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“Carbon neutrality, carbon peaking” is China’s national commitment to the

whole world about its plans to manage global climate change. China faces

many severe challenges in fulfilling its commitments to reduce emissions.

China’s digital economy is currently booming, and whether it can provide

opportunities for reducing regional carbon emissions is worth exploring. This

study constructed a comprehensive system to evaluate the development of

its digital economy based on China’s regional data and empirically tested

the direct, indirect, and spatial effects of the comprehensive development

of digital economy on regional carbon emissions. In addition, it examined

the special stage characteristics using a Hansen threshold model. This

study found the following: first, the digital economy significantly suppresses

carbon emissions in general, notably with a spatial spillover effect to

neighboring provinces. Secondly, an analysis of the mechanism shows that

the comprehensive development of a digital economy can restrain regional

carbon emissions through industrial progress and the optimization of energy

consumption. Third, there are double thresholds, special driving trends

and an “inverted N-type” relationship with development. Fourth, a spatial

heterogeneity analysis revealed that significant “local” and “neighboring”

impacts on the reduction of carbon emissions only exist in the central and

eastern areas. This study has a reference value for releasing the dividend of

digital economy development and reducing carbon emissions.

KEYWORDS

digital economy, carbon emissions, spatial spillover effect, double threshold, inverted
N-type

Introduction

The increasingly serious problem of global warming is one of the current global
challenges for humans, and the international community has a consensus to take
effective policy measures to actively respond to climate change and accelerate the
transition to a low-carbon society (Doren et al., 2020). According to the data in
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the “BP World Energy Statistics Yearbook,” China’s carbon
emissions accounted for approximately 30% of global emissions
in 2020, and the carbon emission per unit of GDP was 6.7 tons
of carbon dioxide per 10,000 USD, which was 1.5- and 1.8-fold
those of the world average, respectively. As a country that is a
major consumer of energy and source of carbon emissions, how
to break the “strange circle” of environmental and economic
growth and realize the attractive vision of sustainable and high-
quality development is China’s rigid task and prescribed action
(Li et al., 2019). China proposed “carbon peaking and carbon
neutrality” in the 75th session of the United Nations General
Assembly – a solemn commitment that embodies China’s
determination to manage climate change and also highlights
China’s image as a responsible major country for increasing its
green policies after the epidemic and building a community with
a shared future for mankind (Wang et al., 2019).

Simultaneously, digital information technology has
become increasingly integrated into all fields of economic
and social development and is currently a vital factor in
the globally competitive landscape by enabling quality,
efficiency, and power. Investing in the digital economy is a
strategic move toward capitalizing on the new opportunities
presented by the new round of technological revolutions and
industrial transformation (Bhattacharya et al., 2015). The
latest research from the Chinese Academy of Information and
Communications Technology (Haidian, China) indicates that
China’s digital economy contributed 38.6% of its GDP in 2020,
which is still low when compared with those of developed
countries. The digital economy continues to grow in size and
influence and serves as a powerful catalyst for the country to
improve technological innovation efficiency, drive industrial
transformation, and improve product quality (Wu et al., 2021).
The “Digital China” strategy is changing China’s economic
development model from the pursuit of rapid economic
growth to high-quality economic development, and the digital
economy has received constant attention and high priority (Li
et al., 2019). The environmental improvement effect of the
digital economy has also become one of the primary focuses
of scholarly research. The digital economy can promote the
upgrading of whole industrial chain through the knowledge
spillover effect (Moyer and Hughes, 2012). With the progress
of information technology and its innovative application,
online information has become an important driving force
for the management of environmental pollution. For example,
e-commerce can eke out space for the development of industries
that consume large amounts of energy and emit a high level
of emissions through the crowding-out effect, optimizing the
industrial structure. Thus, there is an enormous potential role
for digital technology in energy conservation and the reduction
of emissions (Alam and Murad, 2020; Wu et al., 2021).

Therefore, can the digital economy change the extensive
economic growth mode and promote China’s carbon emission
reduction? If so, does this effect have phased characteristics?

How does it work? Does it have spatial spillover effects?
The study of these issues will not only enrich digital
economy research but will also be of practical significance
in implementing the new green development concept and
promoting China’s “dual carbon” goal.

The structure of rest of this article is arranged as follows:
section “Literature review” is a literature review. Section
“Mechanistic analysis” is an analysis of mechanisms. Section
“Research design” explains the primary research models and
describes the data. Section “Empirical results and discussion”
is the empirical results and discussions, which explores the
direct effect, mediating effect, threshold and spatial spillover
effects. Section “The robustness test” is a test of robustness.
Section “Further analysis-regional heterogeneity test” is a
detailed analysis of the test for regional heterogeneity, and
the final portion summarizes the conclusions and suggests
policy implications.

Literature review

Early studies on the digital economy were primarily on
the theoretical level and included such topics as its definition
(Gerhard and Martin, 2005), connotation, and the digital
dividend (Lundborg et al., 2012). With the rapid growth
of digital economy, scholars have attempted to build the
framework for a system to evaluate the digital economy (Xu
and Zhang, 2020; Wang et al., 2021). Moreover, academics
have focused their attention on the economic and social
welfare consequences of the digital economy. Existing studies
have conducted extensive and in-depth research on the
digital economy at the three levels described below. On the
macroeconomic level, the digital economy helps to optimize
the allocation of factors and the precise matching of supply
and demand (Zhou et al., 2018), which not only improves
total factor productivity, but also promotes inclusive and
macroeconomic growth (Bertani et al., 2020). The digital
economy at the meso level is conducive to the transformation
of manufacturing, its upgrading, and high-quality development
(Alam et al., 2018; Chen and Zhang, 2021). Additionally, the
digital economy significantly contributes to the efficiency of
technological innovation on the micro level (Nambisan et al.,
2019). Some scholars have studied a low-carbon transition for
the digital industry by delineating the production structure
factor into three components (Wang et al., 2022a).

The reduction of carbon emissions has long been the
focus of academic research, and the relative results are
extremely substantive. Most of the studies have examined
regional differences in carbon emissions and discovered that
they strongly aggregate spatially with a geographical pattern
of regional imbalanced distribution (Chang et al., 2019).
Studies have discovered important factors, such as technological
innovation, energy intensity and structure, GDP, and industrial
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structure (Khan et al., 2020). Investment in research and
development (Cho and Sohn, 2018; Fernández et al., 2018) also
contributes to carbon emissions.

Academic research on the relationship between the digital
economy and carbon emissions is relatively scarce. Studies
have found that the digital economy has significantly reduced
regional carbon emissions through technological progress
(Wang et al., 2019). A similar situation has also been identified
in the Yangtze River Delta from improving technological
innovation and increasing the economic scale (Wang et al.,
2022b). However, earlier studies on the digital economy and
carbon emission relationship are limited and have inconsistent
results (Chen, 2022). There are two opposing viewpoints. First,
the use of digital technology devices and infrastructure will
increase the demand for energy (Peng, 2013). Large amounts
of electricity will be consumed by devices of information and
computer technology (ICT) and technological industrialization
(Salahuddin and Alam, 2015). Secondly, the growth of the
internet and e-commerce industry could have a crowding-
out effect, resulting in the elimination of energy-intensive
industries (Shobande, 2021). Digital technologies can contribute
to green development by disrupting the geographic boundaries,
influencing energy consumption, and optimizing resource
integration and environmental decision-making (Dubey et al.,
2019; Ren et al., 2021). Some scholars found that the digital
economy would change the renewable energy structure from
two dimensions – consumption and generation – by promoting
the ability of governments to govern (Shahbaz et al., 2022).

The digital economy will inevitably go through multiple
stages of development, and the different development periods of
digital technology could differentially impact carbon emissions
and their reduction. Generally speaking, the initial application
will subvert the modes of operation of traditional industries
by substantially improving production efficiency and reducing
energy consumption (Bhujabal et al., 2021). However, the
digital economy has network effects, and large-scale investments
in digital infrastructure and its utilization will increase the
intensity of demands for electricity, thus, resulting in a surge
in demand for rare metals and energy consumption, which
could postpone economic and ecological benefits (Li et al.,
2020; Hao et al., 2022). Furthermore, the factors of production
tend to congregate in high-return areas, which could have
a detrimental influence on regional ecological efficiency, and
the ability of digital economy to reduce carbon emissions
could be greatly hindered at this stage of development.
With the completion of digital infrastructure construction,
digital information technology will enable various industries
to increase accurate production and sales and thus, improve
industrial efficiency (Tang et al., 2021).

Therefore, more studies focus on the one-sided digital
economy, such as the role of ICT advances on the environment,
and few scholars have examined the digital economy as a
whole to conduct in-depth discussions on its effects on green

development. This study focuses on the impact and internal
mechanism of the development of a digital economy on carbon
emissions and discusses its spatial spillover effect, mediation
effect and possible threshold effect based on the panel data from
2013 to 2018 in 30 provinces. These are all municipalities that
are directly under the Central Government and autonomous
regions in China.

The possible marginal contributions lie in this study.
First, academics have utilized a variety of methodologies to
quantify the absolute magnitude and relative level of the
digital economy, but they have yet to develop a consensus or
authoritative standard. This study measured the development
of digital economy from multi-levels and multi-dimensions,
including four primary indicators (digital economy foundation,
digital penetration, digital industry development level, and
digital economy potential) and 12 secondary indicators, which
will aid in gaining a more thorough grasp of the digital
economy. Secondly, this study tried to dissect the impact
and its internal path from both theoretical and empirical
perspectives, complementing the few relevant studies. Third,
considering that only a few researchers have studied the impact
in a dynamic way, this study utilized a threshold model to
reveal the dynamic changes in the iterative process of digital
economy. Finally, considering the possible spatial characteristic,
this study extended and deepened the study of spatial spillover
effect to some extent.

Mechanistic analysis

Although existing scholarly studies have confirmed that the
digital economy has a positive impact on the improvement
of ecological and environmental efficiency, few studies have
conducted an in-depth excavation of its mechanism of action.
Digitalization plays an important role in reducing carbon
emissions and shows great potential for ecological and
environmental benefits. Its theoretical mechanism is shown in
Figure 1.

The digital economy is progressively decarbonizing by
promoting industrial sophistication. This is primarily reflected
in three aspects. First, the digital economy can realize industrial
digitalization by intelligently transforming traditional industries
and empowering all aspects of the traditional industrial chain.
To begin with, based on the advantage of rich data resources,
the digital economy matches the production of products with
the demands of consumers, which changes the traditional
supply chain, thus, resulting in a more flexible production
scale (Wang et al., 2019). This not only increases output
efficiency but also reduces unnecessary losses of resources
and emissions of pollutants, which are all consistent with the
concept of green development (Atkinson and Mckay, 2007). In
addition, it can improve the sharing of innovative knowledge
of enterprises. Technological spillover enables highly efficient
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FIGURE 1

Diagram of the analysis of mechanisms.

industries to obtain more innovative resources and accelerate
the transformation of low-carbon manufacturing processes, as
well as the continuous improvement of energy efficiency (Khan
et al., 2020; Usman et al., 2021). Secondly, the digital economy
helps to screen out inefficient and backward-capacity industries.
Digital technology supports carbon footprint tracking, which
optimizes the decision-making capabilities of environmental
regulation. Internet technology affects the energy efficiency
and consumption of enterprises by improving the technology
for utilizing energy, which results in the improvement of
environment (Feng et al., 2017). Third, the digital economy
fosters digital industrialization and generates new digital
business forms and models. In particular, digital finance
improves the efficiency of allocation and timely distribution of
capital elements, thereby alleviating the financing constraints
of the energy industry and lowering energy consumption
(Faisal et al., 2018).

By optimizing the structure of energy consumption,
the digital economy can gradually achieve lower carbon
emissions. On the energy supply side, digital technology
enables the predictable demand of energy and increases the
visibility of its distribution and efficiency of dispatching
energy resources (Bhattacharya et al., 2015). The real-time
monitoring of carbon emissions forces the intelligence and

intensification of energy production using digital technologies.
Digital technology can improve the overall energy efficiency
by optimizing the consumption and absorption of new
energy sources and reducing the reliance on traditional
fossil fuels (Murshed, 2020). On the energy demand side,
the government employs technology, such as digital twins,
to determine the lowest economic cost to more effectively
manage demand side carbon emissions (Lange et al., 2020).
Consumers have higher requirements in energy price, stability
and cleanliness. Enterprises are motivated to use digital
technology to improve the manufacturing process, develop
clean energy technology and develop the transition from high
production that produces many pollutants that are dangerous
for the environment to production that is green (Stock
et al., 2018). Energy trading has become feasible owing to
the resolution of the issue of information asymmetry in the
market. Energy prices are transparent owing to algorithms
that are assisted by technology. In addition, massive data
provides market participants with more strategic alternatives
to energy consumption. The advancement of digitalization
promotes the establishment of a low-carbon green energy
trading market, optimizes the structure of energy consumption,
and assists China in achieving the goal of carbon peak and
carbon neutrality.
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Research design

Model settings

Construction of the basic model
To investigate the direct impact of the digital economy on

the carbon intensity, the basic model (1) was established as
follows:

lnCi,t = β0 + β1DIGEi,t + β2Xi,t + µi + εi,t (1)

where Ci,t is the carbon emission intensity in the t-th year
of the i-th province; DIGEi,t is the development level of
digital economy; Xi,t represents a series of control variables;
µi represents the individual fixed effects of i province, and εi,t

stands for the random error term.

Construction of the mediation model
To analyze the possible mechanism of indirect impacts

based on to the analysis of mechanism described above, the
advanced industrial structure and the energy consumption
structure (ECS) were tested as the intermediary variables. The
following mediation model (2) was constructed based on Baron
and Kenny (1986):

lnCi,t = α0 + α1DIGEi,t +
∑

control + µi + εi,t (2)

Medi,t = β0 + β1DIGEi,t +
∑

control + µi + εi,t (3)

lnCi,t = γ0 + γ1DIGEi,t + γ2Medi,t +
∑

control + µi

+ εi,t (4)

where Medi,t refers to the intermediary variables, including
industrial structure upgrading (inds) and the ECS.

Construction of the Hansen threshold model
Because development of the digital economy has different

stages, it may not be a simple linear relationship. Therefore, it
is necessary to test the possible threshold effect and its special
driving trend. The threshold model (3) (Hansen, 1999) was
established as follows:

Ci,t = δ0 + δ1DIGEi,t × I(DIGEi,t ≤ π) + δ2DIGEi,t

× I(DIGEi,t > π) + δ3Xi,t + µi + εi,t (5)

where DIGE is the threshold variable. I is an indicator function,
and π is the threshold value.

Construction of the spatial Durbin model
The spatial Durbin model can control the spatial effects with

more robust estimation results (LeSage and Pace, 2009; Elhorst,
2014). Carbon emissions can also have some spatially related

characteristics owing to the increasing frequency of cross-
regional economic exchanges. To verify the spatial spillover
effect of the digital economy on carbon emissions, the spatial
interaction terms of carbon emission intensity, digital economy
and control variables were introduced on the basis of model (1),
and the spatial Durbin model was established as follows:

lnCi,t = ∅0 + ρWlnCi,t + ϕ1WDIGEi,t + ∅1DIGEi,t

+ ϕ2WXi,t + ∅2Xi,t + µi + εi,t (6)

The variable description and evaluation
index system

Explained variable and explanatory variable
Explained variable: carbon emission intensity (C)

Reducing carbon emissions is consistent with the green
development trend of China’s economy, which will help to
establish an innovative and long-term mechanism for the
green and low-carbon transformation of China’s economy
(Wang et al., 2019). The primary source of carbon emissions
is the consumption of fossil fuels, such as coal, crude oil
and natural gas (Wu et al., 2021). Carbon emissions were
estimated based on the current international methods of
calculation using the carbon emission calculation method issued
by the Intergovernmental Panel on Climate Change (IPCC).
Carbon intensity was characterized as the sum of products of
consumption of different types of carbon-containing energy and
their corresponding CO2 emission factors:

C =
8∑

i = 1

Ei × SSCi × CEFi (7)

where C represents the estimation of carbon emissions; E
represents the consumption of each fossil energy; SSC represents
the decal factor of each fossil source, and CEF represents the
carbon emission coefficient of each type of fossil fuel.

Core explanatory and threshold variable: Digital
economy development index

The digital economy improves the efficiency by which
resources are utilized and drives economic structural changes.
However, scholars have not yet provided a unified standard
for the connotation of the digital economy, and the current
main measurement method is the scale measurement of the
digital economy (Xu and Zhang, 2020) or the construction
of an evaluation index system. As described by Chen (2022),
an evaluation index system with four dimensions was built
to evaluate it and included the digital economy foundation,
digital popularization, digital industry development, and digital
economy potential. The entropy value method was used as
a more objective method to evaluate the index. The specific
indicators are shown in Table 1.
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TABLE 1 Index system for evaluating the development of digital
economy.

Target
level

Criterion
level

Index level Index attribute

Digital
economy

Digital economy
foundation

Fiber optic cable
length/per square
kilometer

+

Number of
electronic reading
rooms

+

Number of cell
phones per capita

+

Number of
broadband ports per
capita

+

Digital
popularization

Broadband
penetration rate (%)

+

Digital TV
subscriber rate (%)

+

Digital industry
development

Total business
volume of
telecommunication
industry (billion
yuan)

+

Added value of
tertiary industry
(billion yuan)

+

Digital economy
potential

Regional R&D
personnel (10,000
people)

+

Total number of
R&D projects

+

R&D intensity (%) +

Number of
employees in the IT
industry (10,000
people)

+

Description of core variables

The comprehensive level of development of the digital
economy and the intensity of carbon emissions were estimated
as shown in Figure 2. As shown in Figure 1, the level of
development of the digital economy continued to increase
in general from 2013 to 2018, and the carbon emissions
showed a trend of decreasing yearly. In particular, the level
of development of the digital economy is higher in the east
than the national average, and although the eastern and western
regions are catching up yearly, they are still below the national
average. Carbon emissions in the western region are higher
than the national average, while those in the central and eastern
regions are slightly lower than and far below the national
average, respectively.

Mediating variables
The digital economy can alleviate the pressure of reducing

carbon emissions by upgrading the industrial structure and

improving the ECS based on the theoretical mechanistic analysis
described above. Therefore, the following mechanistic variables
were selected:

Industrial structure upgrading

First, industrial digitalization empowers the traditional
models of industrial production, optimizes the allocation of
resources, integrates and builds a whole industrial chain
that encompasses production, transportation, marketing and
recycling; technological spillover effects caused by upgrading
industrial structure can promote the utilization of efficient
energy (Wu et al., 2020). Secondly, digital industrialization is
a manifestation of the advanced industrial structure, which
can accelerate the pace of industry to technology-intensive
industries, which continuously induces energy saving and builds
an environmentally friendly society. The GDP was divided into
three parts based on the three industries by referring to the
practice of defining the advancement of industrial structure
(Wang et al., 2019). The added value of each part was used as
a sub-vector of the spatial vector based on the proportion of the
added value of each part in the GDP, which constitutes a three-
dimensional vector X0 (x1,0, x2,0, x3,0). The angle between this
vector and the vector of the firstX1 (1, 0, 0), second X2 (0, 1, 0),
and third X3 (0, 0, 1)industry was calculated, respectively.

θj = arccos
X1,j ∗ X1,0 + X2,j ∗ X2,0 + X3,j ∗ X3,0√

X2
1,jX

2
2,jX

2
3,j

√
X2

1,0X
2
2,0X

2
3,0

j = 1, 2, 3

The formula for calculating the industrial structure
advanced value of P is as follows:

P =
3∑

k = 1

k∑
j = 1

θj

A higher P value indicates a higher level of sophistication of
the industrial structure.

Energy consumption structure

First, the digital economy can stimulate the progress of
energy technology, spawn new energy technologies, such as
energy storage batteries; new models, such as smart supply
chains; new formats, such as new energy efficient vehicles;
improve the ECS, directly improve the efficiency of all
energy factors, and reduce the intensity of carbon emissions.
Alternatively, digital technology, with its advantages of dynamic
monitoring, can guide the scheduling of energy between regions
(Dhingra et al., 2019), promote the interconnection of clean
energy-related fields, optimize the energy structure, promote
energy efficiency, and thus, curb the rate of growth of global
carbon emissions (Iqbal et al., 2018; Yu et al., 2018). Coal
accounts for the largest share in energy consumption in China
(Bhattacharya et al., 2015). Therefore, the proportion of coal
consumption in energy consumption is used to express the ECS.
The total consumption of coal is converted into the total amount
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FIGURE 2

Digital economy development index and carbon emission intensity in 2013–2018.

of standard coal/energy consumption to indicate the ECS based
on previous research (Li et al., 2021).

Control variables
Control variables are shown in Table 2.

Data sources and description

Considering the availability of data and the consistency of
time ranges, this article studied 30 provinces and municipalities
that were directly under the control of Central Government and
autonomous regions in China (excluding Tibet, Hong Kong,
Macao, and Taiwan) from 2013 to 2018. The data used in the
study were derived from the National Bureau of Statistics, the
China Statistical Yearbook, the China Environmental Statistics
Yearbook, the China Energy Statistics Yearbook, the China Fixed
Asset Investment Statistical Yearbook, the National Science and
Technology Statistical Yearbook, and the EPS database, and the
missing data were filled by interpolation. Descriptive statistical
results of the variables are shown in Table 3.

Empirical results and discussion

Estimation results of the basic model

According to the basic model (1), linear estimation results
of the impact of the digital economy on provincial carbon

TABLE 2 Control variables.

Control
variable

Definition References

Environmental
regulation (Er)

It is characterized by the
pollution control cost per unit
industrial output value, i.e., the
ratio of the investment completed
in the industrial pollution control
project this year to the industrial
added value per 1,000 yuan.

Yao et al., 2018

Marketization
(Market)

It refers to the Report on China’s
Marketization Index by province.

Sun and Huang,
2020

Infrastructure
(Infra)

It is measured by the amount of
investment in fixed assets as a
percentage of GDP.

Cheng et al.,
2019

Population
density (Lnpop)

It is the logarithm of the ratio of
the number of resident people to
the geographical area at the end
of the year.

Lan et al., 2021

Government
intervention
(Gov)

It is the ratio of local government
public finance budget expenditure
to regional GDP.

Lan et al., 2021

Openness to the
outside world
(Open)

It is the ratio of total import and
export to regional GDP of each
region.

Usman et al.,
2021

emission intensity are shown in Table 4. Considering the core
explanatory variables, the estimated coefficient of DIGE in
column (1) was−2.123, and it was highly significant (p< 0.01).
The coefficient of DIGE was still significantly negative in
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TABLE 3 Results of a descriptive statistical analysis of the variables.

Variable Obs. Mean SD Min Max

lnC 180 4.2321 0.6933 2.3979 5.9989

DIGE 180 0.1722 0.1372 0.0323 0.7182

Inds 180 1.2120 0.6501 0.6326 4.3475

Ecs 180 0.6631 0.3199 0.0272 1.7307

Er 180 0.4269 0.4214 0.0469 3.0984

Market 180 6.8899 1.9295 2.5300 10.9000

Infra 180 0.8899 0.2982 0.2117 1.5965

Lnpop 180 5.4685 1.2939 2.0675 8.2696

Gov 180 0.2675 0.1144 0.1237 0.7534

Open 180 0.2552 0.2586 0.0123 1.2695

TABLE 4 Results of a benchmark regression on the impact of digital
economy on the intensity of carbon emissions.

(2) (3)

DIGE −2.123*** −1.903***

(0.227) (0.187)

Er 6.840***

(2.483)

Market −0.0288*

(0.0162)

Infra −0.0786*

(0.0464)

Lnpop 1.073**

(0.476)

Gov −0.202

(0.345)

Open 0.205

(0.164)

Constant 4.598*** −1.068

(0.0391) (2.605)

Province FE YES YES

Observations 180 180

Number of ID 30 30

R2 0.650 0.687

The standard errors are in parentheses. *p< 0.1; **p< 0.05; ***p< 0.01.

column (2) with the control variables, indicating that even
after controlling for other influencing factors, there was still a
significant negative influence, which is similar to the findings
of Xiao and Jiang (2021). With its data resource sharing and
technological innovation spillover effects, the digital economy
is a significant promoter of industrial green transformation
and changes in the mode of economic development, and the
ecological benefits of the digital economy have great potential
to achieve the goal of China’s “carbon peaking and carbon
neutrality.”

In terms of control variables, the coefficient of
environmental regulation (Er) was significantly positive,

indicating that environmental regulation and governance are
inefficient, resulting in the phenomenon of a “green paradox”
(Okullo et al., 2020). It is necessary to use digital technology
to enhance the effect of reducing carbon emissions owing
to environmental regulation because resource allocation
requires accurate and dynamic feedback. The coefficient of
population density (Lnpop) was significantly positive, indicating
that the intensity of carbon emissions will increase as the
population density grows. The primary reason is that while the
concentration of population and the use of digital technologies
will improve the efficiency of utilization of resources and energy
and positively reduce carbon emissions, they have not yet
offset the negative effect of carbon intensification caused by
the increased demand for domestic and production energy
stimulated by the increase in population. Openness to the
outside world (Open) and government intervention (Gov) have
yet to pass the significance test, which could be owing to the fact
that bringing in foreign capital can easily lead to technological
dependency or trigger the “pollution paradise effect” (Wang X.
et al., 2022), which is not conducive to domestic technological
innovation. In addition, the budgetary expenditures for energy
saving and environmental preservation of local governments
could be inadequate, resulting in a failure to significantly reduce
carbon emissions. The coefficients of marketization (Market)
and infrastructure (Infra) were both negative. This indicates
that a higher level of marketization will result in a more
inclusive development of digital industries, and market players
will increase their investment preferences for human capital
and digital frontier technology research and development. In
addition, under the guidance of digital power strategy, the
government will increase investment in digital infrastructure
and digital platform construction, which will support research
and development and the application of technologies, such as
energy-efficient recycling.

Estimation results of the mediation
effect model

It is necessary to investigate the influencing mechanism and
explore the mediation effect of industrial structure advancement
and ECS to optimize the reduction of carbon emissions. To
verify whether the mechanism is valid, the mediation effect
model was used for empirical analysis, and Sobel and Bootstrap
tests were performed. The test results are shown in Table 5.

According to model (1), the digital economy can
significantly promote the reduction of carbon emissions
(−1.903). Model (2) verified whether the digital economy
improves the advancement of industrial structure. The
regression coefficient for this model was significantly
positive (2.337) (p < 0.05). In model (3), the intermediate
variable of industrial structure advancement was substituted
into the regression equation, and the coefficient (−1.044)
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TABLE 5 The mediating effect of the digital economy on the intensity of carbon emissions.

Model 1 Model 2 Model 3 Model 4 Model 5

lnC Inds lnC ECS lnC

DIGE −1.903***
(0.187)

2.337**
(0.277)

−1.044***
(0.193)

−0.459***
(0.100)

−1.376***
(0.158)

Inds −0.367***
(0.047)

ECS 1.149***
(0.124)

Control variable YES YES YES YES YES

Province FE YES YES YES YES YES

R2 0.9867 0.9666 0.9905 0.9820 0.9916

Obs. 180 180 180 180 180

Sobel test Z =−5.701, p-value = 1.189e−08 Z = 2.737, p-value = 0.000

Proportion of total effect that is mediated: 0.4511 0.2771

Bootstrap test Z =−4.77, p-value = 0.000 Z =−2.52, p-value = 0.012

The standard errors are in parentheses. **p< 0.05; ***p< 0.01.

of core explanatory variable of the digital economy
decreased compared with model (1), although it was
still highly significant (p < 0.01). The size of the
intermediary effect was 0.8584 = (−1.044) to (−1.903),
which accounts for 45.11% of the total effect. This
indicates that digital platforms promote the spread of
low carbon and environmental protection concepts. The
digital economy strengthens market competition, and
factors flow to industries with high rates of return and
environmental friendliness. Digital technology efficiently
integrates and allocates resources to all parts of the
supply chain, rendering production intelligent, intensive
and flexible, and reducing resource losses and pollution.
Thus, the advancement in industrial structure is one of
the critical mechanisms of the digital economy to inhibit
carbon emissions.

In model (4), the regression coefficient (−0.459) of the
impact of the digital economy on the ECS was significantly
negative (p < 0.01), indicating that the digital economy
cannot improve the ECS. According to model (5), the
size of the intermediary effect was 0.5272 = (−1.376) to
(1.903), which accounted for 27.71% of the total effect.
The indicates that digital finance alleviates the financing
difficulties that could be encountered by innovation in
green technology by the energy industry. Digital technology
provides strong support for the construction of energy
and environmental monitoring platforms, optimizes the
extraction of energy, production and transportation, explores
the construction of distributed and clean energy systems,
reduces the use of traditional fossil energy, such as coal in
energy consumption, optimizes the energy structure, and
improves the efficiency of energy use. Thus, the ECS is also an
important mechanism.

Estimation results of the Hansen
threshold effect

The analysis above shows that the DIGE has different
development stages. Therefore, it is necessary to explore its
non-linearity and the possible phased impact. Quantifying the
threshold effect is conducive to formulating corresponding
feasible policies.

Test of the existence of the threshold effect
The results of a test of the existence of the threshold effect of

digital economy is shown in Table 6.
According to the significance test results in Table 6, double

threshold, compared with single threshold, which is more
detailed, was chosen to analyze the nonlinear characteristics.

Threshold effect analysis

The threshold regression results are shown in Table 7.
As shown in Table 7, two obvious thresholds – 0.0508

and 0.0525 – existed during the process of promotion of the
reduction in carbon emissions by the digital economy. The
findings reveal an “inverted N-shaped” curve link between
the development of regional digital economies and carbon
emissions. These results are different from previous research,
which identified an inverted U-shaped relationship (Li et al.,
2021). There are three situations.

(1) When the digital economy development index
(DIGE) < 0.0508, the impact of the digital economy
development on carbon emissions was negative but
not significant, thus, indicating that the small-scale
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TABLE 6 Test of the existence of the threshold effect.

Number of thresholds F-value p-Value Critical value Sampling times

10% 5% 1%

Digital economy development Single threshold 27.67* 0.0640 24.1852 29.0407 37.3542 1,000

Double thresholds 27.69** 0.0260 18.7808 23.3614 34.2829 1,000

Three thresholds 19.34 0.7020 58.0924 64.4716 84.3550 1,000

Sampling times refer to the repeated sampling times through bootstrap. *p< 0.1; **p< 0.05.

TABLE 7 Threshold regression results.

DIGE Er Market Infra Lnpop Gov Open Constant

DIGE ≤ 0.0508 0.0508 < DIGE ≤ 0.0525 DIGE > 0.0525

Coefficient −0.606 4.254*** 1.874*** 0.062*** −0.0213 −0.0316 1.229*** −0.559* 0.230 −1.936

T value −0.913 4.685 −11.497 2.847 −1.500 −0.771 2.998 −1.833 1.608 0.854

*p< 0.1; ***p< 0.01.

application of digital technology in the “nascent” stage
of the digital economy had overturned the operation
mode of some industries (Liu et al., 2020). This resulted
in better resource allocation, lowered production and
transaction costs, and an improvement in the productivity
of traditional industries. This initially shows the effect
of green technology innovation and reduces carbon
emissions to some extent.

(2) When 0.0508 < DIGE < 0.0525, the regression coefficient
of the digital economy was significantly positive, indicating
that at this stage, the digital economy failed to effectively
curb carbon emissions, and its development had reached a
“bottleneck.” The possible reason is that the government
may have boosted its investment in the construction of
digital economy facilities, motivated by both the economic
and environmental benefits at the start-up stage of DIGE.
However, the construction cycle for the digital economy
is lengthy and costly. On the one hand, data sharing and
circulation encounter numerous challenges and eke out
environmental protection expenditures. Alternatively, the
design, installation, and operation of digital infrastructure
consumes significant amounts of energy (Berkhout and
Hertin, 2004; Hilty et al., 2006). Furthermore, some
extremely polluting and energy-consuming projects are
being promoted under the pretense of new infrastructure,
which has a pernicious influence on the reduction of
carbon emissions.

(3) When the DIGE > 0.0525, the digital economy coefficient
was significantly negative (p < 0.05), indicating that the
digital economy has crossed the second threshold and
entered the “mature stage” in which the DIGE has an
“enabling effect” on improving the reduction in efficiency
of reducing carbon emissions. The primary reason is
that the digital infrastructure has improved further as
a result of the implementation of relevant government
support policies and the continual advancement in

information and communication technology. Therefore,
the digital economy plays a more effective role in the
industrial structure advancement, thus, accelerating the
low-carbon transformation of energy demand structure
(Ren et al., 2021). In addition, digital technology facilitates
the disclosure of climate-related data, such as carbon
emissions, and makes it feasible to lock carbon emission
sources, detect carbon emissions, and measure other
environmental indicators, enabling the formation of a
national unified carbon emissions trading market.

Estimation results of the spatial
spillover effects

Carbon dioxide is a major source of the greenhouse effect,
which is coupled with the increasing geographic proximity
to economic exchanges (Zhao et al., 2022). Therefore, carbon
emissions as an unintended output of economic activity may
have spatial spillovers.

Test of existence of spatial effects
At first, the carbon emissions were tested for spatial

effects. Based on the adjacency and the geographic distance
matrices, the Moran index of carbon emissions from 2013
to 2018 (Table 8) was calculated, and the results show that
the global Moran index was significantly positive, indicating
that the spatial distribution of carbon emissions in 2013–2018
has obvious spatial dependence – “high-high” and “low-low”
aggregation phenomena.

Spatial model selection and regression result
After the LM, LR, and Wald tests were performed

sequentially, the spatial Durbin model with fixed effects was
selected to test the spatial effect. To further explore its spatial
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TABLE 8 Moran’s I test of the intensity of carbon emissions from 2013
to 2018.

lnC Spatial adjacency
matrix

Geographic
distance matrix

Year Moran’s I Z-value Moran’s I Z-value

2013 0.195** 1.905 0.072*** 3.352

2014 0.208** 2.011 0.070*** 3.269

2015 0.204** 1.982 0.062*** 3.039

2016 0.215** 2.069 0.065*** 3.087

2017 0.203** 1.987 0.054*** 2.876

2018 0.202** 1.976 0.056*** 2.923

**p< 0.05; ***p< 0.01.

effect, the results of spatial Durbin model (SDM) and spatial
autoregressive (SAR) model were compared in Table 9.

From an overall point of view, every coefficient of DIGE
(−0.724, −0.637, −0.953, and −0.792) in Table 9 was
significantly negative, indicating that the DIGE can effectively
inhibit carbon emissions. The spatial lag term in both models
was significantly positive at least to p < 0.1, indicating that
there are obvious characteristics of inter-regional interaction
in the carbon emissions. This could possibly be owing to the
similarity of the factor allocation, energy utilization, industrial
development, and production methods between neighboring
provinces, resulting in a spatial correlation between the
carbon emissions.

Direct and indirect effects need to be measured by a partial
differential interpretation of variable variations to prevent
systemic bias. Since simple point regression results cannot
accurately estimate the spatial spillover effect between regions,

the coefficient of the spatial interaction term cannot directly
reflect the marginal impact. From the perspective of direct effect,
the DIGE can significantly suppress local carbon emissions.
The local digital economy development will reduce local
carbon emissions by 0.835 units for every unit increased. For
indirect effects, under the adjacency weight matrix, the digital
economy and carbon emission intensity of neighboring regions
significantly negatively correlate, and for every unit increase in
DIGE in the local area, the intensity of carbon emissions in the
neighboring regions will be reduced by 1.339 units.

It is worth noting that the indirect effect was larger than
the direct effect, which indicates that the positive promotion
effect of the local development of the digital economy on the
efficiency of the reduction in carbon emissions of neighboring
regions (the “neighbor effect”) is greater than the negative
inhibitory effect (“local effect”) of local carbon emissions. There
are several reasons for this. First, the DIGE in neighboring
areas promotes the formation of high-tech as the leading
industry, digital manufacturing as the support industry, and
the vigorous development of the tertiary industry industrial
pattern (Wang et al., 2021). Secondly, the advancement of
industrial structure, diffusion of innovative green technology,
improvement in the efficiency of energy utilization, and the
inhibition of radiation of carbon emissions to surrounding
areas through the mechanism of industrial chain transmission.
Third, a higher degree of digitization increasingly attracts the
influx of labor, resources, and other elements in neighboring
areas, resulting in a “siphon effect.” This effect will intensify
the demand for energy consumption, increase the cost of
energy conservation and reduce emissions in neighboring areas.
Fourth, owing to the inhibition of “offset effect,” the local
region will surpass neighboring areas in information technology

TABLE 9 Estimation results of the spatial effect.

Model setting SDM SAR

Spatial matrix Spatial adjacency
matrix

Geographic distance
matrix

Spatial adjacency
matrix

Geographic distance
matrix

ρ 0.563*** 0.347* 0.694*** 0.794***

(0.0738) (0.200) (0.0494) (0.0522)

DIGE −0.724*** −0.637*** −0.953*** −0.792***

(0.172) (0.175) (0.133) (0.138)

W × DIGE −0.253 −0.296

(0.255) (0.541)

Control variables YES YES YES YES

Direct effect −0.835*** −0.642*** −1.129*** −0.885***

(0.180) (0.181) (0.146) (0.144)

Indirect effect −1.339*** −0.761 −1.957*** −3.170***

(0.408) (0.730) (0.415) (1.035)

Total effect −2.174*** −1.402* −3.086*** −4.055***

(0.475) (0.760) (0.487) (1.078)

Obs. 180 180 180 180

R2 0.334 0.355 0.179 0.366

Log-likelihood 281.605 292.8246 274.4410 277.6310

Province FE YES YES YES YES

Standard errors in parentheses. DIGE, digital economy development index; FE, fixed effect; SAR, spatial autoregressive; SDM, spatial Durbin model. ***p< 0.01; *p< 0.1.
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TABLE 10 Estimation results of the robustness test.

Model setting Baseline regression SDM

Lag one period Lag two periods Economic distance
matrix

Economic geography
nested matrix

DIGE −2.119*** −1.810*** −0.451** −0.637***

0.228 0.212 (0.175) (0.175)

W × DIGE −0.470 −0.296

(0.320) (0.541)

ρ 0.500*** 0.347*

(0.097) (0.200)

Control variables YES YES YES YES

Direct effect −0.513*** −0.798***

(0.187) (0.195)

Indirect effect −1.321** −2.216***

(0.554) (0.560)

Obs. 150 120 180 180

R2 0.6234 0.5341 0.253 0.328

Log-likelihood 288.510 285.762

Province FE YES YES YES YES

The standard errors are in parentheses. DIGE, digital economy development index; FE, fixed effect; SDM, spatial Durbin model. ∗p< 0.1; **p< 0.05; ***p< 0.01.

and form a coordinated low-carbon economic growth model.
This results in a downward trend in the intensity of energy
consumption, and therefore, there is a large “neighbor effect” on
carbon emissions.

The robustness test

Temporal lags test

Owing to the possibility of bias on the empirical results
by omitted variables and two-way causality, this study lagged
the core explanatory variables by one and two periods for the
baseline regression test. The regression results of the digital
economy (−2.119 and −1.810) were significantly negative in
columns 2 and 3 of Table 10, which verified the results.

Replace the weight matrix

We explored the spatial effect based on the adjacency
and geographical distance matrices. Because the economic
development of various regions cannot be viewed in isolation,
in addition to geographical attributes, economic characteristics
are also the causes of the spatial spillover of carbon emissions.
Therefore, economic distance and economic geography nested
matrices were introduced to investigate the robustness of the
spatial measurement model.

The results of Table 10 show that under the two weight
matrices, the spatial lag term coefficient of carbon emissions

was still significantly positive factoring in economic factors,
and the spatial Durbin panel model effect decomposition only
changed slightly, but the significance of the variables did
not change. Therefore, it can be concluded that the digital
economy development can improve the efficiency of local
and neighboring areas to robustly and credibly to reduce
carbon emissions.

Further analysis-regional
heterogeneity test

The empirical results described above show that the DIGE
has a strong spatial spillover effect on carbon emissions
in general. However, there could be regional heterogeneity
in which the local spatial correlations are different or
even contradictory considering that resource endowments,
economic foundation and macro development strategies are
heterogeneous in different regions. Based on the criteria of
the National Development and Reform Commission and the
National Geographic Region Division, this study analyzed data
from the eastern, central, western, coastal, and inland aspects,
respectively. A more realistic economic geography matrix
was selected as the spatial weight matrix to factor in space
limitations. The results are shown in Table 11.

As shown in Table 11, the impact of the DIGE on carbon
emission intensity has obvious spatial differentiation in the
three major regions, as well as coastal and inland areas, which
reflects the current situation of unbalanced development in
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China. Considering the regression coefficient of DIGE and
the decomposition of spatial spillover effects, there are two
interesting results. (1) Compared with the western region,
the DIGE has significant “neighbor” and “local” effects on
the reduction of carbon emissions in the central and eastern
regions. First, there is a large gap between the construction of
digital infrastructure, and digital technology penetration in the
western region is low, thus, failing to exert the digital economy’s
green innovation technology effect. Secondly, the western areas
are mostly resource-dependent provinces with high levels of
carbon emissions, and the shift of polluting firms from the
central and eastern regions to the western regions increases the
strain on environmental management in the western regions.
(2) The DIGE in coastal provinces and cities can significantly
reduce carbon emissions in neighboring areas compared with
the positive and insignificant indirect spillover effects in the
inland. Therefore, it is more important to focus on the
efforts to reduce carbon emissions in inland areas because the
overall development of economic and ecological environmental
benefits can only be promoted through collaborative prevention
and control of the coastal and inland areas.

Conclusion and policy
implications

Achieving “Dual Carbon” goals and low-carbon
development is a long-term complex process, and the digital
economy influences the levels of carbon emission from multiple
aspects and dimensions. Based on the panel data from 2013
to 2018, this study empirically examined the non-linear and
spatial impact of the digital economy on carbon emissions and
its inherent mechanism. The following conclusions were drawn.
First, the development of China’s digital economy can effectively
promote the reduction of carbon emissions and has a significant
effect of spatial spillover in general. Secondly, the threshold
regression shows an “inverted N-type” relationship between
them. In particular, the DIGE inhibits carbon emissions during
the embryonic and mature stages and has a negative impact on
the reduction of emissions during its bottleneck period. Third,
there is obvious regional heterogeneity. The DIGE in central and
eastern regions has significant “local” and “neighboring” effects
on carbon emission reduction compared with the western
region. The inland “neighbor” effect is stronger than in coastal
areas. Fourth, the DIGE can indirectly promote improvement
in the efficiency of reducing carbon emissions through the
advancement of industrial structure and the optimization of
ECS. Based on the research conclusions of this article, the
following policy recommendations are proposed:

(1) The layout of digital infrastructure and basic technologies,
such as blockchain and the internet, should be
appropriately accelerated. Investment in the research and

TABLE 11 Estimation results in different regions of China.

Eastern
China

Central
China

Western
China

Coastal
areas

Inland
areas

DIGE −1.091*** −0.536** −0.313 −0.709** −1.466***

(0.262) (0.211) (0.302) (0.327) (0.156)

Er 0.0167 −0.0176 −0.0424** 0.0521 −0.0133

(0.0372) (0.0388) (0.0176) (0.0340) (0.0167)

Market −1.547*** 0.0279 0.105 −0.928 0.258

(0.515) (0.421) (0.301) (0.565) (0.258)

Infra 2.600*** −3.700*** 1.243** 3.265*** 1.097***

(0.673) (0.744) (0.586) (0.740) (0.335)

Lnpop −0.0528 −0.124*** −0.151*** −0.126* −0.181***

(0.0625) (0.0278) (0.0438) (0.0647) (0.0339)

Gov 0.0218 0.00747 0.0246 −0.0146 0.0575***

(0.0170) (0.0148) (0.0171) (0.0152) (0.0131)

Open 0.198 −0.163 0.194 0.285** 0.742***

(0.139) (0.347) (0.230) (0.139) (0.195)

Direct effect −1.041*** −0.542** −0.299 −0.401 −1.461***

(0.249) (0.213) (0.316) (0.355) (0.162)

Indirect
effect

−1.679*** −0.669* 0.0166 −1.591*** 0.277

(0.498) (0.345) (0.772) (0.466) (0.398)

Total effect −2.720*** −1.212*** −0.282 −1.992*** −1.185***

(0.538) (0.343) (0.812) (0.441) (0.392)

Obs. 66 48 66 66 114

R2 0.282 0.440 0.174 0.258 0.236

Log-
likelihood

315.701 285.760 237.990 222.386 277.515

Province FE YES YES YES YES YES

The standard errors are in parentheses. DIGE, digital economy development index;
Er, environmental regulation; FE, fixed effect; Gov, government intervention; Infra,
infrastructure; Lnpop, population density; Open, openness to the outside world. *p< 0.1;
**p< 0.05; ***p< 0.01.

development of key technologies in the digital field should
be increased, and the support of digital technologies for
carbon reduction should be enhanced. First, it is necessary
to accelerate industrial digitalization, apply green-oriented
digital technologies to all aspects of the traditional supply
chain, reduce resource misallocation and loss rates, and
improve the green total factor productivity. Secondly,
digital industrialization should be promoted, and the
research and development of energy-saving and emission-
reduction technologies, such as carbon capture and carbon
storage, should be accelerated.

(2) Each region should fully consider regional heterogeneity
and grasp the stage of its own digital economy
development. It should establish a digital economy
development system with local characteristics based on
local advantages. In particular, the central government
should conduct appropriate policies to support
technologies and raise funds for digital construction
in the western region. The digital economic exchanges
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and interactions between regions should be improved
considering the spatial spillover effect, and the inland
regions should learn from the green development model
of the digital economy in the coastal regions, break the
geographical barriers of new models and new formats
of the digital economy, gradually narrow the difference
between regional digital innovation and application
capabilities, and achieve a win-win situation between
economic development and carbon reduction.

(3) It is necessary to exert the effect of advancement
of industrial structure and the optimization of energy
consumption during the process. First, the digital economy
can drive industrial advancement from many aspects,
such as by promoting production efficiency, industrial
integration and efficiency in the innovation of green
technology, and guiding green consumption concepts.
Alternatively, digital technology can monitor the total
amount of energy in real time, accurately dispatch and
distribute energy, alleviate the pressure of traditional
energy peak regulation, motivate the development of
new energy, optimize energy operation and management,
greatly improve energy utility efficiency, and reduce the
consumption of traditional fossil energy. This indirectly
enhances the effect of digital technology at reducing
carbon emissions.

(4) The government’s overall planning, regulation and
governance capabilities in digitalization should be
strengthened to ensure the healthy development of
DIGE, protect the vitality of various innovative entities
in the market, and severely punish digital oligarchs
whose monopoly of data resources causes the threshold
rise of the digital industry. Simultaneously, university
research institutions should be encouraged to open
cutting-edge courses in the digital field to improve the
digital capabilities of students, while increasing subsidies
for entrepreneurs, cultivating digital innovative talents,
narrowing the “digital divide,” and accumulating human
capital for the sustainable positive impact of the digital
economy on carbon emission reduction.

This study provides important evidence on the relationship
between the digital economy and carbon emissions at the
provincial, municipal and autonomous levels. However, there
are still some limitations. In particular, this study focused
on the static relationship between the digital economy
and carbon emissions, but it ignored whether there is an
interesting link between the two in time and whether there
are other transmission mechanisms. In the future, with
the increasing penetration of the digital economy and the
continuous promotion of China’s 2060 carbon neutrality
target, systematic GMM, dynamic thresholds, dynamic spatial
Durbin models and moderating effects can be used to explore
the dynamic relationship and pathways. In addition, future

research could be directed down to the city and county
levels.
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