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ABSTRACT: In this paper, we extend the rank-reduced coupled-
cluster formalism to the calculation of non-iterative energy
corrections due to quadruple excitations. There are two major
components of the proposed formalism. The first is an approximate
compression of the quadruple excitation amplitudes using the
Tucker format. The second is a modified functional used for the
evaluation of the corrections which gives exactly the same results
for the exact amplitudes, but is less susceptible to errors resulting
from the aforementioned compression. We show, both theoret-
ically and numerically, that the computational cost of the proposed
method scales as the seventh power of the system size. Using
reference results for a set of small molecules, the method is
calibrated to deliver relative accuracy of a few percent in energy
corrections. To illustrate the potential of the theory, we calculate the isomerization energy of ortho/meta benzyne (C6H4) and the
barrier height for the Cope rearrangement in bullvalene (C10H10). The method retains a near-black-box nature of the conventional
coupled-cluster formalism and depends on only one additional parameter that controls the accuracy.

1. INTRODUCTION
Tensor decomposition has long been an active area of research
in the field of applied mathematics, with successful applications
inmany branches of science, see ref 1 for an exhaustive review. In
recent years, tensor decomposition techniques have been
embraced by the quantum chemistry community, as exemplified
by the development of the tensor hypercontraction (THC)
format of the electron repulsion integrals.2−5 Pioneering
applications to electronic structure methods such as MP2,
MP3, random-phase approximation, and coupled cluster have
also been reported.6−17 The primary motivation for applying
tensor decompositions to quantum-chemical methods are
reductions in terms of computational cost and storage
requirements. With a proper calibration, these benefits are
attainable with an insignificant accuracy loss and without
compromising the black-box nature of the parent theoretical
method. However, we would like to point out that from the
point of view of quantum chemistry, there is an additional
potential application of tensor decomposition techniques which
has been largely untapped thus far. It is related to the
interpretative power of such techniques, exploiting the fact
that they can automatically extract important information about
the system even from a complicated wave function Ansaẗz, with
minimal human oversight.1

The coupled-cluster (CC) theory18,19 is a particularly
promising candidate for applying tensor decomposition
schemes. In all CC variants, the wave function is parametrized
by a set of cluster amplitudes which can be viewed as multi-

dimensional tensors with indices referring to the occupied and
virtual orbital sets. Storage and manipulation of these tensors
constitutes the main bottleneck in CC calculations for large
molecular systems. To address this issue, we have recently
introduced14 an approximate CC theory including single,
double, and triple excitations (CCSDT)20,21 where the triply
excited amplitudes tensor is represented in the Tucker-3
format.22,23 The increased flexibility offered by this decom-
position enables to reduce the scaling of the approximate
method by a factor quadratic in the system size in comparison
with the exact CCSDT. At the same, accuracy levels of up to 0.1
kJ/mol are reachable in typical applications to chemical
problems.
Despite these developments being promising, one may argue

from a pragmatic standpoint that being able to reproduce the
CCSDT results accurately, even at a significantly reduced cost, is
not sufficient for general-purpose applications in thermochem-
istry, chemical kinetics, molecular interactions, and so forth. In
fact, it is well-documented that in some applications, the
CCSDT method does not improve the accuracy (in relation to
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FCI) over the “gold standard” CCSD(T) to a degree that would
justify the drastic increase in the computational costs.24−29 The
reason for this counterintuitive behavior is an accidental, yet
systematic, cancellation of errors observed at the CCSD(T)
level of theory for “well-behaved” systems. There are two major
components of the post-CCSD(T) contribution: (i) the
correction due to the inexact treatment of triple excitations
and (ii) the correction due to the missing quadruple excitations.
It turns out that these two components are often of opposite
signs and hence a degree of cancellation occurs. The lesson
learned is that the quadruple excitations play a significant role in
the ≈1 kJ/mol accuracy range and must be included alongside
the full treatment of triple excitations to provide a balanced
description.
The importance of quadruple excitations in accurate

theoretical studies was recognized in the literature a long time
ago. Unfortunately, their complete inclusion by means of the full
CCSDTQ theory30−33 is prohibitive for molecules comprising
more than a few atoms, assuming a decent-quality basis set is
used. This prompted research intomore affordable methods that
are able to account for the quadruple excitations in an
approximate, yet still reliable, way. Several families of such
methods were proposed,34−41 both iterative and non-iterative,
based either on the ordinaryMøller−Plesset perturbation theory
or various effective Hamiltonian approaches, and employing
either CCSD or CCSDT wave functions as the starting point. A
more detailed technical discussion of these methods is given in
subsequent sections. In this work, we concentrate primarily on
the CCSDT(Q) theory introduced by Bomble et al.37 which has
become the de facto standard in high-accuracy quantum
chemical calculations. Due to a good balance between the
accuracy and computational costs, it is a member of various
composite electronic structure protocols and is implemented in
several program packages available for public use. In many
applications, the CCSDT(Q) theory is considered to be the
“platinum standard” of quantum chemistry29�the next rung of
the CC ladder above CCSD(T) striking a balance between the
accuracy and computational costs. Computation of the (Q)
correction is usually 1−2 orders of magnitude less computa-
tionally intensive than the complete CCSDTQ calculations.
Despite this drastic reduction, the range of applicability of the
CCSDT(Q) theory to polyatomic molecules remains limited as
a result of steep N9 scaling of the computational costs with the
system size, N.
This work is a continuation of a series of papers11,14,16,17

where tensor decomposition techniques are applied as a tool to
reduce the cost of high-order CC methods. In this part, we
introduce a rank-reduced approach to computation of the (Q)
correction. There are two main distinguishing features of the
proposed scheme. The first is the compression of the quadruply
excited amplitudes using the Tucker format which enables to
reduce the immense cost of storing and manipulating the T4
amplitudes. To achieve the necessary transformation from the
full rank to rank-reduced representation of the quadruply excited
amplitudes, we develop an iterative method based on a higher-
order orthogonal iteration (HOOI) procedure.42,43 The second
feature is the development of a modified functional used to
evaluate the (Q) correction. Due to the variational nature of this
functional, it is less sensitive to the errors incurred by the rank-
reduced treatment of the CC amplitudes. This enables to
evaluate the (Q) correction with a mean relative accuracy of a
few percent. Taking into account that the (Q) method itself is
able to recover, on average, about 90% of the CCSDTQ−

CCSDT energy difference,44 these errors are acceptable from a
practical point of view. Critically, by properly factorizing the
working expression of the proposed method and exploiting the
rank-reduced format of the CC amplitudes, it is possible to
evaluate the (Q) correction with the N7 cost. Finally, we report
calculations of relative energies for larger systems, demonstrat-
ing a broad range of applicability and reliability of the proposed
theory. In particular, we study the isomerization energy of ortho/
meta benzyne and the Cope rearrangement in a bullvalene
molecule.

2. THEORY
2.1. Preliminaries. In this work, we consider closed-shell

systems and employ the canonical restricted Hartree−Fock
(HF) determinant, denoted |ϕ0⟩, as the reference wave function
in the CC theory. TheHF orbital energies are denoted by ϵp. For
brevity, we also introduce the following conventions:

= |A Adef
0 0 and | = |A B A Bdef

0 0 for arbitrary oper-
ators A and B. Unless explicitly stated otherwise, the Einstein
convention for summation over repeated indices is employed
throughout. The standard partitioning of the electronic
Hamiltonian, H = F + W, into the sum of the Fock operator
(F) and the fluctuation potential (W) is adopted. The remaining
aspects of the notation are summarized in Table 1.

The method for evaluation of non-iterative quadruples
correction reported in this work builds upon the SVD−
CCSDT theory introduced in ref 14. The electronic wave
function underlying the SVD−CCSDT method is given by
| = |eT

0
SVD with TSVD = T1 + T2 + T3SVD. The T1 and T2

operators have the same form as in the usual CCSDT theory

= =T t E T t E E,
1
2i

a
ai ij

ab
ai bj1 2 (1)

where tia and tijab are the cluster amplitudes, and Epq = pα
†qα + pβ

†qβ
are the spin-adapted singlet orbital replacement operators.45

The triply excited component of the cluster operator is
approximated as

=T t E E E t t U U U
1
6

, withijk
abc

ai bj ck ijk
abc

XYZ ai
X

bj
Y

ck
Z

3
SVD

(2)

The quantities Uai
X are obtained by a procedure described in ref

17 and are fixed during the CC iterations. The remaining
unknown quantities (tia, tijab, and tXYZ) are found by projecting

| =e He 0T T
0

SVD SVD onto a proper subset of excited determi-

Table 1. Details of the Notation Adopted in the Present
Work; O Is the Number of Active Occupied Orbitals in the
Reference and V Is the Number of Virtual Orbitalsa

indices limit corresponds to defining equation

i, j, k, l, ··· O active occupied orbitals
a, b, c, d,

···
V unoccupied (virtual) orbitals

p, q, r, s, ··· general orbitals
P, Q, ··· Naux density-fitting basis set (pq|rs) = BpqQBrsQ

X, Y, Z, ··· NSVD subspace of triply excited
amplitudes

tijkabc =
tXYZUai

XUbj
YUck

Z

A, B, C, ··· Nqua subspace of quadruply excited
amplitudes

tijklabcd =
tABCDVai

AVbj
BVck

CVdl
D

aFor convenience of the readers, the key defining equations are
included in the last column.
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nants and solving the resulting non-linear equations. The
dimension of the compressed amplitudes tensor tXYZ is denoted
by NSVD, see Table 1, and it scales linearly with the system size.
Note that this tensor is supersymmetric, that is, invariant to any
permutation of the indices X, Y, and Z.
As a computationally convenient representation of the

electron repulsion integrals, we employ the density-fitting
approximation46−50

| = | [ ]pq rs B B B pq P V( ) , with ( )pq
Q

rs
Q

pq
Q

PQ
1/2

(3)

where (pq|P) and VPQ = (P|Q) are the three-center and two-
center electron repulsion integrals, respectively. Because the
Coulombmetric is used in eq 3 for the determination of density-
fitting coefficients, this formula is automatically “robust” in the
sense that the error in the integrals is quadratic in the density
errors.48 The capital letters P andQ are employed in the present
work for the elements of the auxiliary basis set. The number of
auxiliary basis set functions is denoted by the symbol Naux. By
construction, Naux scales linearly with the size of the system. In
all calculations reported in this work, the error in relative
energies caused by the density-fitting approximation was
negligible in comparison with other uncertainties. This is
consistent with other studies on this topic found in the
literature.51,52

2.2. Non-Iterative Quadruple Corrections. The problem
of economical inclusion of quadruple excitation effects in the CC
theory was first considered by Kucharski, Bartlett, and
collaborators.34−36,53−56 They introduced a non-iterative
method, denoted CCSDT[Q] or simply [Q] in the present
work, based on the standardMøller−Plesset perturbation theory
where the Hartree−Fock determinant serves the role of the
zeroth-order wave function. The quadruple excitation cluster
operator T4 is obtained from an approximate formula

[ ] + [ ] + [[ ] ] =F T W T W T T, ,
1
2

, , 04 4 3 2 2 (4)

where μ4 stands for an appropriate string of quadruple excitation
operators, that is, μ4 = EaiEbjEckEdl, and hence ⟨μ4| denotes
projection onto the quadruply excited configurations. A similar
notation is used below also for lower-order excitations, for
example, μ3 = EaiEbjEck. As the Fock operator is diagonal in the
canonical orbital basis, eq 4 can be explicitly solved to get the
quadruply excited amplitudes in a closed-form

= [ ] + [[ ] ]t W T W T T( ) ,
1
2

, ,ijkl
abcd

ijkl
abcd 1

4 3 2 2 (5)

where ϵijklabcd = ϵi + ϵj + ϵk + ϵl − ϵa − ϵb − ϵc − ϵd is the four-
particle energy denominator. The CCSDT[Q] correction to the
energy (abbreviated as E[Q]) originating from the missing
quadruple excitations then reads

= |[ ][ ]
[ ]E E T W T,Q Q
5

2 4 (6)

where the superscript [5] indicates that the term enters in the
fifth order of the Møller−Plesset perturbation theory. An
alternative method to account for the quadruple excitations was
presented by Bomble et al.37 who employed Löwdin’s
partitioning of the CC EOM Hamiltonian.57 This method is
nowadays most commonly referred to as CCSDT(Q). Themain
difference between this approach and the pioneering develop-
ments of Kucharski and Bartlett is that the CCSDT wave
function, rather than the Hartree−Fock determinant, is
employed as the zeroth-order wave function. The resulting

energy correction, denoted by E(Q), uses the same formula 5 for
the quadruply excited amplitudes, but is given by the sum of two
terms

= +[ ] [ ]E E E(Q) Q
5

Q
6

(7)

The former term is the same as in the CCSDT[Q]method, eq 6,
while the latter reads

= |[ ][ ]E T W T,Q
6

3 4 (8)

As suggested by the notation, the term EQ[6] is of the sixth order in
the usual perturbation theory and hence it was neglected in the
CCSDT[Q] method. However, it has been shown37 that the
importance of the EQ[6] contribution is much larger than its formal
order would suggest. Only in the basis sets of double-zeta
quality, the term EQ[5] is dominating and the contribution from
EQ[6] is typically smaller by an order of magnitude. This changes
when the size of the basis set is increased to triple-zeta or larger.
The terms EQ[5] and EQ[6] are then of a similar magnitude, with the
latter even becoming dominant in some cases. As an immediate
consequence, the relative accuracy of the CCSDT[Q] method
(in comparison to CCSDTQ) deteriorates with the increase in
basis set size. The accuracy level of the (Q) correction, on the
other hand, was found to be remarkably consistent at least up to
quintuple-zeta basis sets.37 In the present work, we concentrate
primarily on the implementation of the CCSDT(Q)method as a
way of incorporating the effects of quadruple excitations into the
rank-reduced CC formalism. To further justify this choice,
below we provide a short survey of other available methods. We
concentrate on closed-shell systems and hence open-shell
generalizations are not discussed.
In the factorizable [Q] method,35 denoted accordingly by

[Qf], one employs the factorization theorem
58 to get rid of the

four-particle denominator in evaluation of the EQ[5] term. While
this factorization is only approximate in the case of CCSDT
amplitudes entering eq 6, the quality of this approximation is
usually excellent. The main advantage of the [Qf] method is the
reduced scaling of the computational cost with the system size.
While the exact computation of the [Q] correction scales as N9,
evaluation of the factorizable variant [Qf] can be accomplished
with the N7 cost. Unfortunately, the [Qf] method itself is an
approximation to the [Q] correction, and hence, it is bound to
suffer from the same basis set dependency problems. To the best
of our knowledge, analogous factorization cannot be accom-
plished for the EQ[6] term that involves projection onto the triply
excited amplitudes.
The second family of non-iterative quadruples corrections

retains different parametrizations of the left- and right-hand-side
CC wave functions.38 The resulting CCSDT[Q]Λ and CCSDT-
(Q)Λ methods offer a noticeable improvement in terms of the
accuracy in comparison to their conventional counterparts
described above. However, this comes at a cost of evaluating the
so-called CC Lagrangian which is not available at present for the
rank-reduced CCSDT method and requires a separate study.
Next, we discuss the recently introduced CCSDT(Q-n) family
of methods derived from Lagrangian-based perturbation theory,
treating CCSDT as the zeroth-order wave function.40,41 This
framework is free from size-inconsistency problems encountered
in the preceding EOM-like approaches and has been shown to
converge rapidly to the exact CCSDTQ limit. While CCSDT-
(Q-2) is not competitive with the CCSDT(Q) theory, the
improved CCSDT(Q-3) variant offers an excellent accuracy
level.44 Unfortunately, the computational cost of the CCSDT-
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(Q-3) method is comparable to a single CCSDTQ iteration
(N10 scaling) and hence it is beyond the scope of the present
work. Last but not least, the renormalized and completely
renormalized approaches developed by Piecuch and collabo-
rators59−62 are derived using the so-called CC method of
moments. They drastically improve the accuracy for systems
with significant multireference character, but for systems
dominated by a single reference determinant, the results are
similar.

2.3. Quadratic (Q) Functional: Exact Formulation. In
the rank-reduced context, the formulation of the (Q) correction
based on eqs 6−8 has a significant disadvantage. It stems from
the fact that these equations were derived assuming that the T1,
T2, and T3 amplitudes come from the exact CCSDT theory and
T4 amplitudes are obtained by solving eq 4 without further
approximations. In the rank-reduced formalism, these assump-
tions do not hold; for example, the T3 amplitudes are subject to
the Tucker-3 compression, see eq 2. Unfortunately, if
approximate cluster amplitudes are used to evaluate eqs 6 and
8, the error in the (Q) correction is roughly proportional to the
error of the amplitudes. In other words, there exists an
approximate linear relationship connecting the average error
in the amplitudes and the error in the (Q) correction. To avoid
this problem and to guarantee that the latter error vanishes more
rapidly as the accuracy of the amplitudes is improved, we
propose a different functional for the evaluation of the (Q)
correction. The general form of the new functional, denoted

(Q) further in the text, reads

= |[ ] + |[ ] + |

+ [ ] + [ ] + [[ ] ]

T W T T W T L e He

L F T W T W T T

, ,

, ,
1
2

, ,

T T
(Q) 2 4 3 4 3

4 4 3 2 2

(9)

where L3 and L4 are two new auxiliary operators which assume
the standard form

= =L l L l
1
6

, and
1

24ijk
abc

ijkl
abcd

3 3 4 4 (10)

and the new amplitudes lijkabc and lijklabcd are yet to be determined.
The proposed functional has to fulfill two main theoretical
requirements in order to be useful in the rank-reduced context:

• If the exact CCSDT amplitudes together with T4
amplitudes calculated from eq 4 are used, the new
functional gives strictly identical results as the original
formulation based on eqs 6 and 8;

• The error of the (Q) correction evaluated using the new
functional is quadratic in the error of the T3/L3 and T4/L4
amplitudes.

The motivation behind the first requirement is to enforce that
in the limit of the complete triple excitation subspace in eq 2,
that is, when the SVD−CCSDT method is equivalent to the
conventional CCSDT, the exact (Q) correction is recovered.
Regarding the second requirement, the goal is to reduce the
impact of the approximations adopted in the treatment ofT3 and
T4 amplitudes on the accuracy of the (Q) correction. However,
one might ask why the quadratic error property is enforced only
with respect to the T3 and T4 amplitudes, disregarding the T2
amplitudes that enter eq 6 directly and eq 8 indirectly via the T4
operator. The justification is purely pragmatic and is based on a
numerical observation that the T2 amplitudes obtained from the
SVD−CCSDTmethod are sufficiently accurate for the purposes

of evaluating eqs 6 and 8. In fact, we verified that even the use of
CCSD T2 amplitudes results in acceptable errors. This finding is
not entirely surprising as similar arguments are used in the
derivation of the aforementioned factorizable approximation to
the EQ[5] term. All in all, while the second requirement given
above can be strengthened to include the T2 amplitudes as well,
we found no practical reason to justify such choice, taking into
account the increased complexity of the resulting formalism.
It is straightforward to verify that for any L3 and L4 operators,

the (Q) functional automatically fulfills the first requirement
given in the previous paragraph. In fact, when the exact CCSDT
amplitudes are inserted into the above formula, the third term
vanishes identically as a consequence of the CCSDT stationary
condition for the triple excitation amplitudes, ⟨μ3|e−THeT⟩ = 0.
Similarly, if the T4 amplitudes are determined from eq 4 without
approximations, the fourth term included in (Q) also vanishes,
as it is a projection of eq 4 onto some set of L4 amplitudes.
In order to satisfy the second requirement discussed above, we

demand that the (Q) functional is stationary with respect to
variations in theT3,T4, L3, and L4 amplitudes. In other words, we
impose a condition that the first derivative of eq 9 with respect to
each of these amplitudes separately is zero. Differentiation with
respect to the L3 and L4 amplitudes returns back the stationary
conditions and eq 4, respectively, and hence this brings no new
information into the formalism. By differentiating (Q) with
respect to the T3 and T4 amplitudes, respectively, and setting the
resulting equations to zero, one obtains

|[ ] + |[ ] + |[ ] =W T L e He L W, , , 0T T
3 4 3 3 4 3

(11)

and

|[ ] + |[ ] + |[ ] =T W T W L F, , , 02 4 3 4 4 4 (12)

respectively. The latter equation can be directly solved to obtain
the L4 amplitudes. Upon inserting the results into eq 11, it
becomes a system of linear equations with the L3 amplitudes
being the only unknowns. Therefore, eqs 11 and 12 completely
determine the auxiliary L3 and L4 operators and hence enable
calculation of the modified (Q) functional, eq 9.
With eqs 11 and 12 at hand, it remains to show that the

quantity (Q) indeed fulfills the second condition discussed
above. The simplest way to achieve this is to employ the chain
rule of differentiation and exploit the stationary conditions (eq
9). However, in the Supporting Information, we provide a more
detailed derivation that has the advantage of providing a rigorous
error estimation, namely

= |[ ] + |[ ]

+ |[ ] + [ ]

T W T L e He T

L F T W T

, ,

, ,

T T
(Q) 3 4 3 3

4 4 3

ex ex

(13)

where Tex denotes the exact CCSDT amplitudes, while δT3 is an
error in the T3 operator (analogous notation is used for the
remaining quantities). It is straightforward to verify that each
term of the above formula is quadratic in the combined powers
of δT3, δL3, δT4, and δL4. This proves that the proposed
functional (Q) satisfies the second requirement introduced at
the beginning of this section.

2.4. Quadratic (Q) Functional: Approximations. In
order to make calculations based on the quadratic (Q)
functional feasible, approximations need to be introduced to
the exact formalism presented in the previous section. However,
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we stress that in order to retain the desirable properties of the
(Q) functional, no approximations are made to its formal
definition given by eq 9. Instead, we adopt several simplifications
to the equations that determine the T3, T4, L4, and L3 operators,
as described in detail in this section. Due to the quadratic nature
of the (Q) functional, these approximations are expected to
have a small impact on the accuracy of the (Q) correction.
Starting with the T3 operator, it is given by the approximate

form (eq 2), inherited after the SVD−CCSDT theory, with the
amplitudes compressed using the Tucker-3 format. We adopt no
further approximations to this quantity.
Moving to the T4 operator, the handling and storage of the

full-rank quadruply excited amplitudes given by eq 5 constitutes
the major bottleneck of the exact formalism. To overcome this
obstacle, we approximately cast the quadruply excited
amplitudes (eq 5) in a rank-reduced form employing the
Tucker format

t t V V V Vijkl
abcd

ABCD ai
A

bj
B

ck
C

dl
D

(14)

which is fully analogous to the rank-reduced form of the triply
excited amplitudes, cf. eq 2. As the expansion basis vectors Vai

A

are distinct from their counterparts used in eq 2, we employ the
capital letters A, B, C, ··· to denote the quantities that relate to
the quadruply excited amplitudes. The dimension of the core
tensor tABCD in eq 14 is referred to as Nqua. By analogy with the
findings for the doubly and triply excited amplitudes represented
in the Tucker-n format, we assume that Nqua scales linearly with
the system size. A numerical demonstration of this condition is
presented in Section 3.2. The conversion of the full-rank
quadruply excited amplitudes tijklabcd into the compressed form (eq
14) is non-trivial. To accomplish this task, we propose a novel
algorithm based on HOOI. Details of this procedure are
described in the next section, along with the analysis of the
computational costs and scaling with the system size.
Next, we consider the auxiliary operator L4, which is defined

by eq 12. To facilitate efficient evaluation of this quantity, we
adopt two levels of approximations. First, in eq 12, we neglect
the term that involves the triply excited amplitudes, namely,

|[ ]T W ,3 4 . The justification of this approximation is rooted in
the standard Møller−Plesset perturbation theory, where the T2
operator enters in the first-order perturbed wave function, while
the T3 operator appears in the second order. By the same token,
we expect the contribution of the |[ ]T W ,2 4 to be dominating,
while the neglected term constitutes a relatively minor
correction. The neglect of the term |[ ]T W ,3 4 leads to the
modified expression

|[ ] + |[ ] =T W L F, , 02 4 4 4 (15)

which can easily be solved directly by exploiting the diagonal
nature of the canonical Fock operator, giving

= |l WT( )ijkl
abcd

ijkl
abcd 1

4 2 (16)

In the Supporting Information, we provide an explicit formula
for this quantity expressed through the basic CC amplitudes and
two-electron integrals. The second level of approximation
adopted for L4 is the same as for the T4, that is, rank-reduction to
the Tucker-4 format

l l V V V Vijkl
abcd

A B C D ai
A

bj
B

ck
C

dl
D

(17)

where the primes have been added to underline that the
expansion basis is different from that of eq 14. Similarly as for the
T4 operator, in the next section, we provide technical details of
the HOOI procedure used to determine the rank-reduced L4
amplitudes.
Finally, let us consider the L3 operator for which the

approximation scheme is somewhat more involved and consists
of two steps. In the first step, we neglect the fluctuation potential
W in the similarity-transformed Hamiltonian present in eq 11
and set e−THeT ≈ e−TFeT. This leads to the modified formula

|[ ] + |[ ] + |[ ] =W T L F L W, , , 03 4 3 3 4 3 (18)

where we have additionally exploited the fact that
[ ] = [ ]e Fe F, ,T T

3 3 , which is straightforward to prove
using the BCH expansion. By exploiting the properties of the
Fock operator, explicit solution of this equation is written as

= |[ + ]l W T L( ) ,ijk
abc

ijk
abc 1

3 4 4 (19)

where the equality |[ ] = |[ ]L W W L, ,4 3 3 4 has been used
for convenience sake.
To introduce the second layer of approximation, we note that

the third term in eq 18 is dominating in comparison with the first
term. This is again justified by perturbation theory arguments;
by comparing eqs 15 and 4, we see that L4 is a second-order
quantity, while T4 is a third-order quantity. Therefore, it is
tempting to neglect the |[ ]W T,3 4 term altogether in eq 18, in
a similar spirit as in the previous paragraph where
approximations of the L4 operator were discussed. We
considered this approach in the preliminary stage of the
implementation and verified that it indeed delivers a decent
accuracy level. However, there exists an alternative approach to
approximating the L3 operator which is based on the Tucker
format

l l U U Uijk
abc

X Y Z ai
X

bj
Y

ck
Z

(20)

where the primes indicate that the quantities Uai
X are distinct

from the expansion basis used for the triply excited amplitudes in
eq 2. Similarly as for other quantities, HOOI is used to bring lijkabc
into the decomposed form (eq 20). However, as a cost-saving
measure, we introduce a simplification: the expansion basisUai

X

is found by decomposing an approximate form of the lijkabc, namely

|[ ]l W L( ) ,ijk
abc

ijk
abc 1

3 4 (21)

where the term including the T4 operator has been neglected, cf.
eq 19. Once the quantitiesUai

X are found, the core tensor lX Y Z
is found by projection

= |[ + ]l W T L U U U( ) ,X Y Z ijk
abc

ai
X

bj
Y

ck
Z1

3 4 4 (22)

Note that in this step, the full form of the L3 operator is used,
without any approximations in comparison with eq 19. We
found that this hybrid approach reduces the computational cost
of decomposing the amplitudes lijkabc considerably without
affecting the accuracy of the decomposition (eq 20). This can
be explained by noting that the term involving the T4 is
numerically minor. Therefore, the basis found using the
decomposition of the approximate formula, eq 20, is able to
accommodate both terms accurately, despite theT4 being absent
in the optimization procedure.
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To study the impact of the proposed approximations, we
carried out calculations for small molecular systems from
Section 3.3. In the Supporting Information, we provide detailed
results for the most representative case using the cc-pVDZ, cc-
pVTZ, and cc-pVQZ basis sets. These data show that the
neglected terms are numerically small and some additional
approximations proposed above have a small impact on the
accuracy of the proposed formalism.
Finally, let us point out that, in general, the dimensions of the

quadruple excitation subspace (Nqua) used for compression of
the tijklabcd and lijklabcd amplitudes, that is, in eqs 14 and 17, can be
different. Similarly, different sizes of the triple excitation
subspace (NSVD) may be used for T3 and L3 operators. However,
in a set of preliminary calculations, we found that near-optimal
results are attained when the same size of the quadruple
excitation subspace is used for T4 and L4, and the same size of
triple excitation subspace for T3 and L3. Therefore, we use a
single parameter Nqua to denote the length of the expansion in
both eqs 14 and 17, and similarly NSVD for both eqs 20 and 2.
Gains in terms of accuracy achieved by lifting these restrictions
do not justify the corresponding increase of the technical
complexity of the formalism.

2.5. Compression of the Excitation Amplitudes. As
mentioned in the previous section, the decomposition of the
triply and quadruply excited amplitudes, required to evaluate the
approximate form of the quadratic functional detailed in Section
2.4, is achieved using the HOOI procedure. In this section, we
provide details of this procedure, both theoretical and technical.
We concentrate primarily on the decomposition of the tijklabcd

tensor as this is the most problematic quantity. However,
extension of this procedure to the amplitudes present in the L3
and L4 operators is briefly discussed at the end of the present
section, and further technical details are presented in the
Supporting Information.
In the HOOI procedure, the decomposition of the amplitudes

is achieved by minimization of the following cost function

[ ]t t V V V V
ijkl abcd

ijkl
abcd

ABCD ai
A

bj
B

ck
C

dl
D 2

(23)

subject to the condition that the Vai
A vectors are column

orthonormal, that is

=V Vai
A

ai
B

AB (24)

The constraint (eq 24) is imposed without the loss of generality,
because any linear transformation among the Vai

A vectors can be
counteracted by changing the values of the core tensor, leaving
the cost function unaffected. For a fixed expansion length (Nqua)
the least-squares problem (eq 23) is solved by HOOI which in
the present case proceeds as follows. Assuming that an
approximate solution Vai

A of the minimization problem (eq 23)
is known, one forms an intermediate quantity

=t t V V Vai BCD ijkl
abcd

bj
B

ck
C

dl
D

, (25)

which is a partial projection of the full-rank tensor onto the
current subspace. Next, the truncated singular value decom-
position (SVD) of the tai,BCD tensor is computed. The left-
singular vectors corresponding toNqua the largest singular values
form the updated expansion vectors, Vai

A. Note that by the virtues
of the SVD procedure, the new vectors automatically obey the
orthonormality constraint (eq 24). This basic iteration process is
repeated until the convergence criterion is met; a convenient
choice of the stopping criteria is discussed further in the text.

Note that during the HOOI procedure, the core tensor tABCD
does not have to be formed explicitly. Nonetheless, it is obtained
straightforwardly as

=t t VABCD ai BCD ai
A

, (26)

owing to the orthonormality of the expansion vectors, Vai
A.

The basic HOOI procedure described above constitutes a
serviceable method. Unfortunately, due to large dimensions of
the tai,BCD matrix, namely, OV × Nqua3 , the SVD step of this
algorithm is too expensive for large-scale applications. There-
fore, we introduce a modification of the HOOI procedure where
instead of the tai,BCD matrix, the following quantity is computed

=M t tai bj ai BCD bj BCD, , , (27)

Let us recall that for any rectangular matrix M, its left singular-
vectors coincide with the eigenvectors of the normal matrix
MMT. Therefore, the updated expansion vectors Vai

A can
equivalently be obtained by diagonalizing the Mai,bj matrix and
retaining the eigenvectors corresponding to the largest
eigenvalues (which are non-negative by construction). The
dimensions of theMai,bjmatrix areOV ×OV and hence it admits
eigen decomposition inN6 time, a significant improvement over
the SVD of the tai,BCD matrix. As a by-product, the modification
of the HOOI procedure described above solves the memory
bottleneck related to the storage of the complete tai,BCD matrix
(N5 memory chunk). In our implementation, the tai,BCDmatrix is
calculated in batches with one of the B, C, D indices fixed. The
batches are then immediately used to compute the contribution
to Mai,bj without accumulation of the full tai,BCD matrix. The
storage requirements are reduced in this way to the level of
OVNqua2 ∝ N4.
It remains to discuss two technical aspects of the HOOI

algorithm, that is, the choice of the stopping criteria and the
starting values. As discussed at length in ref 17, an appropriate
stopping condition is obtained by monitoring the norm of the
core tensor

= =t t M V V
ABCD

ABCD
A

ai bj ai
A

bj
A2 2

,
(28)

where the second equality follows from the orthonormality of
the Vai

A vectors. The HOOI procedure is ended when the relative
difference in ∥t∥ between two consecutive iterations falls below
a predefined threshold, ϵ. The threshold value of ϵ = 10−6 is
sufficient in most applications and has been adopted in the
present work. The cost of computing ∥t∥ is negligible in
comparison with other parts of the algorithm. The reason why
this straightforward procedure performs well in practice is a
consequence of the fact that the HOOI algorithm can be
reformulated as a maximization of the norm of the core tensor
instead of minimization of eq 23, see refs 42 and 63.
The problem of the starting values is solved simply by setting

Vai
A as equal to Uai

X that correspond to the largest absolute
diagonal values of tXYZ, see eq 2. We found this procedure to be
entirely satisfactory in practice and convergence of the HOOI
procedure is achieved typically within only 5−10 iterations to
accuracy of ϵ = 10−6. The sole exception from this rule occurs in
calculations with extremely small Nqua, but it is questionable
whether they are of any practical importance. The major steps of
the HOOI algorithm are summarized in Algorithm 1.
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According to the above discussion, the critical part of the
HOOI algorithm is the calculation of partly projected quadruply
excited amplitudes, eq 25. Without invoking any approxima-
tions, the computational cost of this step is proportional to N9,
even under the assumption that Nqua scales linearly with the
system size. This offers no practical advantages over the available
conventional algorithms for calculation of the quadruples
corrections. The main reason behind this steep scaling is the
presence of the four-particle energy denominator in eq 5 which
has to be eliminated in order to enable any scaling reduction. To
this end, we employ the discrete Laplace transformation (LT)
technique

= + + +w e( )ijkl
abcd

g

N

g
t1 ( )

g

g i
a

j
b

k
c

l
d

(29)

where tg and wg are the quadrature nodes and weights,
respectively, Ng is the size of the quadrature, and ϵia = ϵi − ϵa.
For the two-particle energy denominator, this method was first
proposed by Almlöf64 in the context of the MP2 theory, but
since then, it has been successfully used in combination with
other electronic structure methods.65−70 In this work, we
employ the min−max quadrature proposed by Takatsuka and
collaborators71−73 for the choice of tg and wg. The number of
quadrature points in eq 29 is independent of the system size, that
is, Ng ∝ N0. To the best of our knowledge, this is the first
application of the LT technique to the four-particle energy
denominator in the CC theory.
The quadruply excited amplitudes defined by eq 5 are given

by the following explicit expression

=t ( )ijkl
abcd

ijkl
abcd

ijkl
abcd1

(30)

where

= [ | | + |

| |

+ | ]

P ai be t ai mj t nj mi

t t ai me t t be mi t t

cf ae t t

1
2

( ) ( ) ( )

2( ) 2( )

( )

ijkl
abcd

ijkl
abcd

jkl
ecd

mkl
bcd

mk
ac

nl
bd

kj
eb

ml
cd

kj
ce

ml
ad

ij
eb

kl
fd

(31)

The permutation operator Pijklabcd in the above formula reads

= + + + + +

+

P P P P P P

P

(1 )(1 )(1

)

ijkl
abcd

ai bj ai ck bj ck ai dl bj dl

ck dl

, , , , ,

, (32)

and Pai,bj denotes the basic transposition operator that exchanges
pairs of indices i ↔ j and a ↔ b simultaneously. By employing
the LT technique, we rewrite eq 25 in the form

= =t w e V V V w eai BCD
g

N

g
t

ijkl
abcd

bj
Bg

ck
Cg

dl
Dg

g

N

g
t

ai BCD
g

, ,

g

g i
a

g

g i
a

(33)

with =V V ebj
Bg

bj
B tg j

b
and = V V Vai BCD

g
ijkl
abcd

bj
Bg

ck
Cg

dl
Dg

, . Within this
formulation of the problem, the overall scaling of assembling the
quantity tai,BCD can be reduced to the level of N6. To illustrate
this, let us consider a term (bj|ae)tiklecd obtained by the
permutation of indices from the first term in eq 31. In the
conventional implementation, this term scales as O4·V5.
However, a contribution of this term to the quantity γai,BCDg

required in eq 33 can be factorized as

|

= [ ]

bj ae t V V V

B U B V t U V U V

( )

(( )( )) ( ( ))( )

ai BCD
g

ikl
ecd

bj
Bg

ck
Cg

dl
Dg

ae
Q

ei
X

bj
Q

bj
Bg

XYZ ck
Y

ck
Cg

dl
Z

dl
Dg

,

(34)

where we have exploited the density-fitting factorization of the
electron repulsion integrals, see eq 3, and Tucker factorization of
the triply excited amplitudes tensor given by eq 2. The
parentheses included in the above formula indicate the order
of operations and should be read starting from the innermost
bracket. By following the optimal order of contractions, one can
show that the most costly step scales as NgOVNSVDNqua3 ∝ N6.
Similar factorizations are possible for the remaining terms
appearing in eq 31 and in every case the scaling is proportional to
N6, albeit with different prefactors. However, the number of
terms in eq 31 that have to be factorized is large�144 in total if
all permutations resulting from the action of the Pijklabcd are taken
into account. Therefore, explicit factorized formulas for the
quantity γai,BCDg are given in the Supporting Information, along
with a detailed discussion of possible simplifications.
Let us point out that the cost of the complete HOOI

procedure is still asymptotically proportional to N7 due to the
need to assemble theMai,bjmatrix, see eq 27. However, this step
can be formulated as a single dgemm matrix−matrix multi-
plication and hence possesses a relatively small prefactor.
Therefore, the calculation of the quantity γai,BCDg , in spite of the
N6 scaling, constitutes the majority of the total cost of the HOOI
procedure for systems that can currently be studied.
The presentation given in this section has been focused on the

tijklabcd amplitudes. However, Algorithm 1 is straightforwardly
adapted for an analogous decomposition of the remaining
quantities, namely, the lijkabc and lijklabcd amplitudes that parametrize
the L3 and L4 operators. This is particularly seamless in the latter
case as the only change required is the modification of eq 25
without affecting any other steps of Algorithm 1. Efficient
evaluation of the modified expression is discussed in the
Supporting Information and it is shown that the scaling of this
step is N5, that is, lower than in the case of the tijklabcd amplitudes.
Somewhat more advanced modifications of the HOOI
procedure are required for the lijkabc amplitudes. First, instead of
eq 25, one calculates =l l U Uai Y Z ijk

abc
bj
Y

ck
Z

, , and the matrix Mai,bj

required in Algorithm 1 is obtained asMai,bj = lai,Y′Z′ lbj,Y′Z′, cf. eq
27. The remaining steps of the HOOI procedure are not
affected. In the Supporting Information, we provide a factorized
expression that enables to compute the intermediate quantity
lai,Y′Z′ with N6 cost, meaning that the decomposition of the lijkabc
amplitudes scales as N6 overall.
To sum up the theoretical section of the paper, we point out

that computation of the (Q) functional involves several steps,
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some of which have to be performed in a predefined order. For
completeness, these steps are summarized in the Supporting
Information, identifying the relevant key equations and
presenting additional technical details. Importantly, by analyzing
the working expressions, we show that all components of the

(Q) functional can be evaluated with a cost proportional to N
7

or less. A numerical confirmation of this finding is provided in
the next section.

3. NUMERICAL RESULTS AND DISCUSSION
3.1. Computational Details. Unless explicitly stated

otherwise, in all calculations reported in this work, the
correlation-consistent cc-pVXZ basis set from ref 74is
employed. The corresponding density-fitting auxiliary basis
sets cc-pVXZ-RIFIT were taken from the work of Weigend et
al.75 In some calculations, specified further in the text, a larger cc-
pV5Z-RIFIT basis from ref 76 was employed to minimize the
density-fitting error. Pure spherical representation (5d, 7f, etc.)
of all Gaussian basis sets is adopted throughout. Density-fitting
approximation is used in all correlated calculations unless
written otherwise. However, the Hartree−Fock equations are
solved using the exact two-electron integrals and hence the
canonical HF orbitals are exact within the given one-electron
basis. The frozen-core approximation is invoked in all
computations reported in this work, unless explicitly stated
otherwise. The 1s2 core orbitals of the first-row atoms (Li−Ne)
are not correlated.
The reference CCSDT(Q) calculations and calculation of

zero-point vibrational energies and harmonic frequencies were
performed with the CFOUR program package.77,78 Some of the
more demanding CCSD(T) calculations reported in this work,
indicated below, were performed using NWChem program,79

version 6.8. The calculations performed using the CFOUR and
NWChem programs do not use the density-fitting approx-
imations. All theoretical methods described in this work were
implemented in a computer program written specifically for this
purpose which is available from the author upon request. The
TBLIS library80 is used in the code for performing efficient
tensor operations. It is worth mentioning that TBLIS natively
supports shared-memory multiprocessing (using OpenMP
application programming interface in our case) and hence
most of the calculations reported in this work are performed in
parallel, unless specified otherwise. Speed-ups by approximately
a factor of 10 were observed in large-scale calculations on 12
(internode) threads. Beyond this point, overheads related to, for
example load balancing and synchronization, become significant
and further increase of the number of computing threads leads to
diminishing returns. A higher level of parallelization is possible
using the MPI standard. This requires to divide the workload
into an independent task and, in the present context, it is natural
to distribute the BpqQ three-center integrals by splitting the index
Q among the computing nodes. However, this possibility has not
been exploited in the present work. Lastly, the current
implementation of the proposed theory does not utilize spatial
symmetry of the molecules. Therefore, all calculations reported
in this work are performed within the C1 symmetry group.
To avoid confusion, we briefly touch upon the naming

conventions used in this section. The abbreviation SVD−
CCSDT designates the iterative rank-reduced CC method
introduced in ref 14, and described briefly in Section 2.1, which
is based on the Tucker compression of the triple excitation
amplitudes, eq 2. The abbreviation SVD−CCSDT+ refers to a

method introduced in ref 16. It consists of adding a non-iterative
correction that accounts for triple excitations outside the
subspace used in SVD−CCSDT calculations. In this way, the
error with respect to the exact CCSDT method is reduced, even
if the subspace of triple excitations used in eq 2 is small. Note
that both SVD−CCSDT and SVD−CCSDT+methods become
functionally equivalent to the exact CCSDT for a sufficiently
large value of the NSVD parameter that controls the expansion
length in eq 2.

3.2. Scaling Demonstration. The efficiency of the
proposed method hinges on the assumption that the parameter
Nqua, which determines the size of the quadruple excitation
subspace in eq 14, scales linearly with the system size,N. In other
words, to retain a constant relative accuracy in the correlation
energy as the system size grows, it is sufficient to set Nqua
proportional to N. This conjecture is non-trivial because in the
limit of the complete quadruple excitation subspace Nqua scales
quadratically with the system size (more precisely, it is equal to
the number of occupied times the number of virtual orbitals in
the system).
In previous works, the property that dimension of the

excitation subspace scales linearly with the system size has been
demonstrated numerically for lower-dimensional (two- and
three-) analogues of eq 14 using realistic model systems such as
linear alkanes or water clusters for which reference CCSD/
CCSDT results are available.12,14,17 Unfortunately, evaluation of
the (Q) correction for systems comprising more than 4−5 non-
hydrogen atoms is computationally costly, and hence reference
results are not available for these model systems of sufficient size
to reach definite conclusions about the behavior of Nqua. As a
compromise, we adopt linear hydrogen chains as model systems
for the purposes of the scaling demonstration. The chain is
composed of H2 molecules (bond length 1.4 a.u.) with all
hydrogen atoms placed co-linearly, hence the general formula
(H )n2 . The distance between centers of mass of two neighboring
hydrogen molecules is equal 4.2 a.u. This system behaves as an
insulator even in the limit of an infinite chain length, that is, n →
∞, which makes the single-reference CC approach valid.
We performed calculations of the quadruples corrections

using the exact CCSDT(Q)method as implemented in CFOUR
and the (Q) functional for the (H )n2 system, n = 1, 2, ···, 10,
within the cc-pVDZ basis set. We focus solely on the scaling of
the Nqua parameter and hence employ the full space of triple
excitations in the SVD−CCSDT calculations preceding the
evaluation of the (Q) functional. In Figure 1, we show relative
errors in the calculated (Q) correction for a representative value
of the quadruple excitation subspace size equal to Nqua = 10·n
and Nqua = 15·n, where n is the chain length. As the value of n
increases, the relative error quickly reaches the asymptotic values
of approximately 11 and 1%, respectively. In the region beyond n
≈ 7, the error is essentially constant with only minor fluctuations
of the order of 0.1% or less. This confirms that in order to
maintain a constant relative accuracy in the (Q) correction, it is
sufficient to make Nqua proportional to the system size.
Another numerical demonstration necessary to confirm the

theoretical findings of the present work is related to the
computational cost of evaluating the (Q) functional. The
analysis of the working equations of the proposed method given
in Sections 2.2−2.4 (and in the Supporting Information) led to
the conclusion that all terms in the (Q) functional can be
computed with the cost proportional to N7 in the rate-
determining steps. Regarding the decomposition of the T4 and
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L4 amplitudes, they formally share the same N7 asymptotic cost,
but involve only one N7 step that has a small prefactor.
Therefore, we expect that this component of the method would
possess, in practice, a cost proportional to N6. Finally, the
decomposition of the L3 amplitudes was found to scale as N6.
To confirm the aforementioned findings numerically, we

perform calculations for model systems that can be systemati-
cally increased in size. In contrast with the calculations
considered at the beginning of this section, the reference
CCSDT(Q) calculations are not involved here and hence it is
feasible to study a more chemically appealing model system of
linear alkanes, CnH2n+2. Molecular geometries were taken from
ref 14. As an illustrative example, we setNSVD = NMO and Nqua =
NMO, where NMO is the number of orbitals in the system, so that
both parameters increase linearly with the chain length. The core
1s2 orbitals of the carbon atoms are not correlated. In Figure 2,
we report total timings of the calculations, as well timings for two
major parts, namely, (i) evaluation of the (Q) functional, and
(ii) decomposition of the T4, L3, and L4 amplitudes. For clarity,

the timings are given in relation to the calculations for methane.
To confirm that the results given in Figure 2 match the
theoretical predictions, we fitted the timings with the functional
form a·nb (a linear function on a logarithmic scale) for n = 3−8.
We obtained the exponents b = 6.64 and b = 5.76 for the parts (i)
and (ii), respectively. The empirically found values of the
exponents are in both cases somewhat smaller than predicted
theoretically (7 and 6). This can be explained by the fact that
both parts of the calculations involve also many lower-scaling
steps such as computation of intermediate quantities, and so
forth. While the cost of such steps is asymptotically marginal,
they still contribute non-negligibly to the total workload for
systems that can be studied at present.

3.3. Calibration of the Method. In this section, we study
errors of the proposed formalism in reproduction of the absolute
(Q) correction. For this purpose, we selected a set of 16 small
molecules comprising 2−5 first row atoms. Within the cc-pVTZ
basis set employed in the calculations, the largest molecule is
described by 118 atomic orbitals and hence the conventional
CCSDT(Q) calculations are feasible with a reasonable
computational cost. Therefore, the values of the exact (Q)
correction are available for each molecule and shall be used as
references in the present section. The list of molecular systems
used in the benchmark calculations and their structures in
Cartesian coordinates are provided in the Supporting
Information. To assure that the error resulting from the
density-fitting approximation does not contaminate the final
conclusions of this section, a large cc-pV5Z-RI auxiliary basis set
is used. We verified that this leads to errors of no larger than a
few μH in the correlation energies which is entirely negligible in
the present context.
An important aspect of the analysis provided below relates to

the determination of the recommended values of the quantities
NSVD and Nqua that serve as parameters in the rank-reduced
formalism in the present work. The former parameter
determines the size of the triple excitation subspaces used in
T3 and L3 operators, see eq 2, while the latter serves the same
purpose in the case of the quadruple excitation subspaces in T4
and L4. As the cost of the calculations increases steeply with the
increase inNSVD andNqua, it is necessary to recommend a way of
determining these parameters for a given system such that a
sufficient level of accuracy is attained while the computational
cost is simultaneously minimized. Because both NSVD and Nqua
increase linearly with the system size, it is convenient to tie them
to some quantity that shares the same property, but is known
upfront for a given system. In this way, the parameters can be
easily transferred between molecules of different sizes. Similarly
to previous works, we express the parameters NSVD and Nqua as
fraction times the total number of activemolecular orbitals in the
system, NMO (frozen-core orbitals and possibly frozen virtual
orbitals are excluded). In other words, these parameters are
given by NSVD = x·NMO and Nqua = y·NMO, where x and y are
asymptotically independent of the system size. Note that both x
and y may be larger than the unity. It has been shown in ref 14
that in reproduction of the CCSDT correlation energy, NSVD ≈
NMO is sufficient in usual applications. However, it cannot be
guaranteed a priori that a similar size of the triple excitation
subspace is adequate in the determination of the (Q)
corrections.
Because the molecules included in the test set vary

considerably in size, it is necessary to use a size-intensive error
measure to compare the results. First, we consider the mean
absolute percentage error (MAPE) averaged over all molecules.

Figure 1. Percentage error in the (Q) correction obtained using the
(Q) functional (cc-pVDZ basis set) for the (H )n2 system, n = 3, ···, 10,
with Nqua = 10·n and Nqua = 15·n. The exact CCSDT(Q) results are
used as a reference.

Figure 2. Relative timings of two major computational steps of the
proposed formalism (cc-pVDZ basis set) for linear alkanes (CnH2n+2) as
a function of the chain length, n. Logarithmic scale is used on both axes.
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In Figure 3, we plot MAPE as a function of Nqua varied from 1/
3NMO to NMO for several representative values of NSVD, namely,

NSVD = x·NMO with x = 1/2, 3/4, 1, 5/4, 3/2. Overall, for each
value of NSVD individually, we observe a similar trend in error
decay as Nqua is increased. Initially, the error vanishes rapidly,
which is followed by a plateau region where the error stabilizes,
see Figure 3. Beyond this point, further increase of the Nqua
parameters leads to no appreciable accuracy improvements, and
in some cases, the error even increases by a tiny amount. Clearly,
in this region, the accuracy is limited by the error of the triply,
and not quadruply excited, amplitudes. This is further confirmed
by the observation that the error in the plateau region depends
significantly onNSVD. ForNSVD = 1/2NMO, the error stabilizes at
the level of around 6%; this decreases to around 4% for NSVD =
NMO and to slightly above 2% for NSVD = 3/2NMO.
To recommend values of the parameters NSVD and Nqua that

shall be used in future calculations, we require that the MAPE in
Figure 3 should be at the order of a few percent according to the
discussion in the Introduction. The smallest triple excitation
subspace that systematically delivers the accuracy better than 5%
corresponds to NSVD = 3/4NMO or NSVD = NMO. Smaller values
of NSVD are not recommended, unless supported by some
reference calculations that confirm their reliability or if larger
errors are acceptable. Further increase, to aboutNSVD = 3/2NMO,
of the parameterNSVD is necessary to reach accuracy levels of 2%
or so. Regarding the value of the second parameter, it is desirable
to set Nqua to a value that (for a given NSVD) corresponds as
closely as possible to the onset of the plateau region. In this way,
the computational cost of the procedure is minimized without
compromising the accuracy. A conservative choice is to set Nqua
= 2/3NSVD, such that for eachNSVD≥NMO, the value ofNqua lies
well-within the plateau region. We recommend this setup in
future calculations. This approach has one additional advantage:
the values of NSVD and Nqua do not have to be varied
independently. Instead, they are increased simultaneously
which makes the results easier to analyze and represent.
Thus far, we have concentrated on MAPE as a measure of

error of the proposed formalism. While this error measure is
particularly important from the practical point of view, it

provides little information about the error distribution and its
characteristics. To fill this gap, we consider signed percentage
error defined as

= ·
E

E
100%i

i i

i
( ) (Q)

( )
(Q)
( )

(Q)
( )

(35)

where the index i enumerates the molecules in the test set, and
E(Q)(i) is the reference (exact) value of the (Q) correction for the i-
th molecule. For the purposes of statistical analysis, we calculate
the mean error,Δ, and its standard deviation,Δstd2 using the well-
known formulas. For all cases considered here, we found that the
error distribution is normal to a good degree of approximation.
Therefore, for clarity, we represent the error measures Δ and
Δstd graphically in Figure 4 in terms of normalized Gaussian

distributions. As illustrative examples, we consider NSVD = x·
NMO with x = 1/2, 3/4, 1, 5/4, 3/2, and in each case, we setNqua
= 2/3NSVD according to the discussion above. As seen in Figure
4, the accuracy obtained with NSVD = 1/2·NMO and NSVD = 3/4·
NMO is not satisfactory. Although in the latter case the mean
error is acceptable <( 5%), the corresponding standard
deviation is still large (Δstd ≈ 6.8%) and hence the error
distribution is rather broad. The results are improved
considerably for NSVD = NMO and NSVD = 5/4·NMO, where the
mean error decreases to Δ ≈ −0.29% and Δ ≈ 0.59%,
respectively. This is accompanied by a significant reduction of
the standard deviation. Finally, by increasing the value of the
parameter NSVD to 3/2·NMO, the mean error is further reduced
slightly( 0.24%), similarly as the standard deviation (Δstd≈
3.3%).
Next, we consider errors of the proposed formalism in

reproduction of relative energies. To this end, we prepared the
following set of 10 chemical reactions:
1. +F H 2HF2 2 ,
2. +H O H 2H O2 2 2 2 ,
3. +CO H H CO2 2 ,
4. + +CO 3H CH H O2 4 2 ,
5. +N 3H 2NH2 2 3,
6. +HCOOH CO H2 2,
7. + +CO H O CO H2 2 2,
8. + +HCN H O CO NH2 3,

Figure 3. MAPE in the (Q) correction obtained using the (Q)
functional (cc-pVTZ basis set) as a function of Nqua for several
representative values of the NSVD parameter, see the legend. The exact
CCSDT(Q) results are used as a reference. The symbol NMO denotes
the total number of orbitals in a given system.

Figure 4. Distribution of relative errors (in percent) in the (Q)
correction obtained using the (Q) functional (cc-pVTZ basis set) for
several representative values of the NSVD parameter, see the legend. For
each value of NSVD, the parameter Nqua is set to 2/3NSVD. The exact
CCSDT(Q) results are used as a reference. The symbol NMO denotes
the total number of orbitals in a given system.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00460
J. Chem. Theory Comput. 2022, 18, 6537−6556

6546

https://pubs.acs.org/doi/10.1021/acs.jctc.2c00460?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00460?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00460?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00460?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00460?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00460?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00460?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00460?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00460?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


9. + +HCN NH N CH3 2 4,
10. + +H CO H O HCOOH H O2 2 2 2 .
Contribution of the (Q) correction to each reaction energy

has been computed with three different schemes (all within the
cc-pVTZ orbital basis set). First, the exact CCSDT(Q)
calculations that employ neither decomposition of the excitation
amplitudes nor density-fitting approximation are used as a
benchmark. The second and third schemes involve the quadratic
(Q) functional with the recommended settings, namely, Nqua =
2/3NSVD, and for several representative NSVD. In the second
scheme, we use a large cc-pV5Z-RI auxiliary basis set for density-
fitting approximation and hence the DF errors are marginal. In
the third scheme, the same settings are used, except that the
standard cc-pVTZ-RI auxiliary basis set (matched to the used
orbital cc-pVTZ) is employed. This enables us to study the
impact of the density-fitting approximation on the quality of the
results and establish whether the conventional auxiliary basis
sets available in the literature are sufficient for the present
purposes.
In Tables 2 and 3, we report results of the calculations with the

large and standard density-fitting basis sets, respectively. As

expected, for NSVD = 1/2NMO and NSVD = 3/4NMO, average
errors are substantial from the present point of view. However,
as the size of the excitation subspace is increased toNSVD =NMO,
the average absolute errors decrease to about 0.1 kJ/mol. This
confirms that the recommended settings perform well in the
determination of the relative energies. Additionally, by
comparing the results presented in Tables 2 and 3, one finds
that the density-fitting approximation has a tiny impact on the
quality of the results. The average DF errors are of the order of
0.01 kJ/mol and even the largest error found for the test set is
well below 0.1 kJ/mol. Therefore, we conclude that the standard
auxiliary basis sets (optimized for a given orbital basis) are
sufficient for accurate determination of the (Q) correction.
It must be pointed out that with the parametersNSVD andNqua

set as fixed multiples of some system-dependent quantity, the

proposed method is not guaranteed to be size-consistent. This is
true even one selects a multiple of a quantity that scales linearly
with the system size, such as NMO suggested in the previous
paragraphs. While the results presented in this work, for
example, for the reaction energies, show that the size-
inconsistency error is tiny, this can still become problematic in
applications, for example, to weakly interacting systems, where
proper cancellation of non-physical size-inconsistent contribu-
tions is important. One may argue from a pragmatic standpoint
that if significant size-inconsistency errors are encountered, the
simplest remedy is to increase the constant factor that relates
NSVD and Nqua to NMO. As the rank-reduced formalism is built
upon CC methods which are rigorously size-extensive, this
approach is, in principle, always able to decrease these errors to
acceptable levels. However, this line of reasoning is not fully
satisfactory as it may lead to a significant increase of the
computational costs. A more suitable approach would be to
determine the size of the excitation subspace adaptively for a
given molecule based on some numerical threshold that is
transferable between systems. However, this problem is non-
trivial as the HOOI algorithm applied to higher-order
amplitudes does not provide a natural numerical parameter
that can be used for the truncation, in contrast to, for example,
the diagonalization approach adopted in ref 12 for the doubly
excited amplitudes. Our preliminary tests have shown that a
simple threshold on, for example, the eigenvalues of the Mai,bj
matrix defined by eq 27 are not entirely satisfactory. Therefore, a
more elaborate scheme is required which employs, for example,
a threshold on the cumulative eigenvalues of theMai,bj matrix. A
complete analysis of this problem requires numerous bench-
marks calculations analogous to the data presented in ref 81.
This is beyond the scope of the present paper and requires a
separate study which is currently in progress.
Finally, after establishing the computational protocol that

shall be used in subsequent applications, we can assess the
computational performance of the proposed theory in
comparison with the conventional (Q) implementation. While
we have shown in the previous section that the rank-reduced
formalism is characterized by a lower scaling with the system size
than the exact (Q)method (N7 vsN9), it is not yet clear how this
translates into computational advantages. In fact, due to the
overhead related to the determination of the excitation subspace
(and other steps of the rank-reduced calculations), one expects

Table 2. Contribution of the (Q) Correction to the Reaction
Energies Calculated Using the Exact CCSDT(Q) Method and
Using the Quadratic (Q) Functional as a Function of NSVD
(with Fixed Nqua = 2/3NSVD)a

NSVD
b

reaction exact 1/2NMO 3/4NMO NMO 4/3NMO 3/2NMO
1 2.88 −0.12 −0.10 −0.12 −0.08 −0.06
2 1.52 −0.14 −0.20 −0.18 −0.10 −0.07
3 0.29 −0.12 0.02 0.06 0.02 0.02
4 1.61 −0.26 −0.10 0.04 0.01 0.01
5 3.15 −0.17 −0.06 0.12 0.13 0.10
6 −1.06 0.36 0.01 −0.17 −0.13 −0.05
7 −1.33 0.50 0.29 0.12 0.03 0.01
8 1.63 0.34 0.28 0.09 0.20 0.08
9 0.08 0.25 0.25 0.00 0.08 0.03
10 1.06 0.12 0.06 0.05 0.04 0.02
MAE 0.24 0.14 0.10 0.08 0.07
STD 0.27 0.17 0.12 0.10 0.07

aThe mean absolute error (MAE) and the standard deviation of the
error (STD) are given in the last two rows. The cc-pVTZ orbital basis
set is used together with a large cc-pV5Z-RI auxiliary basis set to
eliminate the error due to the density-fitting approximation. All values
are given in kJ/mol. bErrors (for a given NSVD) with respect to the
exact result.

Table 3. Same Data as in Table 2 but Obtained Using the
Standard cc-pVTZ-RI Auxiliary Basis Set for the Density-
Fitting Approximation

NSVD
a

reaction exact 1/2NMO 3/4NMO NMO 4/3NMO 3/2NMO
1 2.88 −0.16 −0.09 −0.06 −0.12 −0.06
2 1.52 −0.14 −0.29 −0.18 −0.11 −0.07
3 0.29 −0.11 0.02 0.08 0.03 0.03
4 1.61 −0.25 −0.14 0.05 0.01 0.09
5 3.15 −0.18 −0.08 0.13 0.13 0.10
6 −1.06 0.24 −0.17 −0.17 −0.12 −0.05
7 −1.33 0.39 −0.06 0.14 0.04 0.03
8 1.63 0.31 0.29 0.07 0.20 0.08
9 0.08 0.25 0.22 0.00 0.07 0.03
10 1.06 0.12 −0.20 0.04 0.03 0.02
MAE 0.21 0.16 0.09 0.08 0.07
STD 0.24 0.18 0.11 0.11 0.07

aErrors (for a given NSVD) with respect to the exact result.
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that the prefactor of the conventional (Q) algorithm is lower and
hence there is a break-even point beyond which our method is
favored. In order to approximately locate this break-even point,
we compared the timings of the calculations reported in this
section with the conventional (Q) algorithm as implemented in
the CFOUR program (to allow a fair comparison, the same
machine was used for both calculations and serial program
execution was requested). Depending on the cardinal number of
the basis set, the proposed algorithm becomes beneficial for
systems with more than 100−150 basis set functions. For
example, for the formic acid molecule in the cc-pVTZ basis set
(115 active orbitals), the rank-reduced calculations are three
times faster than the conventional algorithm. In general, our
tests revealed that the break-even point occurs faster for smaller
basis sets. However, we also would like to point out that the
current pilot implementation of the rank-reduced formalism can
be improved by more extensive code optimization. While, in
principle, the same is true for the conventional (Q) algorithm,
implementations of the latter are much more mature.

3.4. Isomerization Energy of ortho/meta Benzyne. As
the first application of the proposed theory, we study the isomers
of the benzyne molecule (C6H4) in the singlet spin state. We are
interested in the isomerization energy between ortho- and meta-
benzyne. Benzynes have attracted a significant interest in recent
years, both from experimental82,83 and theoretical points of
view84−91 due to their unique electronic structure and chemical
properties. In synthetic organic chemistry, ortho-benzyne is a
crucial intermediate in several important types of reactions; see
the recent review paper of Tadross and Stoltz92 for an in-depth
discussion. Benzynes are also found93 to be the key intermediate
in the formation of polycyclic aromatic hydrocarbons�
carcinogenic and environmentally harmful compounds. In
particular, the ortho- and meta-benzyne isomerization has been
proposed to constitute an important step of various
fragmentation and decomposition reaction pathways.94−96

From the theoretical standpoint, benzynes are known to possess
a singlet diradical character of the ground-state energy level and
it has been shown that static correlation effects play an important
role in description of these systems. Therefore, benzynes are
frequently employed in benchmark studies of novel quantum
chemistry methods where accurate and reliable reference data
are valuable.
Throughout the present section, we adopt the convention that

the isomerization energy ΔE is defined as

=E E Emeta ortho (36)

It is known that in the ground electronic singlet state, the ortho
isomer is more stable and hence the total isomerization energy
defined above is positive. However, individual contributions to
the isomerization energy representing various physical con-
tributions may be of an arbitrary sign. For clarity, positive
contributions are understood to favor the ortho isomer, while
negative contributions�the meta isomer.
Besides studying the performance of the rank-reduced

formalism for the isomers of benzyne, our goal is to show how
the proposed method can be incorporated in the so-called
composite electronic structure schemes in order to increase their
accuracy, computational performance, or range of applicability.
Several families of composite schemes were proposed in the
literature, for example Gaussian-n (G-n) originally introduced
by Pople et al.,97−100 Weizmann-n (W-n) model chemistry
developed by Martin and collaborators,101−103 or HEATxyz
protocol in its several variants.104−106 Nowadays, composite

schemes are an important tool in, for example, ab initio
thermochemistry calculations or theoretical prediction of
quantitative chemical kinetics. The main idea behind the
composite schemes is to split, for example, the total electronic
energy of a molecule, into a sum of one (in some variants, two)
major components supplemented by a series of smaller additive
corrections. Depending on the desired level of accuracy, the
number of corrections varies from just a few to a dozen or so in
the most demanding situations. As the corrections are small in
absolute terms compared to the major components, they can be
calculated less accurately�usually employing a smaller basis set
or with some additional approximations. Below we introduce a
composite method that targets the accuracy comparable to the
exact CCSDT(Q) theory and employs the rank-reduced
approach to the calculation of the (Q) correction and the
SVD-CCSDT+ method for determination of the triple
excitation contributions.
The molecular geometries of ortho- and meta-benzyne were

taken from the paper of Karton et al.90 where they were
optimized using the frozen-core CCSD(T)/cc-pVQZ method.
Our preliminary study has shown that these structures are well-
converged with respect to the basis set size and the CC level.
Therefore, all subsequent calculations of contributions to the
isomerization energy were performed at fixed CCSD(T)/cc-
pVQZ geometries, unless explicitly stated otherwise.
We begin by considering the Hartree−Fock contribution to

the isomerization energy which was calculated using the cc-
pVXZ basis sets with X = D, T, Q, 5. As expected, it converges
very fast to the basis set limit, with the value calculated using the
cc-pVQZ basis set, 106.90 kJ/mol, differs from the result
obtained within the cc-pV5Z basis set, 106.97 kJ/mol, by just
0.07 kJ/mol. To further minimize the basis set incompleteness
error, we perform three-parameter extrapolation using the
exponential formula

= +E E AeX
BX (37)

where E∞, A, and B are fitted to reproduce the results obtained
within the largest three basis sets. This leads to the final result
106.99 kJ/mol. Taking into account the rapid convergence of
the results with the basis set size, it is reasonable to assume that
the error of this quantity is no larger than 0.05 kJ/mol.
Next, we move on to the valence CCSD contribution using

the same basis sets as for the Hartree−Fock method. One
obtains −37.08, −34.90, −33.52, and −32.99 kJ/mol with the X
= D, T, Q, 5 basis sets, respectively. The convergence pattern to
the basis set limit is systematic, but the residual basis set error is
still relatively large. To eliminate a significant portion of this
error we employ the two-parameter Riemann extrapolation
formula proposed in ref 107
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This stencil is used for extrapolation of all correlation energies in
the remainder of the present work. The extrapolated CCSD
contribution using the X = Q(4), 5 basis sets reads −32.32 ±
0.34 kJ/mol, where the error was conservatively estimated to be
equal to the half of the difference between the extrapolated value
and the result in the largest basis set available. This approach was
found to provide reliable and conservative error estimates for
small molecular systems at the same level of theory.107,108

The next important contribution to the isomerization energy
is the effect of triple excitations, defined as the difference of the
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results obtained with the CCSDT and CCSD methods. Due to
cost considerations, it is a common practice to split the triple
excitations contribution into two parts, namely, (i) the
contribution of triple excitations captured by the CCSD(T)
method and (ii) the remainder, that is, the difference between
the CCSD(T) and CCSDT results. This approach is justified by
the fact that the first contribution is usually dominating and can
be obtained with a larger basis set. However, in the present
application, we found this separation to be no longer beneficial if
the SVD−CCSDT+ method is used for the evaluation of the
triple excitation effects. This is because the largest basis set we
could use in both CCSD(T) and SVD−CCSDT+ calculations
was cc-pVQZ. Despite significant effort, it was impossible to
perform canonical (T)/cc-pV5Z calculation using the hardware
and software available to us, either due to excessive computa-
tional time or memory/disk space limitations. Taking into
consideration that SVD−CCSDT+ is more accurate, we use it
directly to determine the effects of triple excitations, bypassing
the (T) method. In Figure 5, we show the convergence of the T3

contribution (cc-pVTZ and cc-pVQZ basis sets) to the
isomerization energy as a function of the NSVD parameter.
Similarly as in the previous sections, this parameter is expressed
as NSVD = x·NMO, where x ∈ (0, 1]. The results are remarkably
stable with respect to the value of NSVD; for x > 1/2, the results
change by less than 0.1 kJ/mol with the smaller basis and 0.05
kJ/mol with the larger basis. We take the results obtained with x
= 1 as the limit which leads to 12.12 kJ/mol and 12.48 kJ/mol
within cc-pVTZ and cc-pVQZ basis sets, respectively. We assign
the uncertainty of 0.05 kJ/mol to both these values. To obtain
the final value of the triple excitation contribution to the
isomerization energy, we perform two-point X = T, Q complete
basis set extrapolation, giving 12.80± 0.17 kJ/mol. Two sources
of error contribute to the proposed uncertainty: the extrap-
olation error (0.16 kJ/mol) which was estimated in the same
way as for the CCSD contribution, and the error due to the
truncation of the triple excitation subspace (0.05 kJ/mol, see the
discussion above related to the NSVD parameter). Because both
sources of error can be viewed as independent, the final error is
calculated by summing their squares and taking the square root
according to the usual rules of error propagation.

Finally, we move on to the calculation of the (Q) correction
which accounts for the quadruple excitation effects. For this
purpose, we adopt the quadratic functional formalism
introduced in the present work combined with the cc-pVTZ
basis set. We also follow the recommendations stated in the
previous section and set Nqua = 2/3NSVD in all calculations. In
Figure 6, we present the (Q) contribution to the isomerization

energy as a function of theNSVD parameter. BeyondNSVD =NMO
changes in the (Q) correction are increasingly smaller. For
example, upon increasing this parameter from NSVD = NMO to
NSVD = 5/4NMO, the (Q) correction decreases by about 0.15 kJ/
mol, while further increase to NSVD = 3/2NMO affects it only by
ca. 0.04 kJ/mol. By following the trend seen in Figure 6 one can
expect that by further increase of the NSVD parameter the (Q)
correction will still decrease slightly. However, the changes are
expected to be insignificant; even assuming the worst case
scenario that the convergence of the (Q) correction is inversely
proportional to NSVD, the limit would be less than 0.1 kJ/mol
away from the value obtained with NSVD = 3/2NMO. As a result,
we assume that the (Q) correction to the isomerization energy is
equal to the value obtained for NSVD = 3/2NMO, and assign
conservative 0.1 kJ/mol error bars, giving −4.92 ± 0.10 kJ/mol.
We neglect the basis set incompleteness error in calculation of
the (Q) correction. The computations of the (Q) correction
using the quadratic functional for benzynemolecule withNSVD =
3/2NMO and 2/3NSVD (cc-pVTZ basis set) take about 2 days on
14 cores of AMD Opteron Processor 6174.
The last major contribution to the isomerization energy is the

zero-point vibration energy (ZPVE). Unfortunately, computa-
tion of this quantity at the CC level is costly, especially if a large
basis set is required. For this reason, we employ the B3LYP/cc-
pVTZ method to determine the ZPVE correction to the
isomerization energy. Within the harmonic oscillator approx-
imation, the ZPVE contribution equals to −4.34 kJ/mol. This
value is further scaled by the recommended factor f = 0.9764 to
take the anharmonic effects into account,109 giving −4.24 kJ/
mol. In order to estimate the error of this quantity, we note that
in a recent work, the B3LYP/cc-pVTZmethod110−113 was found
to perform extremely well in comparison with CCSD(T) for
molecules composed of first-row atoms.114 This is especially true
for hydrocarbons, where the average deviation from CCSD(T)
is just about 1%. Therefore, we conservatively assume that the

Figure 5. Triple excitation contribution to the isomerization energy of
ortho/meta benzyne calculated using the SVD-CCSDT+ method (cc-
pVTZ and cc-pVQZ basis sets) as a function of the NSVD parameter.
The symbol NMO denotes the total number of orbitals in the system.

Figure 6. Quadruple excitation contribution to the isomerization
energy of ortho/meta-benzyne calculated using the (Q) functional (cc-
pVTZ basis set) as a function of the NSVD parameter. For each value of
NSVD, the parameter Nqua is set to 2/3NSVD. The symbol NMO denotes
the total number of orbitals in the system.
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error of the ZPVE contribution to the isomerization energy of
ortho/meta benzyne does not exceed 5%, or 0.21 kJ/mol.
Finally, we consider several minor corrections that do not

contribute significantly to the isomerization energy, but are
nonetheless required in an accurate study. In the order of
importance, we consider first the effect of the inner-shell 1s2
orbitals of carbon atoms on the isomerization energy. The inner
shell correction was computed as a difference between all-
electron and frozen-core CCSD(T) results obtained within the
core−valence cc-pwCVXZ basis sets.117 In this way, one obtains
0.64, 1.60, and 1.81 kJ/mol for X = D, T, Q, respectively. Our
final estimation, 2.00 ± 0.10 kJ/mol, is obtained by two-point
extrapolation from the X = T, Q pair, and the error is estimated
in the same fashion as for the valence CCSD contribution.
The scalar relativistic effects were taken into account using

DKH Hamiltonian118−120 as implemented in NWChem
program.121 The relativistic correction was calculated at the
all-electron CCSD(T)/cc-pwCVXZ level of theory, giving
−0.23, −0.19, and −0.22 for X = D, T, Q, respectively. The
final result, −0.26 ± 0.02 kJ/mol, was obtained using the same
procedure as for the inner-shell correction. Lastly, the diagonal
Born−Oppenheimer correction (DBOC, also known as the
adiabatic correction in the literature) was calculated using the
CCSD/cc-pVDZ method122 employing the CFOUR program.
The result, equal to about 0.03 kJ/mol, signals that this effect has
a negligible impact on the isomerization energy.While the size of
the basis set used is small, and the obtained value is only a rough
estimation, it is sufficient for the present purposes. However, we
assign large error bars to this quantity, 0.03 ± 0.10 kJ/mol.
The results obtained in this section are summarized in Table 4

and compared with other data available in the literature. The

comparison with the most recent experimental determination83

reveals a substantial difference of about 10 kJ/mol. However, it
has to be pointed out that the experimental value was obtained
as a combination of atomization energies and the error of the
final result is difficult to estimate. We find it likely that the
theoretical value obtained in this work is considerably more
accurate which is supported by other theoretical results found in
the literature. They all tend to cluster around ΔE ≈ 50−55 kJ/

mol which suggest that the experimental value should be revised
down.

3.5. Cope Rearrangement in Bullvalene Molecule. The
second system we study in this work in detail is the bullvalene
molecule, C10H10. This molecule attracted considerable
attention because it is a prototypical fluxional molecule that
possesses no permanent molecular structure, that is, the nuclei
are constantly in a concerted motion.123 In bullvalene, this is
enabled by the Cope rearrangement, exemplified in Figure 7,

that may occur between many equivalent configurations. The
initial and final structure are degenerate, but are separated by a
reaction barrier. While the bullvalene molecule has been
synthesized a long time ago124,125 and frequently studied both
experimentally and theoretically since then, the height of the
barrier is not established unambiguously. The most recent
theoretical result of Karton et al.126 differs from the experimental
results (obtained by NMR techniques127) by several kJ/mol.
This discrepancy is much larger than the reported uncertainties
of both calculations and measurements, and hence the theory
and experimental data are not consistent at this point. In this
section, we carry an independent systematic theoretical study of
the bullvalene Cope rearrangement barrier height and discuss
the possible sources of this inconsistency. In particular, we
include corrections due to triple and quadruple excitations
calculated with the rank-reduced formalism. These corrections
would be extremely costly to compute using the exact
CCSDT(Q) method; in fact, we did not manage to accomplish
CCSDT(Q) calculations even with the smallest cc-pVDZ basis.
The electronic contribution to the reaction barrier height is

denoted by the symbol ΔE‡. For the purposes of direct
comparison with the experimental data, we additionally need to
calculate the Gibbs free energy barrier heights at the
temperature T = 298 K. This quantity is denoted by ΔG298‡

and includes, besides ΔE‡, the zero-point vibrational energy
(ZPVE) and enthalpic/entropic temperature corrections, as
detailed below.
The molecular geometries of the bullvalene equilibrium

structure and Cope rearrangement transition state were
optimized at the B3LYP-D3/pc-2 level of theory128−131 using
the NWChem package. The obtained structures were verified to
represent the equilibrium structure (real harmonic frequencies)
and first-order transition state (one imaginary frequency). The
Cartesian geometries of both structures are given in the
Supporting Information. The barrier height ΔE‡ is split into
several components calculated at different levels of theory, and a
composite scheme is used to assemble the best theoretical
estimate. Because the bullvalene molecule is roughly twice as
large as the systems considered in Section 3.4, the composite
method applied here is less rigorous in nature. In particular, we
do not assign uncertainties to individual contributions to the
barrier height; instead, we attach a global error estimate only to
the final result.

Table 4. Final Error Budget of the Calculations of the
Isomerization Energy of ortho/meta Benzynea

contribution to ΔE
Hartree−Fock 106.99 ± 0.05
valence CCSD −32.32 ± 0.34
valence T3 −12.80 ± 0.17
valence (Q) −4.92 ± 0.10
inner-shell correlation 2.00 ± 0.10
scalar relativity −0.26 ± 0.04
DBOC 0.03 ± 0.10
ZPVE −4.24 ± 0.21
total 54.52 ± 0.47
experiment 64.083,115

other theoretical 54.4b90

51.5c91

61.2d87

51.0e84

aAll values are given in kJ/mol. bW3.2lite(b) composite method.
cCAS(12,12) + PT2/CBS + ZPECASSCF.

dG2M(rcc,MP2) composite
method.116 eCASPT2[g1] + aANO/C(5s4p2d)/H(3s2p) basis set.

Figure 7. Chemical structures illustrating the Cope rearrangement in
the bullvalene molecule.
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First, we consider the Hartree−Fock contribution to the
barrier height which was calculated using the cc-pVXZ basis sets
with X = T, Q, 5. The exponential extrapolation (37) from these
three basis sets leads to the result 108.97 kJ/mol. This differs by
less than 0.1 kJ/mol from the result obtained within the cc-pV5Z
basis, showing that the error of the Hartree−Fock component of
ΔE‡ is negligible. The second contribution to ΔE‡ was
calculated using the CCSD method, giving −29.20, −28.39,
and −27.50 kJ/mol with cc-pVXZ, X = D, T, Q, basis sets,
respectively. To further reduce the basis set incompleteness
error, we apply the two-point extrapolation formula 38 resulting
in the final CCSD contribution of −26.68 kJ/mol.
Next, we consider the contribution of triple excitations to the

barrier height. It was computed using the SVD−CCSDT+
method within the cc-pVDZ and cc-pVTZ basis sets. Similarly as
in the previous section, we do not split the effect of triple
excitations into (T) and post-(T) components because we did
not manage to calculate the (T) correction within a larger (cc-
pVQZ) basis set due to excessive time requirements. Note that
the SVD−CCSDT+ calculations within the cc-pVTZ basis
involve 50 correlated electrons and 440 atomic orbitals which
vastly exceed the capabilities of the available CCSDT
implementations. In Figure 8, we present triple excitation

contribution to the barrier height as a function of the NSVD
parameter. The results saturate fast with respect to the value of
NSVD, and for NSVD = 1/2NMO, they are essentially converged.
Beyond this point, minor fluctuations at the level of ca. 0.05 and
0.02 kJ/mol are observed, but this is completely negligible in
comparison with other sources of error. Using the results
obtained withNSVD =NMO, we obtain the contributions of triple
excitations equal to −15.23 and −15.87 kJ/mol in the cc-pVDZ
and cc-pVTZ basis sets, respectively. The final result,−16.26 kJ/
mol, is obtained using the two-point extrapolation formula, eq
38.
The quadruple excitation contribution to ΔE‡ was calculated

using the (Q) functional and the cc-pVDZ basis set. In Figure 9,
we present the (Q) correction as a function of the NSVD
parameter and with the recommended Nqua = 2/3NSVD. One
can see that beyond NSVD = 5/4NMO, the results are essentially

stable with respect to this parameter. The variations are within
0.01−0.02 kJ/mol and hence are negligible from the present
point of view. Therefore, we take the value obtained withNSVD =
3/2NMO, namely, −2.29 kJ/mol, as the final contribution of
quadruple excitations to ΔE‡. The computations of the (Q)
correction using the quadratic functional for the bullvalene
molecule with NSVD = 5/4NMO and 2/3NSVD (cc-pVDZ basis
set) take about 3 days on 14 cores of AMD Opteron Processor
6174.
The last contributions to ΔE‡ are due to the inner-shell

correlation and relativistic effects (scalar DKH Hamiltonian).
They were both calculated using the all-electron CCSD method
within the cc-pwCVTZ basis set supplemented by (T)
correction obtained within cc-pwCVDZ basis. No extrapolation
toward the complete basis set was performed. This brings
contributions to ΔE‡ equal 1.33 and −0.21 kJ/mol due to the
aforementioned two effects. We also estimated the DBOC
component ofΔE‡ (CCSD/cc-pVDZ level of theory) and found
it to be negligible (<0.1 kJ/mol) within the present accuracy
standards.
Finally, ZPVE contribution to the barrier height, as well as

thermal corrections, was calculated at the same level of theory as
the geometry optimization (B3LYP-D3/pc-2). The raw value of
ZPVE was additionally scaled by the empirical factor f = 0.9678,
as recommended in ref 132, to take the anharmonic effects into
account, giving −4.36 kJ/mol. Thermal corrections were
calculated within the rigid rotor/harmonic oscillator approx-
imations without frequencies scaling. The thermal enthalpic and
entropic contributions to the Gibbs free energy barrier height for
T = 298 K are −0.59 and 1.03 kJ/mol, respectively, and hence
the total finite-temperature correction is just 0.44 kJ/mol.
The final results of the calculations of the Gibbs free energy

barrier height for the Cope rearrangement in the bullvalene
molecule are summarized in Table 5. The total ΔG298‡

determined by us equals to 60.94 kJ/mol. In order to roughly
estimate the error of this result, we note that there are two major
sources of uncertainty: valence CCSD and ZPVE contributions.
They can both lead to errors of the order of 0.5 kJ/mol. The
remaining contributions toΔG298‡ are expected to be accurate to
within 0.1−0.2 kJ/mol. All in all, the value determined by us,
ΔG298‡ = 60.94 kJ/mol, has an uncertainty of around 1 kJ/mol.
This result is in reasonable agreement with the most recent
theoretical result of Karton,126 62.21 kJ/mol, but in a
disagreement with older calculations based on lower levels of

Figure 8. Triple excitation contribution to the Cope rearrangement
barrier height (ΔE‡) in the bullvalene molecule calculated using the
SVD-CCSDT+ method (cc-pVDZ and cc-pVTZ basis sets) as a
function of the NSVD parameter. The symbol NMO denotes the total
number of orbitals in the system.

Figure 9. Quadruple excitation contribution to the Cope rearrange-
ment barrier height (ΔE‡) in the bullvalene molecule calculated using
the (Q) functional (cc-pVDZ basis set) as a function of the NSVD
parameter. For each value ofNSVD, the parameterNqua is set to 2/3NSVD.
The symbol NMO denotes the total number of orbitals in the system.
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theory which give results within 35−55 kJ/mol range.133−136
More strikingly, our result is in a disagreement with the
experimental data of Moreno et al.127 who obtained ΔG298‡ =
54.8 ± 0.8 kJ/mol from gas-phase NMR measurements. Such a
large difference of about 6 kJ/mol is unlikely to be caused by an
error in the theoretical protocol adopted by us. Therefore, we
believe that the experimental data for this system should be
reevaluated and a new measurement may help to resolve the
persisting discrepancy between state-of-the-art theory and
experimental results.

4. CONCLUSIONS AND FUTURE WORK
In this work, we have extended the rank-reduced CC formalism
to the calculation of non-iterative energy corrections due to
quadruple excitations. The focus of the present work has been
concentrated on the CCSDT(Q) method, which has become
the de facto standard in high-accuracy ab initio quantum
chemistry, and can be viewed as the “platinum standard” of the
field. The proposed formalism consists of two major novel
components. The first is the application of the Tucker format to
compress the quadruple excitation amplitudes and eliminate the
full rank tijklabcd tensor entirely from the computational procedure.
The second is the introduction of a modified functional for
evaluation of the (Q) correction. This functional is rigorously
equivalent to the standard (Q) formalism when the exact CC
amplitudes are used. However, due to the fact that the new
functional is stationary with respect to the amplitudes, it is less
susceptible to errors resulting from the aforementioned
compression. We show, both theoretically and numerically,
that the computational cost of the proposedmethod scales as the
seventh power of the system size. Using reference results for a set
of small molecules, the method is calibrated to deliver accuracy
of a few percent in relative energies. To illustrate the potential of
the theory, we calculate the isomerization energy of ortho/meta
benzyne (C6H4) and the barrier height for the Cope
rearrangement in bullvalene (C10H10). In both cases, we show
that the proposed formalism considerably increases the range of
applicability of the CC theory with non-iterative energy
corrections due to quadruple excitations.
The present work is a starting point for a rank-reduced

treatment of other quantum chemistry methods involving
quadruple excitations. Indeed, the quadruple excitation sub-
space obtained by theHOOI procedure, Section 2.5, can be used
also in more advanced (both iterative and non-iterative) CC
models involving the T4 operator. This includes even the
complete CCSDTQ method. In fact, our preliminary study
showed that the N7 scaling can be achieved at the CCSDTQ

level if both the triple and quadruple excitation amplitudes are
compressed using the Tucker format. However, to exploit this
advantage, an efficient implementation is required to minimize
the prefactor, and the accuracy of the resulting method must be
thoroughly tested and calibrated.
Another important extension is generalization of the rank-

reduced CC formalism to the open-shell situations. This
direction is especially important for applications in ab initio
thermochemistry, where calculation of atomization energies is
an important problem. A straightforward way to handle the
open-shell systems is offered by the spin-unrestricted CC theory,
but this approach leads to the spin-contamination of the
electronic wave function, as is well-documented in the
literature.137−139 While the issue of spin-contamination may
not be severe in many applications, a more pressing problem is
the need to handle numerous spin cases of the triply and,
especially, quadruply excited configurations. In the spin-
unrestricted formalism, each spin case has to be decomposed
separately, leading to a significant increase in the computational
costs. As a result, a more robust and advanced140−146 approach
to the spin-adaptation in open-shell systems may be required
which will be considered in future works.
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