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ABSTRACT Coronavirus disease 2019 (COVID-19) is caused by the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) and currently has detrimental human health,
community, and economic impacts around the world. It is unclear why some SARS-CoV-
2-positive individuals remain asymptomatic, while others develop severe symptoms.
Baseline pulmonary levels of antiviral leukocytes, already residing in the lung prior to in-
fection, may orchestrate an effective early immune response and prevent severe symp-
toms. Here, “in silico flow cytometry” was used to deconvolute the levels of all seven
types of antiviral leukocytes in 1,927 human lung tissues. Baseline levels of CD8� T cells,
resting NK cells, and activated NK cells, as well as cytokines that recruit these cells, are
significantly lower in lung tissues with high expression of the SARS-CoV-2 entry receptor
angiotensin-converting enzyme 2 (ACE2). This is observed in univariate analyses, in mul-
tivariate analyses, and in two independent data sets. Importantly, ACE2 mRNA and pro-
tein levels very strongly correlate in human cells and tissues. The above findings also
largely apply to the SARS-CoV-2 entry protease TMPRSS2. Both SARS-CoV-2-infected lung
cells and COVID-19 lung tissues show upregulation of CD8� T cell- and NK cell-recruiting
cytokines. Moreover, tissue-resident CD8� T cells and inflammatory NK cells are signifi-
cantly more abundant in bronchoalveolar lavage fluids from mildly affected COVID-19
patients compared to severe cases. This suggests that these lymphocytes are important
for preventing severe symptoms. Elevated ACE2 expression increases sensitivity to coro-
navirus infection. Thus, the results suggest that some individuals may be exceedingly
susceptible to develop severe COVID-19 due to concomitant high preexisting ACE2 and
TMPRSS expression and low baseline cytotoxic lymphocyte levels in the lung.

IMPORTANCE COVID-19 is caused by the highly contagious coronavirus SARS-CoV-2
and currently has detrimental human health, community, and economic impacts
around the world. It is unclear why some SARS-CoV-2-positive individuals develop
severe COVID-19 symptoms, which can be fatal, while others only develop mild
symptoms. In the absence of an effective and widely available vaccine, it is of para-
mount importance that we identify risk factors for development of severe symptoms
to be able to improve treatment approaches. The ACE2 gene encodes the receptor
on human cells that the virus uses to infect these cells. This study finds that if the
lungs of healthy individuals have high levels of ACE2, they typically have low levels
of the immune cells that eliminate viruses. Therefore, some individuals may develop
severe COVID-19 due to simultaneous high levels of the virus receptor and low lev-
els of immune cells that eradicate the virus in their lungs.
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Coronaviruses are viruses belonging to the family Coronaviridae (1). They are large,
single-stranded RNA viruses that often originate from bats and commonly infect

mammals. While the majority of coronavirus infections cause mild symptoms, some can

Citation Duijf PHG. 2020. Low baseline
pulmonary levels of cytotoxic lymphocytes as a
predisposing risk factor for severe COVID-19.
mSystems 5:e00741-20. https://doi.org/10
.1128/mSystems.00741-20.

Editor Paola Flórez de Sessions, Oxford
Nanopore Technologies

Copyright © 2020 Duijf. This is an open-access
article distributed under the terms of the
Creative Commons Attribution 4.0
International license.

Address correspondence to
pascal.duijf@qut.edu.au.

Low baseline pulmonary levels of
cytotoxic lymphocytes as a predisposing risk
factor for severe COVID-19

Received 31 July 2020
Accepted 15 August 2020
Published

RESEARCH ARTICLE
Host-Microbe Biology

crossm

September/October 2020 Volume 5 Issue 5 e00741-20 msystems.asm.org 1

1 September 2020

https://orcid.org/0000-0001-8646-9843
https://doi.org/10.1128/mSystems.00741-20
https://doi.org/10.1128/mSystems.00741-20
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:pascal.duijf@qut.edu.au
https://crossmark.crossref.org/dialog/?doi=10.1128/mSystems.00741-20&domain=pdf&date_stamp=2020-9-1
https://msystems.asm.org


cause severe symptoms, such as pneumonia, respiratory failure and sepsis, which may lead
to death (2, 3).

Coronavirus zoonosis constitutes a serious health risk for humans. Indeed, in recent
history, transmissions of three types of coronaviruses to humans have led to various
numbers of deaths. The outbreak of the severe acute respiratory syndrome (SARS)
epidemic, which is caused by the SARS coronavirus (SARS-CoV), originated in Guang-
dong, China in 2002 and led to nearly 800 deaths (4). The Middle East respiratory
syndrome coronavirus (MERS-CoV) outbreak, which emerged in Saudi Arabia in 2012,
similarly caused about 800 deaths but with more than 8,000 cases, nearly four times as
many cases were reported (4). Finally, coronavirus disease 19 (COVID-19), caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently causing a
pandemic. On 1 May 2020, the World Health Organization reported over 3 million
confirmed cases and over 220,000 patients who have succumbed to COVID-19 around
the world (5). However, the actual number of deaths is probably considerably higher
(6). In addition, this figure is still soaring; on 1 May 2020, the rate exceeded 6,400 deaths
per day (5).

To infect target cells, coronaviruses use their spike (S) glycoprotein to bind to
receptor molecules on the host cell membrane. Angiotensin-converting enzyme 2
(ACE2) has been identified as the main SARS-CoV-2 entry receptor on human cells (7,
8), while the serine protease TMPRSS2, or potentially cathepsin B and L, are used for
S-protein priming to facilitate host cell entry (7). SARS-CoV-2 S protein has a 10- to
20-fold-higher affinity to human ACE2 than SARS-CoV S protein (9). Moreover, ACE2
expression proportionally increases the susceptibility to S protein-mediated coronavi-
rus infection (10–12). Hence, increased expression of ACE2 is thought to increase
susceptibility to COVID-19 (13–15).

Epithelial cells of the respiratory tract, including the lung, are primary SARS-CoV-2
target cells (16–18). These cells can sense viral infection via pattern recognition
receptors (PRRs). PRRs, including Toll-like receptors and NOD-like receptors, recognize
pathogen-associated molecular patterns (PAMPs) (19). Upon PRR activation, a range of
proinflammatory cytokines and chemokines are produced and released in order to
activate the host’s immune system. Interferons (IFNs), in particular type I and type III
IFN, are among the principal cytokines to recruit immune cells (19, 20).

Six types of leukocytes have been implicated in detecting and responding to
viral infections in the lung, a major site of SARS-CoV-2 infection, which also presents
with severe COVID-19 symptoms. The cytotoxic activities of CD8� T cells and NK
cells can facilitate early control of viral infections by clearing infected cells and
avoiding additional viral dissemination (21, 22). Dendritic cells specialize in sensing
infections, including by viruses, and inducing an immune response (23). CD4� T
cells contribute to viral clearance by promoting production of cytokines and
interactions between CD8� T cells and dendritic cells (24). M1 macrophages interact
with pulmonary epithelial cells to fight viral infections in the lung (25). Finally,
neutrophils may contribute to clearance of viral infections through phagocytosis of
virions and viral particles. However, their precise role is uncertain (26).

SARS-CoV-2 is considerably more efficient in infection, replication, and production of
infectious virus particles in human lung tissue than SARS-CoV (17). Strikingly, despite
this, SARS-CoV-2 initially does not significantly induce type I, II, or III IFNs in infected
human lung cells and tissue (17, 27). When this does occur, it may in fact promote
further SARS-CoV-2 infection, as IFNs directly upregulate expression of the SARS-CoV-2
receptor ACE2 (28). These observations suggest that baseline levels of leukocytes,
which already reside in the lung prior to infection, may be important in mounting a
rapid immune response against SARS-CoV-2 infection and prevent severe COVID-19
symptoms. As stated above, ACE2 expression level may be a predictor of increased
susceptibility to COVID-19 (10–15). Thus, here I investigated the relationship between
ACE2 and TMPRSS2 expression and the levels of seven leukocyte types implicated in
antiviral immune response in human lung tissue.
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RESULTS

I used bulk transcriptome sequencing (RNAseq) gene expression data from the
578 human lung tissues present in the Genotype-Tissue Expression (GTEx) database
(29, 30), because this is the largest publicly available data set with clinical infor-
mation. Using an established “in silico flow cytometry” pipeline (31), I estimated the
levels of CD8� T cells, resting and activated NK cells, M1 macrophages, dendritic
cells, CD4� T cells, and neutrophils in these tissues (see Fig. S1a to c and Table S1
in the supplemental material). These levels were compared to ACE2 expression
levels in these lung tissues. This revealed that ACE2 expression is negatively
correlated with the levels of CD8� T cells, resting and activated NK cells, and M1
macrophages (P � 8 � 10�6, Pearson correlations) (Fig. 1a to c). However, there are
no statistically significant correlations between ACE2 expression and the levels of
CD4� T cells, dendritic cells, and neutrophils (P � 0.05) (Fig. S2a to d). Thus, the
levels of a majority of leukocytes involved in antiviral immune responses are
significantly lower in lung tissues with high ACE2 expression levels.

It is possible that some of the above observations are linked to phenotypic char-
acteristics, such as sex, age, body mass index (BMI), race, or smoking status. To test the
robustness of our findings, I applied multivariable regression analysis that includes
these five covariates (Table S2), as well as the levels of the above seven leukocyte
types or states. This showed that only 4 of the 12 variables significantly contribute to
predicting ACE2 expression levels, specifically the levels of CD8� T cells, resting NK
cells, activated NK cells, and M1 macrophages (Fig. 1a to c and Table 1). Notably, none
of the five added phenotypic covariates showed statistically significant contributions.
Consistently, I found limited statistically significant correlations between these variables
and ACE2 expression in univariate analyses, irrespective of whether they were analyzed
as continuous data or binned into discrete ordinal categories (Fig. S3a to j). Thus, the

FIG 1 Baseline levels of cytotoxic lymphocytes inversely correlate with ACE2 expression in the lung. (a to c) The
correlations between the baseline levels of CD8� T cells, resting NK cells, and activated NK cells (x axes) and those
of the SARS-CoV-2 host cell receptor ACE2 (y axes) in human lung tissue are shown. Data are from the GTEx data
set (n � 578). (d to f) The same correlations are shown for lung tissues in the LUG data set (n � 1,349). Regression
lines and 95% confidence intervals are shown. Pearson correlation R and P values are shown, q values are
Benjamini-Hochberg-adjusted P values using a false discovery rate of 0.05, and mp values are multivariate P values
(Table 1).
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levels of four types of leukocytes that respond to viral infection are low in lung tissue
with high ACE2 expression levels independently of phenotypic covariates.

Next, whether the above observations could be validated in an independent cohort
of individuals was tested. For this, I used, to my knowledge, the largest publicly
available lung tissue data set. The Laval University, University of British-Columbia,
Groningen University (LUG) data set, including microarray gene expression data of
1,349 human lung tissues, was used. Following determination of ACE2 expression levels
and estimation of the levels of CD8� T cells, resting NK cells, activated NK cells, and M1
macrophages (Fig. S1a to c and Table S1), I found that three of the four also negatively
correlated with ACE2 expression in this independent data set (P � 2 � 10�8) (Fig. 1d to
f). With a correlation coefficient of R � 0.096, only M1 macrophages did not correlate
with ACE2 expression in this data set (Fig. S4). Thus, our observations indicate that the
baseline levels of three types of cytotoxic lymphocytes, specifically CD8� T cells, resting
NK cells, and activated NK cells, are robustly and consistently low in lung tissue with
high expression of the SARS-CoV-2 receptor ACE2.

To more rigorously assess our observations, a range of additional analyses was
employed. Although highly statistically significant (all P values � 4.1 � 10�6, Fig. 1), the
absolute Pearson R values between baseline levels of ACE2 and the three lymphocyte
types seemed to be low, as they ranged between 0.2 and 0.3 (Fig. 1a to c). To test how
strong these are in relative terms, the Pearson R and P values of 1,000 randomly
sampled other genes were calculated. This revealed that the ACE2 R and P values were
significantly lower than expected by chance (all one-sample t test P � 2.2 � 10�16;
Fig. 2a and b). In addition, these R and P values ranked in the top 0.4 to 11 percentiles
of strongest and most significant correlations for each of the three leukocyte types
(Fig. 2a and b). Thus, the seemingly low correlations between ACE2 mRNA and
cytotoxic lymphocyte levels in the lung are not only highly statistically significant but
also strong in relative terms.

Further, how well ACE2 mRNA and protein levels correlate was tested. Using the
mRNA and protein levels in 52 cell lines, ACE2 mRNA levels were found to strongly
correlate with ACE2 protein levels in human cells (Pearson R � 0.8155, P � 1.8 � 10�13;
Fig. 2c). In fact, ACE2 ranks in the top 1.8 percentile of over 12,000 genes with the
strongest mRNA-protein level correlations (P � 2.2 � 10�16; Fig. 2d). Using two ACE2-
specific antibodies, immunochemistry on 40 human tissues also shows a strong ACE2
mRNA-protein correlation (P � 0.0011, Kruskal-Wallis test; Fig. 2e), and this is addition-
ally validated by a meta-analysis conducted using nine published studies (Pearson
R � 0.7130, P � 0.0013; Fig. 2f and Table S3). Therefore, I conclude that ACE2 mRNA and
protein levels very strongly correlate, both in human cells and in human tissues.

Above, I found that baseline ACE2 levels in the lung negatively correlate with CD8�

T cells and resting and activated NK cells in multivariate analyses and in an independent
data set (Fig. 1a to f). Several cytokines, including C-C motif chemokine ligand 2

TABLE 1 Multivariate analysis of ACE2 expression in human lung tissue

Variable � value SEa t value P value
P value
symbolb

CD8� T cells �2.719 0.584 �4.656 4.02e�06 ****
NK cells, resting �3.128 0.583 �5.366 1.18e�07 ****
NK cells, activated �2.281 0.704 �3.241 0.0013 **
M1 macrophages �4.963 1.339 �3.707 0.0002 ***
CD4� T cells 0.453 0.513 0.882 0.3781
Dendritic cells �12.793 6.688 �1.913 0.0563
Neutrophils �0.398 0.469 �0.848 0.3971
Sex � male (vs female) 0.065 0.056 1.16 0.2466
Age 0.004 0.002 1.799 0.0726
BMI �0.004 0.006 �0.556 0.5787
Race � Caucasian (vs non-Caucasian) �0.096 0.073 �1.313 0.1899
Smoking status � yes (vs no) �0.025 0.058 �0.433 0.6650
aSE, standard error.
bP value symbols: **, P � 0.01; ***, P � 0.001; ****, P � 0.0001.
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FIG 2 Levels of ACE2 mRNA, ACE2 protein, CD8� T cells, NK cells, and cytokines in lung cells, lung tissues, and
COVID-19 patient samples. (a and b) Pearson R and �log10 P values of correlations between 1,000 randomly
sampled genes and the levels of indicated lymphocytes in lung tissues were determined and plotted. The NK cells
were resting and activated NK cells. ACE2 Pearson R and P values are shown as red diamonds. Blue lines indicate
means with 95% confidence intervals. Percentiles for ACE2 with respect to the 1,000 random R and P values are
shown. Data are from the GTEx data set (n � 578). The P values are from one-sample t tests. (c) Correlations
between ACE2 mRNA and protein levels in 52 cell lines. R and P values are from Pearson correlations. (d) Pearson
correlation R values between mRNA and protein levels of 12,016 genes are compared to the ACE2 R coefficient (red
diamond). The line and box represent the median and interquartile ranges. The ACE2 R percentile is also shown.
The P value is from one-sample t test. (e) Bar graph showing the correlation between ACE2 mRNA and protein levels
in human tissues. Means plus standard errors of the means (error bars) are shown. Samples are from the Human
Protein Atlas. P values were from Kruskal-Wallis test. (f) Meta-analysis scatterplot showing the correlation between
ACE2 mRNA and protein levels in 17 human tissues. Data are from nine different studies, as detailed in Table S3
in the supplemental material. R and P values are from Pearson correlation. (g and h) Heatmaps showing Spearman
correlations between the levels of ACE2 or indicated cytotoxic lymphocytes and eight cytokines that recruit these

(Continued on next page)
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(CCL2) to CCL5, C-X-C motif chemokine ligand 9 (CXCL9), CXCL10, CXCL16, and
interleukin 18 (IL-18), are known to chemotactically attract CD8� T cells and NK cells
(32–37). Consistently, I find that the baseline levels of these chemokines in human
lung tissue typically significantly correlate with the baseline levels of CD8� T cells
and resting and activated NK cells (Fig. 2g and Fig. S5). Additionally, as expected
given the results above, significant negative correlations were found between the
levels of ACE2 and the levels of six of these eight cytokines in the lung (Fig. 2h).
These findings lend further support to my previous observations, suggesting that
high levels of said cytokines in the lung establish a favorable milieu for cytotoxic
lymphocytes, which correlates with low ACE2 levels.

Next, the direct consequences of SARS-CoV-2 infection were assessed. In vitro
SARS-CoV-2 infection of human lung cells invariably leads to upregulation of all eight
above-mentioned CD8� T cell- and NK cell-attracting cytokines, with six of these
increases showing statistical significance (Fig. 2i). Similarly, compared to control lung
tissues, all eight cytokines are upregulated in lung tissues from COVID-19 patients, with
five showing statistical significance (Fig. 2j). Moreover, the levels of CD8� T cells and NK
cells are higher in bronchoalveolar lavage fluids from mildly affected COVID-19 patients
than from severe cases, with CD8� T cells and a subset of NK cells, inflammatory NK
cells, showing a statistically significant higher level (Fig. 2k). These findings are corrob-
orated in a different cohort of patients, additionally showing a highly significant
increase in a tissue-resident signature score for CD8� T cells (Fig. 2k). Thus, together,
these observations suggest that SARS-CoV-2 infection of lung cells stimulates CD8� T
cell- and NK cell-attracting cytokines and that these cytotoxic lymphocytes are impor-
tant for preventing severe symptoms of COVID-19.

Finally, whether the levels of the SARS-CoV-2 host cell protease TMPRSS2 shows
similar correlations with the levels of CD8� T cells and NK cells in the lung was tested.
In univariate analyses, baseline TMPRSS2 levels in the lung show significant negative
correlations with these lymphocyte levels, although in multivariate analyses, these
correlations are statistically significant only for CD8� T cells and activated NK cells
(Fig. 3a to c). The corresponding R and P values are typically also significantly lower
than expected by chance (Fig. 3d and e). Furthermore, TMPRSS2 mRNA and protein
levels strongly correlate (R � 0.8048, P � 2.2 � 10�16, Fig. 3f), and TMPRSS2 is in the
top 2.5 percentile of genes that show the strongest mRNA-protein correlation (P �

2.2 � 10�16, Fig. 3g). Additionally, TMPRSS2 expression tends to correlate negatively
with CD8� T cell- and NK cell-attracting cytokines (Fig. 3h). Therefore, albeit typically to
a lesser extent, baseline TMPRSS2 expression levels in the lung negatively correlate with
the levels of CD8� T cells and NK cells in a manner similar to ACE2.

Taken together, these observations suggest that a subgroup of individuals may be
exceedingly susceptible to developing severe COVID-19 due to concomitant high
preexisting ACE2 and TMPRSS2 expression and low baseline levels of CD8� T cells and
NK cells in the lung (Fig. 3i).

DISCUSSION

I investigated the baseline expression levels of the SARS-CoV-2 host cell entry
receptor ACE2 and the host cell entry protease TMPRSS2 and the baseline levels of all

FIG 2 Legend (Continued)
cells in human lung tissues from the GTEx data set (n � 578). The colors of the tiles represent Spearman R, per the
color bar on the right. Spearman significance levels are shown by asterisks. See also Fig. S5. (i and j) Fold increase
in expression levels of indicated cytokines in Calu-3 lung cells 24 h after SARS-CoV-2 infection compared to
uninfected Calu-3 cells (i), and in postmortem COVID-19 lung tissues (n � 2) to those in healthy, uninfected lung
tissues (n � 2) (j). (k) Comparison of indicated fractions of lymphocyte levels in bronchoalveolar lavage fluids from
mild/moderate and severe COVID-19 patients, as determined in two separate studies (46, 47). The second study
also determined a tissue resident (TR) score for CD8� T cells. Numbers in the mild/moderate column on the left
show fold increase compared to the respective severe cases on the right. Asterisks in the severe column on the
right represent statistical significance levels, as determined by Mann-Whitney U tests (top panel), or t tests (middle
and bottom panels) comparing mild/moderate to severe cases. P value symbols: *, P � 0.05; **, P � 0.01; ***, P �
0.001; ****, P � 0.0001; †, P � 2.2 � 10�16.
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seven types of antiviral leukocytes in 1,927 human lung tissue samples. Although
SARS-CoV-2 cellular tropism is broad (16–18), I focused on lung tissue. In addition to
epithelial cells elsewhere in the respiratory tract, alveolar epithelial cells are
thought to be a primary SARS-CoV-2 entry point (16, 28). Consistently, the SARS-
CoV-2 receptor ACE2 is expressed in these cells at the mRNA and protein levels (28,
38–40). Moreover, in severely affected COVID-19 patients, the lungs are among the
few organs that present with the most life-threatening symptoms. “Cytokine
storm”-induced acute respiratory distress syndrome (ARDS), widespread alveolar
damage, pneumonia, and progressive respiratory failure have been observed (41,
42). These indications frequently require admission to intensive care units (ICUs),
and mechanical ventilation and may ultimately be fatal.

Early after infection, rapid activation of the innate immune system is of para-

FIG 3 Levels of TMPRSS2 mRNA, TMPRSS2 protein, and cytokines in lung cells and tissues. (a to c) Pearson
correlations between baseline levels of indicated lymphocytes and TMPRSS2 in human lung tissue, as in Fig. 1a to
c. Data are from the GTEx data set (n � 578). (d and e) Pearson R and �log10 P values of correlations between 1,000
randomly sampled genes and the levels of indicated lymphocytes in lung tissues, as in Fig. 2a and b. TMPRSS2
Pearson R and P values are shown as green diamonds. (f) Correlations between TMPRSS2 mRNA and protein levels
in 124 cell lines. R and P values are from Pearson correlations. (g) Pearson correlation R values between mRNA and
protein levels of 12,016 genes are compared to the TMPRSS2 R coefficient (green diamond). The line and box
represent the median and interquartile ranges, respectively. The TMPRSS2 R percentile is also shown. The P value
is from one-sample t test. (h) Heatmap showing Spearman correlations between the levels of TMPRSS2 and
cytokines in human lung tissues from the GTEx data set (n � 578), as in Fig. 2h. (i) Individuals with high baseline
levels of ACE2 and TMPRSS2 show low baseline tissue-resident levels of cytotoxic lymphocytes in the lung. I
propose that this may jointly predispose these individuals to development of severe COVID-19. P value symbols:
*, P � 0.05; **, P � 0.01; ****, P � 0.0001; †, P � 2.2 � 10�16.
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mount importance for the clearance of virus infections. Infected cells typically do so
through release of proinflammatory cytokines and chemokines, in particular type I
and III interferons (19, 20). Notably, however, several studies have highlighted
multiple complexities related specifically to SARS-CoV2 and innate immune system
activation at early stages. First, unlike SARS-CoV, SARS-CoV-2-infected lung tissue
initially fails to induce a range of immune cell-recruiting molecules, including
several interferons (17, 27), suggesting that leukocytes are ineffectively recruited to
the infected lung shortly after infection. Second, the host cell entry receptor ACE2
has been identified as an interferon target gene (28). Thus, even when interferons
are upregulated in order to recruit immune cells, concomitant upregulation of ACE2
expression may in fact exacerbate SARS-CoV-2 infection (28).

These findings suggest that the levels of immune cells that already reside in the lung
prior to infection may be more critical for dampening SARS-CoV-2 infection at early
stages than they are for fighting infections of other viruses. Cytotoxic lymphocytes,
including CD8� T cells and NK cells, are key early responders to virus infections, and
these are the cells whose baseline levels were identified here as significantly reduced
in lung tissue with elevated ACE2 and TMPRSS2 expression. That these immune cells are
important in preventing severe COVID-19 is supported by the fact that their levels are
significantly higher in bronchoalveolar lavage fluids from patients with mild cases than
from patients with severe cases. Therefore, our results suggest that individuals with
increased baseline susceptibility to SARS-CoV-2 infection in the lungs may also be less
well equipped from the outset to mount a rapid antiviral cellular immune response
(Fig. 3i).

Several observations indicate that these cytotoxic lymphocytes are critically impor-
tant for effective control of SARS-CoV-2 infection. Recent studies showed that CD8� T
cells in peripheral blood are considerably reduced and functionally exhausted in
COVID-19 patients, in particular in elderly patients and in severely affected patients that
require ICU admission (43–45). Reduced CD8� T cell counts also predict poor COVID-19
patient survival (43). Additionally, CD8� T cell- and NK cell-attracting cytokines are
upregulated in SARS-CoV-2-infected human lung cells and in lung tissues from
COVID-19 patients, and the levels of CD8� T cells and NK cells are higher in bronchoal-
veolar lavage fluids from mildly affected COVID-19 patients than in patients with severe
disease (46, 47).

The five phenotypic parameters, sex, age, BMI, race, and smoking history, did not
statistically significantly contribute to variation in ACE2 expression in human lung
tissue, either in univariate or in multivariate analyses. This is consistent with some
studies but inconsistent with others (42, 48–50). These paradoxical observations
may be partially explained by differing gender, age, and race distributions within
each study cohort.

Further research will be required to elucidate the precise mechanisms of SARS-
CoV-2-induced activation of the innate immune system early after infection. How-
ever, the link identified here between high baseline ACE2 and TMPRSS2 expression
and reduced cytotoxic lymphocyte levels in human lung tissue prior SARS-CoV-2
infection is striking. It suggests that increased susceptibility to SARS-CoV-2 infection
in the lungs may be accompanied by a poorer ability to mount a rapid innate
immune response at early stages. This may predict long-term outcome of individ-
uals infected with SARS-CoV-2, given that the levels of CD8� T cells and NK cells are
significantly higher in bronchoalveolar lavage fluids from mild cases compared to
severe patients (46, 47). Finally, it may contribute to the substantial variation in
COVID-19 clinical presentation, ranging from asymptomatic to severe respiratory
and other symptoms.

MATERIALS AND METHODS
Discovery data set and processing. Gene expression data and corresponding phenotype data from

human lung tissues (n � 578) were obtained from the Genotype-Tissue Expression (GTEx) Portal (https://
gtexportal.org), managed by the National Institutes of Health (NIH). Gene expression data were publicly
available. Access to phenotype data required authorization. The GTEx protocol was previously described
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(29, 30). Briefly, total RNA was extracted from tissue. Following mRNA isolation, cDNA synthesis, and
library preparation, samples were subjected to HiSeq2000 or HiSeq2500 Illumina TrueSeq RNA sequenc-
ing. Gene expression levels were obtained using RNA-SeQC v1.1.9 (51) and expressed in transcripts per
million (TPM). Reported gene-level expression levels were log2 transformed, unless indicated otherwise.

Validation data set and processing. For validation purposes, the Laval University, University of
British-Columbia, Groningen University (LUG) lung tissue data set (n � 1,349) was used. This data set was
accessed via Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo), accession number
GSE23546, and was previously described (52). Briefly, total RNA from human lung tissue samples was
isolated, quantified, quality checked, and used to generate cDNA, which was amplified and hybridized to
Affymetrix gene expression arrays. Arrays were scanned, and probe-level gene expression values were
normalized using robust multichip average (RMA). These normalized values were obtained from GEO. To
collapse probe-level expression data to single expression levels per gene, for each gene the probe with
the highest median absolute deviation (MAD) was used. The MAD for each probe p was calculated using
equation 1

MAD(p) � M(|pi � M(p)|) (1)

where M is the median, pi denotes probe p’s expression level in sample i, and M (p) represents the median
signal of probe p.

In silico cytometry. The levels of seven types of leukocytes involved in antiviral cellular immune
response, specifically CD8� T cells, resting NK cells, activated NK cells, M1 macrophages, CD4� T cells,
dendritic cells, and neutrophils, were estimated in the discovery and validation lung tissue samples using
a previously described approach (31). Specifically, the following workflow was used. First, only non-log-
transformed expression values were used. Thus, where required, expression values for all samples in the
discovery and validation data sets were reverse log2 transformed using equation 2

c � 2cl � 1 (2)

where c denotes the calculated non-log2-transformed expression counts and cl denotes the previously
reported log2-transformed expression counts. Next, to compensate for potential technical differences
between signatures and bulk sample gene expression values due to interplatform variation, bulk mode
batch correction was applied. To ensure robustness, deconvolution was statistically analyzed using 100
permutations. Pearson correlation coefficients R, root mean squared errors (RMSA), and P values are
reported on a per-sample level in Fig. S1a to c and Table S1 in the supplemental material.

Univariate statistical analyses. Log2-transformed expression levels of ACE2 and TMPRSS2 in lung
tissue samples were compared to the estimated levels of seven leukocyte types or states. Pearson
correlation analyses were performed to determine Pearson correlation coefficients R and P values. P
values were adjusted at a false discovery rate of 0.05 to yield q values, as previously described (53).
Straight lines represent the minimized sum of squares of deviations of the data points with 95%
confidence intervals shown. Continuous phenotypic covariates were analyzed in the same way and,
additionally, as discrete ordinal categories after binning. Discrete and binned phenotype data were
statistically evaluated using Mann-Whitney U tests. All analyses were performed in the R computing
environment (R Project for Statistical Computing, Vienna, Austria).

Multivariate regression analyses. Multivariate analyses were performed using standard ordinary
least-squares regression, summarized in equation 3.

Y � �0 ��
k�1

n

(�kXk) � � (3)

where �0 denotes the intercept, while �k represents the slope of each variable Xk in a model with n
variables and � denotes the random error component. These analyses were performed using R.

mRNA and protein levels in human cells. Available ACE2 and TMPRSS2 mRNA and corresponding
protein levels in 52 and 124 human cell lines, respectively, were obtained from references 54 and 55. The
correlations between mRNA and protein levels were analyzed by linear regression analysis using Pearson
correlations. Pearson coefficients R for mRNA-protein level correlations were also determined for 12,015
other genes. To test whether the ACE2 and TMPRSS2 coefficients and P values were statistically
significantly lower than for other genes, one-sample t tests were used.

mRNA and protein levels in human tissues. Two types of analyses were performed to compare
mRNA and protein levels in human tissues. First, mRNA expression levels from 40 human tissues were
obtained from the Human Protein Atlas (https://www.proteinatlas.org). These levels represented the
consensus normalized mRNA expression levels from three sources, specifically, Human Protein Atlas
in-house RNAseq data, RNAseq data from the Genotype-Tissue Expression (GTEx) project and CAGE data
from FANTOM5 project. Corresponding ordinal human tissue protein expression levels (“not detected,”
“low,” and “’high”) were also obtained from the Human Protein Atlas. These levels were based on
immunohistochemical staining of the tissues using DAB (3,3=-diaminobenzidine)-labeled antibodies
(HPA000288 and CAB026174), followed by knowledge-based annotation, as described on the website. A
Kruskal-Wallis test was performed to assess whether mRNA and protein levels significantly correlated.

Second, a meta-analysis was performed. For this, mRNA and protein expression levels were obtained
from nine different sources. Tissue mRNA levels were obtained from six sources, as determined by
Northern blotting (56), quantitative reverse transcription-PCR (RT-PCR) (57), microarray hybridization (58),
RNA sequencing (59), and cap analysis of gene expression (60). Tissue protein levels were obtained from
three sources, as determined by mass spectrometry (61) and immunohistochemistry (39, 62). For each
source and tissue, mRNA and protein expression levels were scored as “not detected,” “low,” “interme-
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diate,” or “high” and these received scores of 0 to 3, respectively. For each tissue, the final mRNA and
protein scores were calculated by averaging the scores from the respective six and three sources
(Table S3). Strength and significance level of the correlation between the final scores were determined
by linear regression analysis using Pearson correlation.

Cytokine levels in SARS-CoV-2-infected lung cells. SARS-CoV-2-induced fold increases in the
expression levels of eight cytotoxic lymphocyte-attracting cytokines, CCL2-5, CXCL9, CXCL10, CXCL16,
and IL-18, were determined from reference 27. These increases represent the fold increase in expression
in Calu-3 lung cells, 24 h after infection with SARS-CoV-2 at a multiplicity of infection of 2, compared to
uninfected Calu-3 cells.

Cytokine levels in control and COVID-19 lung tissues. Baseline levels of the above eight cytokines
in lung tissues were obtained from the GTEx project, as described above, and compared to the baseline
levels of ACE2, TMPRSS2, CD8� T cells, resting and activated NK cells in these tissues, estimated as
described above. Their levels were compared using Spearman’s rank correlations (R and P values). For
comparison of cytokine levels in postmortem COVID-19 lung tissues (n � 2) to those in healthy,
uninfected lung tissues (n � 2), fold increases were determined following RNAseq analyses and previ-
ously reported (27).

Lymphocyte levels in COVID-19 bronchoalveolar lavage fluid samples. The levels of CD8� T cells,
NK cells, and inflammatory NK cells in bronchoalveolar lavages from mild (n � 2) and severe (n � 22)
COVID-19 patients were reported elsewhere and determined using single-cell RNAseq (46). Statistical
significance levels were assessed using Mann-Whitney U tests. The levels of T cells and NK cells, as well
as a CD8� T cell tissue-resident signature score, in bronchoalveolar lavage fluid samples from moderate
(n � 3) and severe/critical (n � 5) COVID-19 patients were reported in another study (47).

Data availability. The data sets used for the analyses described in this study were obtained from
dbGaP at https://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000424.v8.p2.
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