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Abstract

Retroviral induced malignancies serve as ideal models to help us better understand the molecular mechanisms
associated with the initiation and progression of leukemogenesis. Numerous retroviruses including AEV, FLV, M-
MuLV and HTLV-1 have the ability to infect hematopoietic stem and progenitor cells, resulting in the deregulation
of normal hematopoiesis and the development of leukemia/lymphoma. Research over the last few decades has
elucidated similarities between retroviral-induced leukemogenesis, initiated by deregulation of innate hematopoie-
tic stem cell traits, and the cancer stem cell hypothesis. Ongoing research in some of these models may provide a
better understanding of the processes of normal hematopoiesis and cancer stem cells. Research on retroviral
induced leukemias and lymphomas may identify the molecular events which trigger the initial cellular transforma-
tion and subsequent maintenance of hematologic malignancies, including the generation of cancer stem cells. This
review focuses on the role of retroviral infection in hematopoietic stem cells and the initiation, maintenance and
progression of hematological malignancies.

Introduction
Hematopoiesis is a highly regulated and hierarchical
process wherein hematopoietic stem cells (HSCs) differ-
entiate into mature hematopoietic cells [1]. It is a pro-
cess controlled by complex interactions between
numerous genetic processes in blood cells and their
environment. The fundamental processes of self-renewal
and quiescence, proliferation and differentiation, and
apoptosis are governed by these interactions within both
hematopoietic stem cells and mature blood cell lineages.
Under normal physiologic conditions, hematopoietic
homeostasis is maintained by a delicate balance between
processes such as self-renewal, proliferation and differ-
entiation versus apoptosis or cell-cycle arrest in hemato-
poietic progenitor/hematopoietic stem cells (HP/HSCs).
Under stress conditions, such as bleeding or infection,
fewer HP/HSCs undergo apoptosis while increased
levels of cytokines and growth factors enhance prolifera-
tion and differentiation. In a normally functioning
hematopoietic system, the kinetics of hematopoiesis
return to baseline levels when the stress conditions end.
Deregulation of the signaling pathways that control the
various hematopoietic processes leads to abnormal

hematopoiesis and is associated with the development of
cancer, including leukemia (reviewed in [2]).
Although not fully characterized, deregulation of nor-

mal hematopoietic signaling pathways in HP/HSCs fol-
lowing viral infection has previously been documented
[3-5]. Previous studies demonstrated productive infec-
tion of HP/HSCs by retroviruses and suggested that ret-
roviral mediated leukemogenesis shares similarities with
the development of other types of cancer, including the
putative existence of cancer stem cells (CSCs) [6,7].
Here we discuss the evidence demonstrating that retro-
viruses can infect HP/HSCs, and we speculate on the
ability of Human T-cell lymphotropic virus type 1
(HTLV-1) to generate an “infectious” leukemic/cancer
stem cell (ILSC/ICSC).

What Defines a HSC?
HSCs are pluripotent stem cells that can generate all
hemato-lymphoid cells. A cell must meet four basic
functional requirements to be defined as a HSC: 1) the
capability for self-renewal, 2) the capability to undergo
apoptosis, 3) the maintenance of multilineage hemato-
poiesis, and 4) the mobilization out of the bone marrow
into the circulating blood. The ability of HSCs to per-
manently reconstitute an irradiated recipient host is the
most stringent test to evaluate if a population is a true
HSC. Long-term transplantation experiments suggest a
clonal diversity model of HSCs where the HSC
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compartment consists of a fixed number of different
types of HSCs, each with an epigenetically prepro-
grammed fate. The HP/HSC population is typically
defined by surface expression of CD34 and represents a
heterogeneous cell population encompassing stem cells,
early pluripotent progenitor cells, multipotent progeni-
tor cells, and uncommitted differentiating cells [8].
HSCs have the potential to proliferate indefinitely and
can differentiate into mature hematopoietic lineage spe-
cific cells.
In adults, HSCs are maintained within the bone mar-

row and differentiate to produce the requisite number
of highly specialized cells of the hematopoietic system.
HSCs differentiate into two distinctive types of hemato-
poietic progenitors: 1) a common lymphoid progenitor
(CLP) population that generates B-cells, T-cells and NK
cells, and 2) a common myeloid progenitor (CMP)
population that generates granulocytes, neutrophils,
eosinophils, macrophages and erythrocytes (Figure 1).
Lineage commitment of these progenitors involves a
complex process that can be induced in response to a
variety of factors, including the modulation of hemato-
poietic-associated cytokines and transcription factors.
These factors serve dual purposes both by maintaining
pluripotency and by actively inducing lineage commit-
ment and differentiation of HSCs [9-18]

Leukemia Stem Cells/Cancer Stem Cells (LSC/CSC)
The cancer stem cell hypothesis postulates that cancer
can be initiated, sustained and maintained by a small
number of malignant cells that have HSC-like properties
including self-renewal and pluripotency [19-21]. The
hierarchical organization of leukemia was first proposed
by Fialkow et al. in the 1970s, and it was later demon-
strated that acute myeloid leukemia (AML) contains a
diversity of cells of various lineages but of monoclonal
origin [22]. It is now well established that HSCs are not
only responsible for the generation of the normal hema-
topoietic system but can also initiate and sustain the
development of leukemia, including AML [2,7,23]. This
hematopoietic progenitor, termed a leukemic/cancer
stem cell (LSC/CSC), is the result of an accumulation of
mutations in normal HSCs that affect proliferation,
apoptosis, self-renewal and differentiation [24]. One of
the most well established models for this theory came
from the seminal work of John Dick and colleagues that
established cancer stem cells at the top of a hierarchical
pyramid for the establishment of AML [25]. Many sig-
naling pathways, such as the Wnt signaling pathway,
that have been classically associated with solid cancers
are now also associated with HSC development and dis-
ease [26,27]. CSCs have been unequivocally identified in
AML and are also suspected to play a role in other

leukemias, including chronic myelogenous leukemia
(CML) and acute lymphoblastic leukemia (ALL) [28-30].
In order to be defined as a LSC/CSC, cells must have

the ability to generate the variety of differentiated leuke-
mic cells present in the original tumor and must
demonstrate self-renewal. The classical experiment to
define a cancer stem cell is its ability to reproduce the
disease phenotype of the original malignancy in immu-
nocompromised mice. LSC/CSC have the ability to reca-
pitulate the original disease phenotype following
transplantation into NOD/SCID mice as illustrated by
the transplantation of CD34+CD38- LSC/CSC obtained
from AML patients [25,31,32]. Interestingly, the CD34
+CD38- cell surface phenotype of LSC/CSC is shared by
immature hematopoietic precursors including HSCs,
raising the possibility that LSC/CSC arise from HSCs.
Indeed, the transplantation of mature CD34+CD38+ cells
fails to recapitulate AML in NOD/SCID mice indicating
that the HSC rather than the more mature CD34+CD38
+ progenitor cell, is the LSC/CSC. The identification and
characterization of LSC/CSC is critical for designing
specific therapies since LSC/CSCs are relatively resistant
to traditional radiation and chemotherapy [33-35]. This
theory provides an attractive model for leukemogenesis
because the self-renewal of HSCs allows for multiple
genetic mutations to occur within their long life span.
For HSCs to become LSC/CSC, fewer genetic mutations
may be required than in mature hematopoietic cells,
which must also acquire self-renewal capacity [36].

The Cancer Stem Cell Hypothesis
There are currently three hypotheses that address the
question of which target cell in cancer undergoes leuke-
mic transformation (Figure 2) [34]. The first hypothesis
proposes that multiple cell types within the stem and
progenitor cell hierarchy are susceptible to transforma-
tion. Mutational events alter normal differentiation pat-
terns and promote clonal expansion of leukemic cells
from a specific differentiation state. The second hypoth-
esis proposes that the mutations responsible for trans-
formation and progression to leukemia occur in
primitive multipotent stem cells and result in the devel-
opment of a LSC/CSC. Thus, disease heterogeneity
results from the ability of the LSC/CSC to differentiate
and acquire specific phenotypic lineage markers [37].
The final hypothesis proposes that progression to acute
leukemia may require a series of genetic events begin-
ning with clonal expansion of a transformed LSC/CSC.
This “two-hit” model of leukemogenesis suggests that
there is a pre-leukemic stem cell that has undergone an
initial transformation event, but has not yet acquired
the additional mutations necessary to progress to leuke-
mia [38].
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Deregulation of genes involved in normal HSC self-
renewal and differentiation in human cancer suggests an
overlap in the regulatory pathways used by normal and
malignant stem cells. Emerging evidence suggests that
both normal and cancer stem cells share common devel-
opmental pathways. Since the signaling pathways that
normally regulate HSC self-renewal and differentiation
are also associated with tumorigenesis, it has been pro-
posed that HSCs can be the target for transformation in
certain types of cancer [20]. HSCs already have the
inherent ability for self-renewal and persist for long per-
iods of time in comparison to the high turnover rate of
mature, differentiated cells. HSCs possess two distinctive
properties that can be deregulated to initiate and sustain
neoplastic malignancies, namely self-renewal and prolif-
eration. Retroviral infection in HSCs may therefore
result in the accumulation of mutations and in the mod-
ulation of key hematopoiesis-associated gene expression
patterns. The alteration of normal hematopoietic

signaling pathways, including those related to self-
renewal and differentiation, may lead to the generation
of a LSC/CSC population. During normal hematopoiesis,
the HSC undergoes self-renewal or enters a committed,
lineage specific differentiation and maturation pathway.
Once HSCs commit to a lineage specific pathway and
become terminally differentiated, they lose the capacity
to undergo self-renewal [39,40]. LSC/CSC however can
undergo long-term proliferation without entering term-
inal differentiation resulting in the manifestation of
hematological malignancies.

Retroviral Infection and Hematopoiesis
Recent evidence suggests that viral infection may have a
profound influence on normal hematopoiesis [41]. Viral
infection of HP/HSCs may adversely affect the levels of
cytokines and transcription factors vital for proliferation
and differentiation. Alternatively, viral infection may
induce cytolysis, apoptosis and/or the destruction of

Figure 1 Hematopoiesis and retroviral infection: CD34+ hematopoietic stem cells (HSCs) can undergo self-renewal as well as undergoing
maturation to give rise to common lymphoid progenitor (CLP) and common myeloid progenitor (CMP) cells, which serve as precursors to all
lymphoid and myeloid cells respectively. HSCs as well as other lineage specific progenitors are permissive for infection by a variety of murine
and human retroviruses including HIV-1 and HTLV-1.
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progenitor cells, resulting in perturbation of hematopoi-
esis. Additionally, infected HPCs may differentiate
resulting in dissemination of pathogens into diverse ana-
tomical sites and to an effective spread of infection.
HP/HSCs can also serve as targets for cellular trans-

formation by specific viruses partly because of their
innate ability for self-renewal. CD34+ HP/HSCs are sus-
ceptible to infection with a number of viruses including
HIV-1, HTLV-1, Hepatitis C virus, JC virus, Parvovirus,
Human Cytomegalovirus (HCMV), and the Human Her-
pesviruses (HHV): HHV-5, HHV-6, HHV-7, HHV-8
[3-5,42-52]. The concept that viruses can invade, infect
and establish a latent infection in the bone marrow was
first demonstrated in studies with HCMV. HCMV
infects a variety of cell types, including hematopoietic
and stromal cells of the bone marrow, endothelial cells,
epithelial cells, fibroblasts, neuronal cells, and smooth

muscle cells [3,53-57]. The bone marrow is a site of
HCMV latency [5,58], but the primary cellular reservoir
harboring latent virus within the bone marrow is con-
troversial. Latent viral genomes are detected in CD14+

monocytes and CD33+ myeloid precursor cells [59,60].
However HCMV can also infect CD34+ hematopoietic
progenitor populations, and viral DNA sequences can be
detected in CD34+ cells from healthy seropositive indivi-
duals [45,46,58,61], suggesting that a primitive cell
population serves as a renewable primary cellular reser-
voir for latent HCMV. The finding that HCMV DNA
sequences are present in CD34+ cells of seropositive
individuals is consistent with the hypothesis that HCMV
resides in a HPC which subsequently gives rise to multi-
ple blood cell lineages. Recently, it has also been pro-
posed that other viruses such as HTLV-1 and Kaposi’s
Sarcoma Herpesvirus (KSHV) can also infect CD34+

Figure 2 Generation of Leukemic Stem Cells. Three hypotheses have been proposed that lead to the development of leukemic stem cells
(LSC/CSC): (A) LSC/CSC might arise from either a hematopoietic stem cell (HSC), hematopoietic progenitor cell (HPC), committed lymphoid
progenitor (CLP) or committed myeloid progenitor (CMP), (B) from a multipotent HSC or HPC into LSC/CSC through a single transformation
event or, (C) from HSC or HPCs through a series of transformation events initiated by the generation of a pre-LSC/CSC.
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HP/HSCs and establish latent infection within the BM
resident cells [52,62].
Apart from the establishment of latent infection

within the bone marrow (BM), suppression of hemato-
poiesis has been documented to occur following infec-
tion of HPCs with HCMV, HHV-5, HHV-6, HIV-1, and
measles virus either as a result of direct infection of
HPCs or by indirect mechanisms such as disruption of
the cytokine milieu within the stem cell niche following
infection of bone marrow stromal cells. Our laboratory
has reported that HTLV-1 and KSHV infection of CD34
+ HP/HSCs suppresses hematopoiesis in vitro and that
viral infection can be disseminated into mature lym-
phoid cell lineages in vivo when monitored in huma-
nized SCID mice (HU-SCID) [52,63,64]. HTLV-1 and
KSHV are both associated with hematological malignan-
cies and it is plausible that CSCs can be generated fol-
lowing infection of HP/HSCs with these viruses.
Multiple retroviruses establish latent infections in HP/

HSCs resulting in perturbation of hematopoiesis and
induction of viral pathogenesis [65-69]. Retroviral infec-
tions of HSCs can have adverse effects including induc-
tion of cell-cycle arrest and increased susceptibility to
apoptosis, both would manifest in the suppression of
hematopoiesis. Additionally, mutations and transcrip-
tional deregulation of specific hematopoiesis-associated
genes can skew normal hematopoiesis toward specific
lineages and have been demonstrated to occur following
infection of HP/HSCs with HIV-1, HTLV-1 and Friend
Leukemia virus (FLV) [64,70,71].
Hematopoiesis occurs in the bone marrow microenvir-

onment, a complex system comprised of many cell types
including stromal cells that produce cytokines, growth
factors and adhesion molecules vital for the mainte-
nance, differentiation and maturation of HP/HSCs
[9,11]. Apart from infection of HSCs, retroviruses such
as HIV-1 and Moloney Murine leukemia virus (M-
MuLV) have been shown to infect bone marrow stromal
cells, compromising their ability to support hematopoi-
esis and resulting in multilineage hematopoietic failure
[72,73].

Retroviruses and Leukemogenesis: The “two-hit”
Hypothesis
Studies of retroviral induced leukemia have proven very
useful in understanding the multi-step processes asso-
ciated with leukemogenesis. Moreover, these models
have broadened our understanding of hematopoiesis and
hematopoietic stem cell biology. Retroviral infection
models such as FLV and M-MuLV, which induce leuke-
mic states in mice, have emerged as powerful tools to
study the molecular mechanisms associated with leuke-
mogenesis and the generation of LSC/CSCs [74-78].
The emerging concept from these murine models is that

acute leukemia arises from cooperation between two
distinctive mutagenic events; one interfering with differ-
entiation and another conferring a proliferative advan-
tage to HP/HSCs (Figure 2C) [79,80]. Studies from
Avian Erythroblastosis virus (AEV), FLV and M-MuLV-
induced leukemia/lymphoma models demonstrate that
leukemia/lymphoma development depends on: (1) a
mutation that impairs differentiation and blocks matura-
tion, (2) a mutation that promotes autonomous cell
growth, and (3) that neither mutational event is able to
induce acute leukemia by itself [68,81]. Thus, these
models provide direct evidence for the “two-hit model”
of leukemogenesis as has been proposed for some LSC/
CSC induced hematological malignancies, including
AML [79]. This concept is perhaps best illustrated by
AEV infection in birds, FLV and MuLV infection in
mice and in HTLV-1 infection in humans (Figure 3).
During AEV infection, the oncogenic tyrosine kinase

v-Erb-b, together with the aberrant nuclear transcription
factor v-Erb-A are transduced. The mutated thyroid hor-
mone receptor a, v-Erb-A, becomes unresponsive to the
ligand and actively recruits tyrosine kinases. These
kinases, such as stem-cell factor activated c-kit, cause
arrest of erythroid differentiation at the BFU-E/CFU-E
stage. Additionally, v-Erb-b encodes a mutated epider-
mal growth factor receptor that induces extensive ery-
throblast self-renewal [69,82]. These two virally-induced
events promote the abnormal proliferation of erythroid
progenitors and lead to the development of leukemia.
Another relevant leukemogenesis model induced by

retroviral infection of HPCs is acute erythroleukemia
caused by the infection of mice with FLV [83-85]. FLV
has two distinct viral components, a replication-compe-
tent Friend Murine Leukemia virus (F-MuLV) and a
replication defective pathogenic component known as
the Friend Spleen Focus Forming virus (F-SFFV)
[85-87]. The pathogenic component of FLV (F-SFFV)
can infect a variety of hematopoietic cells, though early
erythroid progenitors are the primary target for infection
[86,88]. F-SFFV can alter the normal growth and differ-
entiation profile of erythroid progenitor cells leading to
leukemogenesis. The induction of multistage erythroleu-
kemia by FLV is also a two stage process: a pre-leuke-
mic stage known as “erythroid hyperplasia” and a
leukemic phase referred to as “erythroid cell transforma-
tion” (Figure 3B). The pre-leukemic stage is character-
ized by the infection and random integration of F-SFFV
virus into erythroid precursor cells, forming an infected
stem cell population, followed by the expression of the
viral envelope glycoprotein gp55 on the cell surface.
gp55 subsequently binds to the cellular receptor of ery-
thropoietin (Epo-R) and interacts with the sf-Stk tyro-
sine kinase signaling pathway leading to a constitutive
activation signal for the proliferation of undifferentiated
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erythroid progenitor cells independent of erythropoietin
[83,89,90]. Within the proliferating erythroid progenitor
cell population are infected cells with randomly inte-
grated virus in the sp-1 locus, which leads to the activa-
tion and overexpression of PU.1. Originally isolated by
Moreau-Gachelin and co-workers as a gene targeted for
recurrent insertions of SFFV, PU.1 has subsequently
been shown to be involved in terminal myeloid differen-
tiation, B and T-cell development, as well as mainte-
nance of normal erythropoiesis and HSC development
[91,92]. The over-expression of PU.1 in erythroid pre-
cursor cells as a result of SFFV integration leads to a
block in erythroid differentiation and, in conjunction
with the inactivation of p53, clonal expansion of these
leukemic cells in susceptible mice [71,91]. Thus FLV-
mediated erythroleukemia is associated with two distinc-
tive phases, “the pre-leukemic phase” mediated by gp55
binding to Epo-R and the “leukemic phase” mediated by

SFFV integration and the subsequent over-expression of
PU.1. This demonstrates that both AEV and FLV infec-
tion follow the two-hit model of the cancer stem cell
hypothesis.
M-MuLV is a non-acute retrovirus that typically

induces a T-cell lymphoma after a latency period of 3-6
months [67]. The tumor cells typically have the pheno-
type of immature T-cells (CD4-/CD8- or CD4+/CD8+)
although some tumors show a more mature surface
phenotype (CD4+/CD8-or CD4-/CD8+) [72,93]. This led
to the hypothesis that the virus might originally infect
an immature T-cell or a HPC to form a ICSC/ILSC
which then continues to differentiate post-infection,
initially in the bone marrow and then in the thymus
[67,94]. Because T-lymphocytes develop in the thymus
from bone marrow-derived immature precursors (pro-
thymocytes), it has been proposed by several investiga-
tors that a bone marrow-thymus axis plays an important

Figure 3 The “Two-Hit” Model of Retrovirus-Induced Leukemogenesis. (A) HTLV-1 infection of CD34+ hematopoietic progenitor and stem
cells (HP/HSCs) leads to the development of Adult T-cell leukemia/lymphoma (ATLL). (B) FLV infection of erythroid progenitors leads to
erythroleukemia. (C) M-MuLV infection of pro-T cells leads to T-cell lymphoma. The dotted line indicates the separation between the early and
late phase of infection.
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role in the development of T-cell lymphoma by M-
MuLV [93,95-97]. Although the identity of the initial
target cell for M-MuLV infection is still unknown, a
two-stage leukemogenesis model for the development of
M-MuLV-induced leukemia has been proposed [67]. In
this model the animal is infected with MuLV on two
separate occasions; the first infection occurs in the bone
marrow at the pre-leukemic (early) phase which leads to
hyperplasia and migration of infected lymphoid progeni-
tors into the thymus where a subsequent infection leads
to insertional activation of proto-oncogenes and out-
growth of the tumor resulting in the leukemic (late)
phase of infection (Figure 3C). Early infection of the
bone marrow is thought to be essential for establish-
ment of the pre-leukemic state and for development of
spleen hyperplasia. The late phase splenic hyperplasia is
the result of a compensatory hematopoiesis due to
diminished normal hematopoiesis in the bone marrow
resulting from the establishment of the preleukemic
phase and plays an integral role in the establishment of
malignancy [98-100].
Bovine leukemia virus (BLV) is a deltaretrovirus

which causes leukemia/lymphoma in cattle [101]
(reviewed by [102,103]) and has been used as a model
of HTLV-1 infection and disease. While B-cells are the
primary target of BLV infection in contrast to the T-
cell tropism displayed by HTLV-1, BLV-infected B
lymphocytes are similarly arrested in G0/G1 and pro-
tected from apoptosis similar to properties demon-
strated following HTLV-1 infection HP/HSCs [64,104].
It has been suggested that CD5+ B-cell progenitors are
more susceptible to BLV infection [105] and that there
is a relationship between the B-cell phenotype and
BLV tropism [106]. More recently, the existence of a
pre-malignant clone has been proposed. This infected
progenitor is detectable early after viral infection and
could contribute to both genetic instability and clonal
expansion, both characteristics of cancer cells [107]. It
can therefore be speculated that the infection of pro-
genitor populations by BLV may result in the estab-
lishment of an ILSC/ICSC and subsequent
development of leukemia.
Much of the current knowledge about leukemic

mechanisms originates with studies on AML. AML is
characterized by the uncontrolled self-renewal of
hematopoietic progenitors that fail to differentiate nor-
mally. Induction of AML is associated with a variety of
mutations that can be broadly classified into two dis-
tinctive categories; mutations in genes encoding tran-
scription factors involved with hematopoietic
regulation and mutations in genes encoding proteins
linked to survival and proliferation signaling pathways
[74-78,108,109]. Studies in mice have shown that
neither type of mutation alone is sufficient for the

induction of AML and that cooperative mutagenic
events are required for disease initiation [69,79]. The
leukemogenesis models of AEV, FLV and MuLV vali-
date this concept and underline the importance of
these models for the study of down-stream molecular
events associated with these mutagenic events. The
emergence of LSC/CSC as a result of these oncogenic
events would explain the complexity associated with
hematological malignancy development such as AML
and CML in humans.

Human T-cell Leukemia Virus Type-1 (HTLV-1) and
Adult T-cell Leukemia/Lymphoma (ATLL)
Human T-cell leukemia/lymphoma virus type-1
(HTLV-1) is the causative agent of Adult T-cell Leuke-
mia/Lymphoma (ATLL), an aggressive CD4+ leukemia/
lymphoma [110]. ATLL is a rare T-cell malignancy
characterized by hypercalcemia, hepatomegaly, spleno-
megaly, lymphadenopathy, the presence of a monoclo-
nal expansion of malignant CD4+CD25+ T-cells that
evolve from a polyclonal population of HTLV-1
infected CD4+ T-cells, and infiltration of lymphocytes
into the skin and liver. HTLV-1 causes ATLL in a
small percentage of infected individuals after a pro-
longed latency period of up to 20-40 years [111].
Although HTLV-1 can replicate by reverse transcrip-
tion during the initial phase of infection, the integrated
provirus is effectively replicated during proliferation of
infected cells [112]. Typically, HTLV-1 infected cells
can persist for decades in patients, and the infected
cell population transits from a polyclonal phase into a
monoclonal expansion during development and pro-
gression to ATLL.
There are four ATLL subtypes; acute, lymphomatous,

chronic, and smoldering. The first two subtypes are
associated with a rapidly progressing clinical course
with a mean survival time of 5-6 months. Smoldering
and chronic ATLL have a more indolent course and
may represent transitional states towards acute ATLL.
Clinical features of ATLL include leukemic cells with
multi-lobulated nuclei called ‘flower cells’ which infil-
trate into various tissues including the skin and the
liver, abnormally high blood calcium levels, and con-
current opportunistic infections in patients [113,114].
Although considerable progress has been made in

understanding ATLL biology, the exact sequence of
events occurring during the initial stages of malignancy,
including the types of cells infected with HTLV-1,
remain unclear. The primary target cells for HTLV-1
infection may not only influence HTLV-1 pathogenesis,
but the sequestration of these cells in anatomical sites
such as the bone marrow may also allow the virus to
effectively evade the primary immune response against
infection.
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The Role of HSCs in HTLV-1 Infection and
Pathogenesis
It has been previously reported by our laboratory and
other investigators that HTLV-1 can infect human HP/
HSCs [65,115]. It has been hypothesized that HTLV-1
can specifically induce a latent infection in CD34+ HP/
HSCs and can initiate preleukemic events in these pro-
genitor cells [62]. These cells could potentially provide a
durable reservoir for latent virus in infected individuals.
It has been speculated that HTLV-1 infection of CD34+

HPCs may result in the generation of an ILSC/ICSC
and may also induce perturbation of normal hematopoi-
esis, ultimately resulting in the outgrowth of malignant
clones and the development of ATLL.
The development of ATLL correlates with neonatal or

perinatal transmission of HTLV-1. HTLV-1 carries no
cellular proto-oncogenes, and the oncogenic potential of
the virus is linked to Tax1, a 40 kDa protein that func-
tions as a trans-activator of viral gene expression and as a
key component of HTLV-1-mediated transformation
[116,117]. Tax1 is a relatively promiscuous transactivator
of both viral and cellular gene transcription and has been
closely linked to the initiation of leukemogenesis. Apart
from regulating viral gene expression through the 5’ long
terminal repeat (LTR), Tax1 can modulate the expression
of a large variety of cellular genes and proteins including
those encoding cytokines, apoptosis inhibitors, cell cycle
regulators, transcription factors, and intracellular signal-
ing molecules [116,118-120]. Tax1 usually induces cellu-
lar gene expression by the activation of transcription
factors such as NF-�B and cyclic AMP response ele-
ment-binding protein/activating transcription factor
(CREB/ATF) [121]. Tax1 has also been shown to trans-
repress transcription of certain cellular genes, including
bax [122], human b-polymerase [119], cyclin A [123], lck
[124], MyoD [125], INK4 [126], and p53 [127].
Transgenic mouse models of Tax1 expression have

resulted in the generation of murine malignancies,
including a mature T-cell malignancy, underlying the
critical role of Tax1 in the manifestation of T-cell leuke-
mia [128,129]. Transgenic mice constructed to target
expression of Tax1 to both immature and mature thy-
mocytes using a Lck (Leukocyte-specific protein tyrosine
kinase) promoter reproducibly develop immature and
mature T-cell leukemia/lymphomas with immunological
and pathological similarities to human ATLL [128,129].
In a recent study by Yamazaki et al., splenic lymphoma-
tous cells were harvested and purified from Tax-trans-
genic mice using a combination of immunological and
physiological markers for CSCs and were injected into
NOD/SCID mice using a limiting-dilution assay [6].
Injection with as few as 1 × 102 CSCs was sufficient to
recapitulate the original lymphoma and reestablish CSCs

in recipient NOD/SCID mice implicating a role for
LSC/CSC in the establishment of ATLL.
LSC/CSCs have the ability to self-renew, are seques-

tered in the bone marrow microenvironment and are
relatively resistant to conventional chemotherapeutic
treatment regimens. The recent focus and characteriza-
tion of the role of LSC/CSC in the induction of AML has
generated a paradigm for LSC/CSC-generated cancers
and has resulted in a re-evaluation of therapeutic strate-
gies for successful targeting and elimination of leukemic
cells in patients [31]. Although the Tax-transgenic mouse
model is not a complete representation of ATLL manifes-
tation in humans, this finding is intriguing particularly
since other investigators have suggested that HTLV-1
infection in the human bone marrow and in human HP/
HSCs specifically, may facilitate the early events initiating
ATLL development [62]. Since a limited number of
ATLL cases display phenotypes indicative of immature
hematopoietic cells, HTLV-1 infection and transforma-
tion of HP/HSCs in humans may result in the generation
of virally-infected ATLL LSC/CSC [130]. Lymphoma
cells and LSC/CSC from Tax-transgenic mice were also
demonstrated to sequester in the osteoblastic and vascu-
lar niches of the bone marrow in transplanted NOD/
SCID mice. It is interesting to speculate that if ATLL
arises from a LSC/CSC, then the sequestration of HTLV-
1-infected HP/HSCs in the bone marrow microenviron-
ment may be a contributing factor in the resistance of
this leukemia to treatment with conventional che-
motherapies. It remains to be determined if the recent
results from the Tax-transgenic model are truly illustra-
tive of the human disease. However, the Tax-transgenic
murine model does provide several interesting clues into
the mechanisms of HTLV-1 pathogenesis, and this may
eventually group ATLL along with other hematological
malignancies that have a LSC/CSC origin.
Recapitulating ATLL in ‘humanized’ SCID (HU-SCID)

mice has been challenging, and previous attempts to
directly infect mature human T-cells in the human thy-
mus-liver conjoint organ in HU-SCID mice with HTLV-
1 failed to induce a malignancy [65]. Recent data from
our laboratory demonstrates that ex vivo infection of
CD34+ HP/HSCs with HTLV-1 reproducibly and consis-
tently results in development of a CD4+ T-cell lym-
phoma in HU-SCID mice [131]. Clearly, HTLV-1
infection of HP/HSCs plays a pivotal role in the initia-
tion and accelerated progression of malignancy during
the course of HTLV-1 pathogenesis.

HTLV-1 Infected CD34+ HP/HSCs: Notch, PU.1 and
micro-RNA Deregulation
Manifestation of ATLL in patients generally occurs dec-
ades after infection, suggesting that HTLV-1 latently
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infects bone marrow stem cells that are sequestered
from immunological surveillance. It is conceivable that
the initiation of leukemogenesis in HSCs involves the
generation of a CSC/LSC that will eventually manifest
into the monoclonal ATLL malignancy. Several path-
ways that regulate HSC self-renewal are also associated
with human cancers, including hematopoietic malignan-
cies such as T-cell leukemia [132] and T-ALL [133,134].
It has previously been shown that disruption of normal
HSC self-renewal signaling pathways can induce hema-
topoietic neoplasms [132,135]. Two main reasons sug-
gest that HSCs can serve as target cells for virally-
induced leukemia/lymphoma. First, stem cells have con-
stitutively activated self-renewal pathways, requiring
maintenance of activation in contrast to the de novo
activation required in a more differentiated cell. Second,
self-renewal provides a persistent target for repeated
viral infection and/or continual replication of integrated
proviral DNA. HTLV-1 infection of CD34+ HP/HSCs
deregulates normal HSC self-renewal pathways through
a variety of potential mechanisms suggesting that
HTLV-1 infection may generate ILSC/ICSC.
The Notch signaling pathway regulates self-renewal

and differentiation of HSCs and has been implicated as
a key regulator of human T and B-cell derived lympho-
mas [135,136]. Studies using adult bone marrow trans-
plantation into NOD/SCID mice demonstrate that
inactivation of Notch1 arrests T-cell development at the
earliest precursor stage [134] and promotes B-cell devel-
opment in the thymus [137]. The modulation of Notch
levels in LSC/CSC derived from Tax-transgenic mice
suggests that Notch may contribute in the development
of ATLL similar to its role in other T-cell malignancies
such as T-ALL [133,134].
The sp1 gene encodes for the transcription factor

PU.1, which is a member of the ets family of transcrip-
tion factors, is expressed at various levels in all hemato-
poietic cells. PU.1 expression has been shown to play an
important role in the regulation of hematopoiesis
[138,139]. Specifically, expression of PU.1 is tightly con-
trolled in HSCs and regulates the fate of cells differen-
tiating into lymphocyte, macrophage or granulocyte
lineages [140,141]. Deregulation of PU.1 expression has
been linked to the development of hematopoietic malig-
nancies including the transformation of myeloid cells
[92]. During hematopoiesis, PU.1 is required for hema-
topoietic development along both the lymphoid and
myeloid lineages, but is down-regulated during erythro-
poiesis. In AML patients, mutations in Flt3 decrease
PU.1 expression and block differentiation [141] while
mutations in PU.1 impair development within both
myeloid and lymphoid lineages [142]. Knockout mouse
studies have shown that perturbation of PU.1 expression
results not only in the loss of B-cells and macrophage

development, but also delays T lymphopoiesis [143,144].
Additionally, PU.1 supports the self-renewal of HSCs by
regulating the multilineage commitment of multipotent
progenitors, thereby maintaining a pool of pluripotent
HSCs within the bone marrow [145,146].
Notably the reduction in PU.1 expression in bone

marrow derived CD34+ HP/HSCs has been shown to
induce an intermediate stage of poorly differentiated
pre-leukemic cells which, with the accumulation of addi-
tional genetic mutations, results in an aggressive form of
AML [147]. The HTLV-I accessory protein p30 has also
been shown to interact with the ets domain of PU.1
resulting in impairment of the DNA binding activity of
PU.1 and subsequent inhibition of PU.1-dependent tran-
scription [148]. HTLV-1 p30-mediated alteration of
PU.1 expression may be a contributing factor in the
deregulation of hematopoiesis due to HTLV-1 infection
of HSCs and may contribute to the establishment of
ILSC/ICSC.
Bmi-1 (B-lymphoma Mo-MuLV insertion region),

which belongs to the polycomb group of epigenetic
chromatin modifiers, was originally identified as an
oncogene [149]. Bmi-1 is required for the maintenance
of HSC self-renewal in mice and is also involved in reg-
ulation of genes controlling cell proliferation, survival
and differentiation of HSCs [149-152]. Deficiency of
Bmi-1 results in a progressive loss of HSCs and in
defects in the stem cell compartment of the nervous sys-
tem [153]. Bmi-1 expression is elevated in HP/HSCs in
contrast to differentiated hematopoietic cells, and both
self-renewal as well as the in vivo repopulation potential
of HSCs is dependent on Bmi-1 [152,154-156]. It has
been reported that Bmi-1 is required for the activation
and survival of pre-T-cells and during transition from
DN to DP T-cells [157]. Bmi-1 is required for the prolif-
eration of LSC/CSCs, and the deregulation of Bmi-1 is
linked to human cancers [155,158]. Notably LSC/CSCs
from Tax1-transgenic mice show a robust down-regula-
tion of Bmi-1, providing a mechanistic link between
HTLV-1 infection and deregulation of hematopoiesis.
Micro-RNAs (miRNAs) are a class of non-coding

RNAs, 20-25 nucleotides long, that play an important
role in both normal and malignant hematopoiesis,
including self-renewal, differentiation and lineage speci-
ficity of HPCs [159-163] (reviewed in [164]). Loss of
miRNAs has also been reported in a variety of cancers
indicating that alteration of miRNA levels might play a
critical role in tumorigenesis [165-167]. miR-150 is pre-
ferentially expressed in the megakaryocytic lineage and
has been recently shown to drive the differentiation of
megakaryocyte-erythrocyte precursors toward megakar-
yocyte development at the expense of erythroid differen-
tiation [168]. Over-expression of miR-221 and miR-222
interferes with the kit receptor and blocks engraftment
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of HSCs in humanized mice [169]. Over-expression of
miRNA-181a has been linked to the development of
AML and CLL [170,171]. These studies highlight the
role of miRNA in regulating normal hematopoiesis and
suggest that miRNA expression may modulate the mani-
festation of hematopoietic malignancies.
Retroviruses such as HIV-1 and HTLV-1 have been

recently shown to target miRNAs for modulation of key
cellular pathways including cell-cycle regulation and
immune responses [172-174]. Specifically, miRNAs that
are involved in the regulation of cell proliferation, apop-
tosis and immune responses are up-regulated in ATL
cells [175,176]. Bellon et al. recently demonstrated that
miRNAs involved in normal hematopoiesis and immune
responses are also profoundly deregulated in ATLL cells
indicating a possible link between modulation of cellular
miRNA expression and deregulation of hematopoiesis
by HTLV-1 [177]. Specifically, significant changes in the
expression of miR-223 and miR-150 in ATLL patient
samples were identified. miR-223 controls the terminal
differentiation pathway of HSCs and is upregulated fol-
lowing differentiation into myeloid and lymphoid pro-
genitors [162]. The differential expression of miR-150
regulates lineage decision between T and B-cells. Ecto-
pic expression of miR-150 in lymphoid progenitors
enhances T lymphopoiesis with respect to B lymphopoi-
esis [178]. The deregulation of cellular miRNAs might
contribute to the transformation process resulting in the
development of ATLL.
HTLV-1 infection in HP/HSC could result in aberrant

miRNA expression ultimately predisposing HSC devel-
opment toward T lymphopoiesis. Since expression of
these miRNAs (223 and 150) are restricted to HP/HSCs,
CLPs and CMPs, patient derived primary ATLL cells
may originated from an infected HPC population in
contrast to in vitro-established HTLV-1 infected CD4+

T cell lines. This supports the hypothesis that ATLL
cells are derived from HTLV-1 infected CD34+ HP/
HSCs rather than virally transformed mature T-cells
[64,128,129]. Upon differentiation of an HTLV-1
infected CD34+ HPC, the alteration of miRNA levels
may favor T-cell differentiation, as recently demon-
strated by the exclusive development of CD4+ mature
T-cell lymphomas in HU-SCID mice reconstituted with
CD34+ HPCs infected ex vivo with HTLV-1[131].

Tax1 and Cell Cycle Regulation in HP/HSCs
HTLV-1 Tax1 has been shown to induce G0/G1 cell
cycle arrest leading to quiescence in both cultured
mammalian cell lines and primary human CD34+ HPCs
[116,179,180]. Likewise, the expression of Tax1 in Sac-
charomyces cerevisiae leads to growth arrest and loss of
cell viability [181,182]. Intriguingly, in addition to
increasing the levels of cyclins and CDKs, Tax1 also

increases the levels of CDK inhibitors p16Ink4, p21cip1/
waf1 (p21) and p27kip (p27) in infected cells
[63,64,179,183,184]. Over-expression of p21 inhibits two
critical checkpoints in the mammalian cell cycle, namely
G1/S and S/G2, through p53-independent and depen-
dent pathways [185]. Moreover, p21 and p27 are the key
contributors in the cell-cycle regulation of CD34+ HPCs
[186-188]. Tax1 has also been shown to suppress
human mitotic checkpoint protein MAD1 resulting in
deregulation of the G2/M phase of the cell cycle result-
ing in aneuploidy [189]
Cell cycle progression is highly regulated in CD34+

HPCs with a majority of CD34+ HPCs residing in quies-
cence and demonstrating a unique expression pattern of
CDKs, cyclins, and CDK inhibitors. The CDK inhibitors
p21 and p27, in particular, have been shown to be key
contributors in restricting cell cycle entry from G0 and
maintaining quiescence in CD34+ HPCs [186-188]. We
have previously shown that during HTLV-1 infection,
induction of G0/G1 cell cycle arrest and suppression of
multilineage hematopoiesis in HPCs is attributed to the
concomitant activation of p21 and p27 in these cells by
Tax1 [63,64,180]. Although Tax1 usually induces cellu-
lar gene expression by activation of transcription factors
such as NF-�B, CREB/ATF and Akt [190], it has
recently been suggested that Tax1 deregulation of p21
and p27 may also be mediated independently of NF-�B
activation [191] and p53 [184]. Moreover, the reported
absence of NF-�B activity in CD34+CD38- HSCs [192]
suggests that HP/HSCs provide a unique microenviron-
ment for HTLV-1 infection which stands in stark con-
trast to the cellular environment provided by mature
CD4+ T lymphocytes. It may be inferred that Tax1-
mediated cell cycle deregulation is cell-type specific,
inducing cell cycle arrest in HPCs while concurrently
maintaining the ability to activate cell proliferation in
mature CD4+ T-lymphocytes.
Survivin, originally identified as a member of the inhi-

bitor of apoptosis protein family, has recently been
implicated in regulating hematopoiesis, cell cycle control
and transformation [193-196]. Survivin is expressed in
normal adult bone marrow cells and in CD34+ HPCs
where it regulates proliferation and/or survival, and sur-
vivin expression is upregulated by hematopoietic growth
factors [197]. Notably, survivin has been shown to be a
key mediator of early cell cycle entry in CD34+ HPCs
and regulates progenitor cell proliferation through p21-
dependent and independent pathways [198], in addition
to regulating apoptosis of HSCs [199]. This implicates
survivin as an integral cellular factor, regulating multiple
aspects of hematopoiesis. HTLV-1 mediated suppression
of hematopoiesis in CD34+ HPCs is regulated, in part,
by down-regulation of survivin expression in these cells
by Tax1 [64]. Notably, CD34+CD38- HSCs demonstrate
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elevated sensitivity to cell-cycle arrest following HTLV-1
infection in comparison to more mature CD34+CD38+

HPCs, suggesting that HTLV-1 may target stem cells to
facilitate a latent infection in vivo by inducing cell cycle
arrest to induce cellular quiescence (Figure 4).

HTLV-1 Interaction with CD34+ HP/HSCs:
Emerging Views
Emerging evidence has led to a new view of HTLV-1
mediated leukemogenesis that correlates neonatal trans-
mission of HTLV-1 with viral infection targeting of HP/
HSCs and immature human thymocytes [63,65,115].
This hypothesis challenges the current view that mature
differentiated CD4+ T-cells are the exclusive target for
HTLV-1 infection and for the initiation of ATLL.

Analysis of bone marrow samples from pediatric HTLV-
1 infections would confirm the hypothesis that HTLV-1
infection enters and is sequestered in the CD34+HP/
HSCs in the bone marrow. It is noteworthy that pre-
vious reports have demonstrated HTLV-1 transmission
following a bone marrow transplantation procedure
from a HTLV-1 infected donor [200]. HTLV-1 infection
of HP/HSCs can result in skewing of hematopoiesis
toward distinct cellular lineages and outgrowth of malig-
nant clones leading to ATLL. HP/HSCs may be critical
target cell for HTLV-1 infection and for establishment
of latency in vivo providing a reservoir of infected cells
which progresses, after the accumulation of additional
molecular events, to the development of ATLL [62,65].
This hypothesis is supported by recent identification of

Figure 4 The Role of HTLV-1 Infection of HSCs: Potential Mechanisms for Generation of an Infectious Leukemic Stem Cell (ILSC/ICSC).
HTLV-1 infection and subsequent Tax1 expression can lead to either cell cycle arrest or generation of pre-leukemic stem cells (pre-LSC/CSC)
from infected CD34+ hematopoietic progenitor and stem cells (HP/HSCs).
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a rare CSC population in Tax-transgenic mice [6,128].
Notably, our laboratory has detected a high incidence of
HTLV-1 proviral sequences in CD34+ HP/HSCs from
HTLV-1-infected patient peripheral blood lymphocyte
samples, suggesting that HP/HSCs are a natural cellular
reservoir for HTLV-1 infection [131]. The down-regula-
tion of key hematopoietic genes, including Notch1 and
Bmi-1, in CSCs from Tax-transgenic mice indicates that
the CSC potentially emerges from primitive HPCs or
immature thymocytes and highlights the role of Tax1
expression in the induction of lymphoproliferative dis-
ease (Figure 4). The role of HTLV-1 Tax in HP/HSCs
includes cell cycle deregulation and perturbation of
hematopoiesis, as we have previously reported [63,180].
Clearly many parameters defining how HTLV-1 and its
associated viral genes (including Tax1, p30 and HBZ
[201]), may contribute to the development of a ILSC/
ICSC in ATLL have yet to be established. The role of
the HTLV-1 antisense encoded protein HBZ is of parti-
cular interest as it is consistently expressed in all ATLL
patient cells examined in contrast to Tax1 which is
usually silenced in ATLL cells [202,203]. Emerging in
vivo murine models, particularly the HU-SCID mouse
models, will help characterize the pathobiology of
HTLV-1 infection and establish the existence of ILSC/
ICSC. Moreover, these models will allow for the identifi-
cation of events resulting in leukemia-initiation and pro-
gression and for the pre-clinical therapeutic evaluation
for this fatal malignancy which currently lacks effective
treatment regimens.

Perspectives
Retroviral infection of HP/HSCs in the bone marrow
clearly provides a reservoir for infected cells and results
in dramatically altered patterns of hematopoiesis. Deter-
mining and identifying whether retroviruses, such as
HTLV-1, exploit this cellular trait to establish an ILSC
would present a new paradigm in the pathobiology of
HTLV-1 infection and would allow novel targeted treat-
ments to be designed in order to intervene and treat ret-
roviral mediated neoplasms.
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