling technique allowed us to iden-
tify and sort a highly enriched population of antigen-specific B cells. Following RT-PCR, gener-
ation of TAP products and expression in a transient expi293 system, we were able to
demonstrate recovery of 112 anti-human IL-25 and 75 anti-human TNFR2 recombinant anti-
bodies. This represented an overall efficiency of 40% and 26% of sorted cells respectively within
the antigen-specific gate (Fig 2, gate P1 for IL-25 and Fig 3, gate P2 for TNFR2). This compares
very favourably to other reports of antigen-specific cell sorting. For example, Weitkamp et al.
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[30] attempted to sort rotavirus (RV)-specific B cells from human blood using fluorescent
virus-like particles as a source of target. They showed that 23% of sorted cells showed antigen
binding following in vitro activation to induce antibody secretion but following RT-PCR, the
efficiency dropped to 1.3% of the sorted population. Smith et al. [7] employed a sorting
approach to sample the transient plasmablast population without an antigen labelling step.
Despite being able to achieve up to 22% recovery of recombinant antigen-specific antibodies
from single-sorted cells, the frequency of antigen-specific plasmablasts can be significantly
lower than the 70% reported in this paper. Frequencies of 10% or lower may be observed and
in such circumstances, the efficiency would drop to 2–3%.

In order to determine the quality of antibodies generated from the mouse memory B cell
sorting experiment, we attempted to estimate affinity of the anti-TNFR2 panel via SPR using
transiently-expressed antibody. Thirty five recombinant antibodies generated data that could
be processed using the BIAcore analysis software to produce an estimated KD. It is likely that
poor affinity (slow on-rate, fast off-rate) combined with relatively low expression levels
accounted for those antibodies which failed to show binding by BIAcore but did by ELISA. Of
those antibodies where kinetics could be determined, an affinity range between 90 pM and 52
nM was observed. This confirmed that the FACS technique employed here is capable of sam-
pling the memory B cell repertoire efficiently, enabling the generation of antibodies with a
broad range of affinities, i.e. not limited to antibodies with high affinity or with high surface-B
cell receptor expression that may have been preferentially labelled with antigen. Although we
gated on the entire antigen-specific population in this experiment it may be possible to selec-
tively sort the high affinity subset by taking those cells that exhibit a high antigen-specific to
total IgG staining ratio [38,39]. However, high affinity does not always correlate with antibody
function hence this type of approach should be treated with caution.

In order to determine the neutralisation capability of the recombinant anti-human TNFR2
antibodies, we included a human TNF binding step in the BIAcore experiment to identify
those antibodies that bound at the ligand-binding site of the receptor and prevented TNF asso-
ciation. The assay was applicable to those antibodies which possessed a slow off-rate where a
stable antibody-TNFR2 complex could be maintained on the surface of the BIAcore sensor. At
the antibody concentrations produced in this work (<10 μg/ml), reliable blocking data could
not be obtained for those antibodies with a relatively fast off-rate (kd >2 x 10−3). It should be
noted however that the BIAcore experiment utilised here was primarily designed to determine
binding kinetics. An alternative assay design would likely have generated more extensive block-
ing data but this was considered to be beyond the scope of the existing study.

Nine antibodies successfully produced ligand association data with seven that demonstrated
the ability to prevent TNF binding to TNFR2. Interestingly, the four highest affinity antibodies
in the recombinant panel appeared to possess blocking activity. The data demonstrates that a
single-B cell FACS approach can be employed for the generation of both high affinity blocking
and non-blocking monoclonal antibodies. It may also be possible to identify blocking antibod-
ies directly in the FACS experiment through the introduction of a labelled binding partner for
the target and identifying those B cells that do not positively stain for this. For example, in the
TNFR2 experiment described here the introduction of human TNF labelled with a spectrally-
distinct fluorophore may have allowed us to identify TNFR2+/TNF- memory B cells presum-
ably producing antibodies that can block TNF binding to the receptor. However, this additional
parameter was not tested in the present study.

In order to assess diversity in the recombinant mouse antibody panels for both the IL-25
and TNFR2, we performed sequencing of the variable regions using the amplified secondary
PCR products. A principal components analysis (PCA) was performed allowing diversity to be
illustrated on a 2-dimensional plot. Based on having a VH CDR3 sequence identity of 80% or
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higher, 23 and 14 unique families of IL-25- and TNFR2-specific antibodies were identified
from a total of 51 and 26 sequenced antibodies respectively. This shows that the technique
described here is robust and capable of generating large panels of diverse antibodies from two
separate immunisation experiments representing both a soluble cytokine target (IL-25) and an
extracellular domain of a cell-surface receptor (TNFR2). The broad application of this tech-
nique to multiple target classes will facilitate its widespread use in the antibody discovery field.

For the TNFR2 analysis we were able to build in both affinity and blocking activity into the
PCA visualisation figure. These features of the antibodies were displayed by the size and colour
of the individual data point markers respectively (Fig 7). As described above, blocking data was
only obtained for the higher affinity antibodies with slower off-rates (kd<2 x 10−3). Analysis of
the blocking antibodies revealed the presence of 2 distinct families of antibody. Both families
encompassed variants where blocking data was not successfully produced presumably due to
insufficient affinity. For example, one of the blocking families included three antibodies 4E3,
4G7 and 3G6, which all possessed very high on-rates (ka), but only 4E3, the highest affinity
(slowest off-rate) variant in this family, was confirmed as a blocker with both 3G6 and 4G7 fail-
ing to provide sufficiently reliable data to determine blocking activity. Based on the similarity
of the VH CDR3, it is likely that all three antibodies are capable of binding to a very similar epi-
tope on TNFR2 and exhibit blocking activity but due to the faster off-rates of 3G6 and 4G7,
this was not possible to confirm experimentally. As expected, the confirmed non-blocking anti-
body that we successfully recovered sequence data for (2G10), appeared to cluster separately to
the blocking antibodies and possessed a very different variable region sequence.

The diversity assessments over two separate sorting experiments with different antigens
suggested that the memory B cell repertoire of the mouse represents an excellent subset from
which to derive highly diverse panels of high quality antibody that target different epitopes (at
least two confirmed based on blocking data generated for the TNFR2 antibodies; blocking and
non-blocking). Having access to a number of different V region sequences provides the poten-
tial to select those antibodies with favourable functional and biophysical characteristics. In the
case of therapeutic antibody development, having multiple sequence options provides an
increased chance of being able to successfully humanise a rodent sequence and transition the
molecule into a clinical development program.

We wanted to extend the concepts applied in the mouse sorting experiment to the rabbit
system. Rabbits offer an excellent source of high quality antibodies and provide the opportunity
to generate anti-mouse orthologue research reagents and species cross-reactive antibodies, e.g.
anti-mouse and anti-human cross-reactive [9,40]. Although reagents for identifying B cell sub-
sets and other cell types in the rabbit are limited, we wanted to perform a proof of concept
experiment to demonstrate that recombinant antigen-specific rabbit monoclonal antibodies
could be generated using FACS. Reagents to eliminate T cells, naïve IgM+ B cells and dead cells
were incorporated along with a positive anti-IgG stain and a dual-antigen labelling step similar
to that used with the mouse. In this case we used the antigen mouse WNT1-inducible-signaling
pathway protein 1 (WISP-1), a molecule implicated in tumour pathogenesis and fibrosis. Fol-
lowing labelling of PBMCs fromWISP-1-immunised rabbits, B cells were sorted at either one
or three cells per well of a PCR plate. As expected, the lack of other staining reagents, especially
in the dump channel, meant that efficiency was reduced compared to the mouse. We were
unsuccessful in recovering heavy and light chain variable region gene pairs from wells that
received single cells. However, we were able to generate paired VH and VL and recombinant
IgG from wells that received 3 cells. The paired variable region recovery rate was relatively low
(18% of wells). Typically we obtain cognate pairs from approximately 75% of isolated single
rabbit B cells [9]. This suggests that in the FACS approach described here that not all identified
cells within gate P1 (Fig 8) were of B cell lineage. Alternatively, the rabbit memory B cells may
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possess relatively low levels of mRNA or be more susceptible to template degradation following
cell sorting resulting in lower variable region recovery compared to mouse. Without a broader
set of antibody reagents to characterise the identified rabbit cell population, it is difficult to
determine the exact cause of the lower recovery rates. It is also unclear why those wells that
received single cells failed to produce paired variable region genes given that the recovery rate
with 3 cells per well was 18%, i.e. expected rate of recovery should have been 6% (approx. 2–3
wells). However, in those wells where VH and VL genes were recovered and recombinant IgG
generated from TAP products, 75% (6 monoclonal antibodies) also exhibited binding to the
target antigen WISP-1 in a homogeneous fluorescence-based binding assay. We did not char-
acterise these antibodies any further. This relatively high percentage of antigen-reactive anti-
bodies in the recombinant IgG panel suggested that a highly enriched specific population of B
cells was correctly identified using the staining protocol described and that further refinement
of the reagent panel through addition of antibodies for labelling monocytes and neutrophils for
example, may allow for elimination of contaminating, non-B cell populations. Such additional
reagents are not readily available from commercial sources. Therefore, bespoke antibody dis-
covery campaigns may be required to provide these antibodies.

We have demonstrated through the use of multi-parameter flow cytometric sorting that the
IgG+ memory B cell repertoire of mice and rabbits represent an excellent source from which to
produce recombinant monoclonal antibodies. When combined with transcriptionally-active
PCR (TAP), recombinant IgG (or other antibody fragment formats) can be efficiently pro-
duced within the space of one week. Alternative techniques for interrogating the memory B cell
repertoire have been described previously, including the use of in vitro activation and screening
[[41,42]]. Although, these culturing approaches have the advantage of being able to screen anti-
bodies for various activities and functions prior to antibody gene cloning, the FACS-based
approach described here provides an attractive alternative and offers the possibility of being
able to screen large numbers of recombinant antibodies produced from a transient HEK-
293-based (or other mammalian cell) system where antibody expression may be higher and in
some situations provide improved compatibility with cell-based functional screening assays.
The cell culturing approaches do however provide the option to screen against cell-surface
molecules that are difficult to obtain as soluble and purified proteins. Such targets, which
include GPCRs and ion channels, would be far more challenging to prosecute using the FACS
approach described in this study. It may be possible to employ peptides that map to extracellu-
lar regions but it is common for these to adopt non-native conformations. Alternatively, fluo-
rescently-tagged membrane preparations, virus-like particles or thermo-stabilised mutant
receptor proteins could be employed [30,43,44].

In summary, the generation of large and diverse panels of high quality monoclonal antibod-
ies to therapeutically-relevant target molecules is reliant on the use of a range of discovery tech-
nologies that allow for efficient interrogation of the antibody repertoire. The FACS approach
described here represents a complementary technology to established antibody discovery
methods and provides an additional mechanism by which to identify fit-for-purpose antibodies
to an ever expanding array of targets.
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