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1. Introduction
Alzheimer’s disease (AD) is a devastating, multifactorial, chronic, and progressive neurodegenerative disease that causes 
dementia [1]. The fact that it is affecting 46.8 million people worldwide today indicates that AD is one of the most important 
health problems to be treated [2]. Although the disease cannot be cured, its progression can be stopped. According to the 
cholinergic hypothesis, which is one of the theses to understand the pathogenesis of the disease, losses occur both in the 
level of acetylcholine and cholinergic neurons in the cerebral cortex in AD [3–5]. For this purpose, many cholinesterase 
inhibitors such as donepezil, tacrine, and rivastigmine are used in the clinic. However, these drugs in the market have 
many side effects like nausea, diarrhea, hepatotoxicity, and vomiting [6]. Thus, there is a need for novel compounds having 
AChE inhibition effects with no or reduced side effects for the treatment of AD.

Carbonic anhydrases (CAs) are widespread zinc enzymes that are related to many important physiological and 
pathological processes via the hydration of carbon dioxide to bicarbonate [7,8]. To date, genetically eight different CA 
families have been determined as α-, β-, γ-, δ-, ζ- η-, θ-, and ι-CAs [9,10]. α-CA, which has 16 different isozymes, is 
involved in many different tissues and organs in mammals [11,12]. Thus, α-CA isoenzymes are used as drug targets in 
medicinal chemistry for the treatment of many diseases [12]. There are so many studies in the literature that report human 
carbonic anhydrase (hCA) inhibitors or activators with potential use as diuretic, anticancer, antiglaucoma, antiobesity, and 
antiinfective compounds [6,13–15]. Among hCAs, hCA I has an important function in the regulation of retinal edema 
[15,16]. Besides, hCA II isozyme inhibitor compounds are used in clinics as antiedema, antiglaucoma, and antiepileptic 
agents [4,12,15–18]. However, the hCA inhibitors used have undesired side effects because of having low selectivity to these 
isoenzymes [12,16–18]. As a result, there is a need in clinics for novel CA inhibitory compounds with higher inhibitory 
activity and selectivity to any of hCAs. 
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The design of drugs bearing chalcones is often used in medicinal chemistry due to their several bioactivities such as 
antiinflammatory [19], antifungal [20,21], antimalarial [22,23], antimicrobial [24], anticancer [25,26], cytotoxic [10,27], 
antioxidant [28,29], carbonic anhydrase inhibiting [10,27,30], acetylcholinesterase inhibiting [31–34], and antidiabetic 
[35,36] activities. In our previous studies, we synthesized a series of benzoxazolone containing chalcone compounds 
and evaluated their cytotoxic and CA-inhibiting activities [27]. Among the series, trifluoromethyl derivative compound, 
6-[3-(4-trifluoromethylphenyl)-2-propenoyl]-2(3H)-benzoxazolone (Figure 1), showed high inhibitory activities towards 
both hCA I and hCA II enzymes. For further studies, the previously synthesized chalcone compound presented in Figure 
1 was planned to be derivatized from the 3rd position of the benzoxazolone ring by Mannich reaction. 

Mannich bases are known as an important class in medicinal chemistry with various biological activities such as 
cytotoxic [25,37], antibacterial [38,39], antifungal [21,40], carbonic anhydrase inhibitory [41–44], and acetylcholinesterase 
inhibitory [42,45,46] activities. Moreover, Mannich bases are frequently used in drug design in medicinal chemistry because 
they alter the pharmacokinetic properties of compounds. The hydrophilic properties of compounds can be increased by 
adding a polar function to the structures of the compounds via aminomethylation (Mannich reaction) [47–49].

As conclusion, we first aimed to synthesize novel Mannich bases of the previously synthesized chalcone compound, 
6-[3-(4-trifluoromethylphenyl)-2-propenoyl]-2(3H)-benzoxazolone, via aminomethylation from the 3rd position of the 
benzoxazolone ring. Carbonic anhydrase (CA) and acetylcholinesterase (AChE) inhibitory activities of the compounds 
were evaluated to find out new potential drug candidate molecule/s. Furthermore, docking studies were done to confirm 
and explain the inhibition effects of the newly synthesized compounds.

2. Materials and method
2.1. Chemistry
All chemicals and solvents were Sigma-Aldrich (Germany) and Merck (Germany). Bruker AVANCE III 400 MHz 
(Bruker, Karlsruhe, Germany) spectrometer [400 Hz (1H) and 100 Hz (13C)] was used to record the nuclear magnetic 
resonance (NMR) spectra (1H NMR, 13C NMR). Dimethyl sulfoxide (DMSO)-d6 was used as a solvent. NMR VTU 
technique was applied to keep the solubility of the compounds stable. The 1H and 13C NMR spectra of the compounds 
were recorded with dynamic NMR method at 328.15 K by using the Topspin 2.1 NMR program. The internal standard was 
tetramethylsilane. IR spectra of the compounds were recorded with the FTIR-ATR method (400–4000 cm–1) on a IRSpirit 
Fourier transform (FT)-IR spectrophotometer (Shimadzu, Kyoto, Japan). Mass spectra of the samples were recorded using 
a liquid chromatography ion trap-time of flight tandem mass spectrometer (Shimadzu, Kyoto, Japan) equipped with an 
electrospray ionization (ESI) source, operating in both positive and negative ionization mode. For data analysis, Shimadzu’s 
LCMS Solution program was used. Electrothermal 9100 instrument (IA9100, Bibby Scientific Limited, Staffordshire, UK) 
was used to determine the melting points of the compounds. 
2.1.1. Synthesis of compound 1 
The synthesis of the chalcone compound 1, 6-[3-(4-trifluoromethylphenyl)-2-propenoyl]-2(3H)-benzoxazolone, was 
realized as described in detail in our previous study [27]. Briefly, 6-acetyl-2(3H)-benzoxazolone was synthesized by 
Friedel–Crafts reaction. Then, the chalcone compound 1 was synthesized by Claisen–Schmidt reaction that occurred 
between 6-acetyl-2(3H)-benzoxazolone and 4-trifluoromethyl benzaldehyde in basic condition as shown in Figure 2. 
6-[3-(4-trifluoromethylphenyl)-2-propenoyl]-2(3H)-benzoxazolone was obtained with 80% yield. Physicochemical and 
spectroscopic characterizations of the compound 1 were reported in our previous study [27].

(E)-6-{3-[4-(trifluoromethyl)phenyl]acryloyl}benzoxazol-2(3H)-one (1)
White powder, yield 80%. Mp: 257–259 °C. IR (cm–1) 1772, 1657, 1448, 1322, 1288, 1118, 1165, 1068, 815, 695. 1H NMR 

(400 MHz, DMSO-d6) δ (ppm) 8.12–8.14 (m, 3H, arom. H), 8.09 (d, 1H, Ar-CH=, J = 15.7 Hz), 8.06 (d, 1H, arom. H, J = 

Figure 1. Structure of the previously synthesized compound 
showing high inhibitory activity towards both hCA I and hCA 
II enzymes.
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1.6 Hz), 7.80 (d, 2H, arom. H, J = 8.2 Hz), 7.78 (d, 1H, =CHCO, J = 15.7 Hz), 7.24 (d, 1H, arom. H, J = 8.2Hz). 13C NMR 
(100 MHz, DMSO-d6) δ (ppm) 187.7, 154.9, 143.9, 142.2, 139.2, 135.7, 131.9, 130.5, 129.9, 126.2, 124.9, 122.7, 119.1, 110.1. 
HRMS (ESI-MS) C16H11NO3 m/z calculated [M+H]+ 334.0686; measured 334.0687.
2.2.2. Synthesis of Mannich bases, 1a–g
To the solution of 6-[3-(4-trifluoromethylphenyl)-2-propenoyl]-2(3H)-benzoxazolone (0.1 g, 0.3 mmol) in ethanol (4 
mL), 37% formaldehyde solution (33 µL, 0.4 mmol) was added and heated. Then, the suitable seconder amine compound 
(0.1 mmol) was added to this mixture and refluxed for 20 min (Figure 2). After standing at room temperature, the mixture 
was crystallized, filtered, washed with ethanol, dried [50] and recrystallized from ethanol.

3-[(Dimethylamino)methyl]-6-{3-[4-(trifluoromethyl)phenyl]acryloyl}benzoxazol-2(3H)-one (1a)
Yellow powder, yield 65%. Mp: 179–181 °C. IR (cm–1) 1771, 1652, 1590, 1452, 1319, 1310, 1293, 1256, 1163, 1106, 1066, 

926, 812, 694. 1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.07 (4H, m, 4x Ar-CH), 8.02 (1H, d, J = 16.1 Hz, ol-CH), 7.76 
(3H, m, 2xAr-CH, 1xol-CH), 7.44 (1H, bs, Ar-CH), 4.65 (2H, bs, N-CH2-N), 2.33 (6H, bs, 2x CH3). 13C NMR (100 MHz, 
DMSO-d6) δ (ppm) 187.76, 155.29, 144.31, 142.55, 136.89, 135.18, 132.75, 131.05, 129.39, 129.35, 128.71, 126.11, 122.23, 
110.39, 110 02, 65.76, 42.70. HRMS (ESI-MS) C20H17F3N2O3 m/z predicted [M+H]+ 390.1191; found [M+H]+ 390.1181.

3-[(Diethylamino)methyl]-6-{3-[4-(trifluoromethyl)phenyl]acryloyl}benzoxazol-2(3H)-one (1b)
Yellow powder, yield 72%. Mp: 235–236 °C. IR (cm–1) 2977, 1762, 1668, 1618, 1324, 1269, 1121, 1068, 832, 608. 1H 

NMR (400 MHz, DMSO-d6) δ (ppm) 8.08 (2H, d, J = 8.0 Hz, Ar-CH), 8.04 (1H, d, J = 15.8 Hz, ol-CH), 7.92 (1H, s, Ar-CH), 
7.78 (2H, d, J = 8.0 Hz, Ar-CH), 7.73 (1H, d, J = 15.8 Hz, ol-CH), 7.49 (1H, m, Ar-CH), 7.16 (1H, d, J = 6.89 Hz, Ar-CH), 
4.75 (2H, s, N-CH2-N), 2.66 (4H, q, J = 6.9 Hz, N-CH2), 1.01 (6H, t, J = 7.0 Hz, 2x-CH3). 13C NMR (100 MHz, DMSO-d6) δ 
(ppm) 187.85, 160.67, 142.38, 139.46, 130.14, 126.51, 126.38, 126.35, 126.30, 126.11, 125.19, 123.40, 110.71, 110.18, 86.88, 
62.37, 45.13, 12.92. HRMS (ESI-MS) C22H21F3N2O3 m/z predicted [M+H]+ 418.1504; found [M+H]+ 418.1490.

3-[(Dipropylamino)methyl]-6-{3-[4-(trifluoromethyl)phenyl]acryloyl}benzoxazol-2(3H)-one (1c)
Yellow powder, yield 37%. Mp: 157–158 °C. IR (cm–1) 2966, 2923, 2355, 1772, 1653, 1559, 1456, 1325, 1068, 1033, 831. 

1H NMR (25 ºC, 400 MHz, DMSO-d6) δ (ppm) 8.10 (5H, m, 4x Ar-CH, 1x ol-CH), 7.78 (3H, m, 2x Ar-CH, 1x ol-CH), 7.41 
(1H, d, J = 7.6 Hz, Ar-CH), 4.78 (2H, s, N-CH2-N), 2.61 (t, 4H, J = 6.50 Hz, N-CH2), 1.48 (m, 4H, 2x –CH2-), 0.84 (t, 6H, J 
= 7.20 Hz, 2x CH3). 13C NMR (25 ºC, 100 MHz, DMSO-d6) δ (ppm) 187.74, 155.26, 142.85, 142.04, 139.29, 136.82, 132.39, 
129.79, 126.23, 126.06, 126.02, 125.87, 125.23, 110.27, 109.94, 63.46, 53.87, 20.64, 11.92. HRMS (ESI-MS) C24H25F3N2O3 
m/z predicted [M+H]+ 446.1817; found [M+H]+ 446.1828.

3-(Pyrrolidin-1-ylmethyl)-6-{3-[4-(trifluoromethyl)phenyl]acryloyl}benzoxazol-2(3H)-one (1d)
Yellow powder, yield 85%. Mp: 179 °C. IR (cm–1) 2973, 2821, 1772, 1656, 1592, 1455, 1321, 1165, 1106, 1067, 814, 694. 

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.06 (5H, m, 4x Ar-CH, 1x ol-CH), 7.79 (2H, d, J = 8.9 Hz, 2xAr-CH), 7.73 (1H, 
s, Ar-CH), 7.54 (1H, bs, ol-CH), 4.84 (2H, s, N-CH2-N), 2.51 (4H, bd, J = 1.3 Hz, N-CH2-CH2), 1.69 (4H, s, CH2-CH2). 13C 

Figure 2. General synthetic pathway for compounds 1 and 1a – g. Reagent and conditions: (i) CH3COCl, AlCl3-DMF; (ii) 
4-trifluoromethylbenzaldehyde, aq. KOH, EtOH; (iii) suitable amine, 37% formaldehyde, EtOH R: Dimethylamino (1a), 
Diethylamino (1b), Dipropylamino (1c), Pyrrolidino (1d), Piperidino (1e), Morpholino (1f), and N-methyl piperazino (1g).
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NMR (100 MHz, DMSO-d6) δ (ppm) 187.74, 153.35, 141.64, 139.39, 132.80, 129.73, 126.12, 126.07, 126.03, 126.01, 125.89, 
125.45, 123,18, 110.15, 109.21, 65.21, 52.09, 22.31. HRMS (ESI-MS) C22H19F3N2O3 m/z predicted [M+H]+ 416.1348; found 
[M+H]+ 416.1349. 

3-(Piperidin-1-ylmethyl)-6-(3-(4-(trifluoromethyl)phenyl)acryloyl)benzoxazol-2(3H)-one (1e)
Yellow powder, yield 87%. Mp: 199–200 °C. IR (cm–1) 2936, 1771, 1659, 1608, 1447, 1319, 1288, 1110, 1067, 811, 697. 

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.08 (5H, m, 4x Ar-CH, 1x ol-CH), 8.02 (1H, s, Ar-CH), 7.77 (2H, m, 2x Ar-
CH), 7.48 (1H, bs, ol-CH), 4.71 (2H, s, N-CH2-N ), 2.62 (4H, s, N-CH2), 1.50 (4H, s, N-CH2-CH2), 1.34 (2H, s, -CH2). 13C 
NMR (100 MHz, DMSO-d6) δ (ppm) 187.82, 155.31, 142.05, 139.27, 137.11, 132.41, 129.78, 126.22, 126.07, 126.03, 126.98, 
125.86, 125.24, 110.39, 109.76, 65.73, 51.55, 25.83, 23.89. HRMS (ESI-MS) C23H21F3N2O3 m/z predicted [M+H]+ 430.1504; 
found [M+H]+ 430.1495.

3-(Morpholinomethyl)-6-{3-[4-(trifluoromethyl)phenyl]acryloyl}benzoxazol-2(3H)-one (1f)
White powder, yield 89%. Mp: 215–217 °C. IR (cm–1) 2865, 2833, 1768, 1656, 1449, 1324, 1111, 1068, 814, 695. 1H NMR 

(400 MHz, DMSO-d6) δ (ppm) 8.15 (1H, d, J = 15.2 Hz, ol-CH), 8.12 (2H, d, J = 8.8 Hz, 2x Ar-CH), 8.10 (2H, d, J = 8.6 Hz, 
2x Ar-CH), 8.08 (1H, s, 1x Ar-CH ), 7.79 (2H, m, Ar-CH, ol-CH), 7.55 (1H, d, J = 7.9 Hz, Ar-CH), 4.73 (2H, s, N-CH2-N), 
3.20 (4H, m, 2x -CH2-O-), 2.66 (4H, m, 2x -CH2-N-). 13C NMR (100 MHz, DMSO-d6) δ (ppm) 187.87, 155.09, 142.61, 
142.18, 139.29, 136.74, 132.67, 129.83, 126.26, 126.09, 126.06, 125.27, 123.18, 110.42, 110.11, 66.49, 64.96, 50.73. HRMS 
(ESI-MS) C22H19F3N2O4 m/z predicted [M+H]+ 432.1297; found [M+H]+ 432.1277.

3-[(4-Methylpiperazin-1-yl)methyl]-6-{3-[4-(trifluoromethyl)phenyl]acryloyl} benzoxazol-2(3H)-one (1g)
Yellow powder, yield 75%. Mp: 203–205 °C. IR (cm–1) 2940, 2800, 1772, 1658, 1592, 1449, 1322, 1288, 1163, 1110, 1068, 

815, 695. 1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.09 (5H, m, 4x Ar-CH, 1x ol-CH), 7.80 (3H, m, 2x Ar-CH, 1x ol-CH), 
7.41 (1H, d, J = 7.6 Hz, Ar-CH), 4.73 (2H, s, N-CH2-N), 2.66 (4H, bs, 2x-N-CH2), 2.32 (4H, bs, 2x-CH2-N), 2.14 (3H bs, 
CH3). 13C NMR (100 MHz, DMSO-d6) δ (ppm) 187.82, 155.05, 142.60, 142.11, 139.28, 136.79, 132.55, 129.80, 126.23, 
126.07, 126.03, 125.26, 123.17,110.40, 110.05, 64.81, 54.88, 50.21, 46.03. HRMS (ESI-MS) C23H22F3N3O3 m/z predicted 
[M+H]+ 445.1613; found [M+H]+ 445.1604.
2.2. Acetylcholinesterase inhibition assay
Acetylcholinesterase enzyme inhibition assay was performed according to our previous studies [4,41,51–55]. The inhibition 
effects of the compounds 1 and 1a–g on AChE enzyme, obtained from electric eel [56], were recorded in accordance with 
Ellman’s method as demonstrated previously in detail [51,52,57]. The substrates of acetylthiocholine iodide (AChI) and 
5,5’-dithiobis(2-nitro-benzoic acid) (DTNB) was used for cholinergic enzymatic reaction. For this purpose, 1 mL of Tris 
/ HCl buffer (1.0 M, pH 8.0) and 10 μL of different concentrations of sample solution were dissolved in deionized water. 
Then, an aliquot of (50 μL) AChE enzyme was transferred and incubated at room temperature for 10 min. After the 
incubation period, an aliquot of DTNB (0.5 mM, 50 μL) was added. Then, the enzymatic reaction was started by adding 
50 μL of AChI (10 mM). The breakdown of these substrates was monitored spectrophotometrically by the yellow color 
formation of 5-thio-2-nitrobenzoate anion as the result of the reaction of DTNB with thiocholine from hydrolysis of AChI 
with absorption at a wavelength of 412 nm [58,59].
2.3. Carbonic anhydrase inhibition assay
CA inhibition assay was recorded according to previous studies [4,10,27,49,60–64]. The hCA I and II isoenzymes were 
purified from human red blood cells by sepharose-4B-L-tyrosine-sulfanilamide affinity chromatography [65], which was 
used as an affinity matrix for selective retention of both hCA isoenzymes [27,66]. The inhibition effects of the compounds 
1 and 1a–g on both hCA isoenzymes were spectrophotometrically measured according to the previous method described 
in detail [49,60,67]. p-Nitrophenylacetate (PNA) was used as a substrate and changed to p-nitrophenolate ions (PNP). 
One CA isoenzyme unit is accepted as the amount of CA, which had absorbance change at 348 nm of PNA to PNP over a 
period of 3 min at 25 °C. After sepharose-4B-L-tyrosine-sulfanilamide affinity chromatography, the enzyme quantity was 
spectrophotometrically measured at 280 nm [68]. Moreover, the protein effluent was spectrophotometrically determined 
at 595 nm according to the Bradford method. Purity controls of both CA isoenzymes were performed according to 
the Laemmli procedure as described in previous studies. Both isoenzymes were visualized by two different acrylamide 
concentrations (10% and 3% acrylamide), containing 0.1% sodium dodecyl sulfate (SDS) [69,70].
2.4. Molecular docking studies
The most active compounds 1d (pyrrolidine derivative) in terms of hCA I inhibition effect, 1g (N-methyl piperazine 
derivative) in terms of hCA II inhibition effect, and 1f (morpholine derivative) in terms of AChE inhibition effect were 
docked at the binding sites of the mentioned enzymes to describe and confirm the inhibition effects of the newly synthesized 
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compounds. The Protein Data Bank (PDB1) was used to get the structures of hCA I (4WR7), hCA II (3HS4), and AChE 
(1C2O) enzymes. The pdb files of the enzymes were prepared and transferred to AutoDockTools (ADT ver.1.5.6). Water 
molecules of the structures were removed and only polar hydrogen and Kollman charges were added to the proteins. 
Finally, the pdbqt files of the proteins were saved. 

The Drug Bank2 was used to get the chemical structures of the reference drugs (AZA and TAC). First, the active sites 
of the AChE and hCA I/II enzymes were defined by using BIOVIA Discovery Studio Visualizer (v20.1.0.19295). Then, the 
reference drugs, acetazolamide (AZA) and tacrine (TAC), were docked into the human carbonic anhydrases (hCA I/hCA 
II) and AChE, respectively. Compounds 1d, 1g, and 1f were drawn in ChemDraw (Professional, Version 19.0.1.28), passed 
to ChemDraw 3D (Professional, Version 19.0.1.28), and minimized. The molecules’ files were saved as pdb. Torsions of 
the compounds were examined and then compounds’ files (1d, 1g, and 1f) were saved as pdbqt by AutoDockTools (ADT 
ver.1.5.6) [4].

AutoDockTools (ADT ver.1.5.6) was used for molecular docking studies. The Lamarckian genetic algorithm with local 
search (GALS) was used as a search engine, with a total of 10 runs. The active sites of enzymes were defined by a grid box 
of 70 × 70 × 70 points. Ten conformers of the compound were considered to evaluate the docking results. Finally, the 
conformer with the lowest binding free energy was evaluated using Python Molecule Viewer (PMV ver.1.5.6) and PyMOL 
(ver. 2.3.3, Schrodinger, LLC). 
2.5. Estimation of physicochemical and ADME properties
In silico prediction of the ADME parameters and physicochemical properties the compounds was performed using the 
SwissADME3 web tool. The structures of the compounds 1 and 1a–g were drawn and transformed to SMILES (simplified 
molecular-input line-entry system). Finally, the ADME parameters and physicochemical parameters of the compounds 1 
and 1a–g were calculated by running the program.

3. Results and discussion
3.1. Chemistry
The compounds 1 and 1a–g were synthesized successfully for the first time (except 1 and 1g) [27,71] according to Figure 
2. First, the chalcone compound 1, 6-[3-(4-trifluoromethylphenyl)-2-propenoyl]-2(3H)-benzoxazolone, was synthesized 
according to our previous study [27] by the classical Claisen-Schmidt reaction realized between 4-trifluorobenzaldehyde 
and 6-acetyl-2(3H)-benzoxazolone [10,27]. In the second step, the Mannich bases were synthesized by the Mannnich 
reaction of compound 1 with suitable seconder amines. The amine compounds used were as follows: dimethylamine (1a), 
diethylamine (1b), dipropylamine (1c), pyrrolidine (1d), piperidine (1e), morpholine (1f), and 1-methyl piperazine (1g). 
The compound synthesized with the highest yield was morpholine derivative compound 1f (89%) while the compound 
synthesized with the lowest yield was dipropylamine derivative compound 1c (37%) in the series.

According to IR spectra of the compounds, the lactam and ketone C=O stretching bands were seen about 1770 cm–1 
and 1650 cm–1. According to 1H NMR spectra of the synthesized compounds, the methylene protons between two nitrogen 
atoms of Mannich bases appeared at the area of 4.5–5.5 ppm as expected. On the other hand, 1H NMR spectra of the 
compounds showed that all compounds were configured trans, as understood from coupling constant J = 15.2 – 16.1 Hz 
for vinyl protons or from the results of the NOESY NMR of the compounds. The DEPT NMR spectra of the compound 
1a were recorded to determine primary, secondary, and tertiary carbon atoms of the series. According to the DEPT NMR 
results of the compound 1a, carbons of the carbonyl groups were seen about 187 ppm (ketone) and 155 ppm (lactam). 
Signals of the other quaternary carbons were seen at 142.55, 136.89, 135.18, 132.75, 128.71, and 110.02 ppm. In the 
aliphatic region, the carbon of methylene group (secondary) was seen as a negative signal while the carbons of methyl 
groups (primary) were seen as a positive signal. The chemical structures of the newly synthesized compounds 1, 1a–g were 
confirmed and characterized by IR, 1H NMR, 13C NMR, and HRMS (see the experimental part for details).
3.2. Carbonic anhydrases inhibitory activities
The CA inhibition effects of the compounds 1a–g were reported for the first time in this study, and the CA inhibition 
results are shown in Table 1. Acetazolamide (AZA) was used as a reference drug, and its Ki values were 84.4 ± 8.4 nM 
towards hCA I and 59.2 ± 4.8 nM towards hCA II.

The compounds 1 and 1a–g had Ki values of in the range of 12.3 ± 1.2 to 154.0 ± 9.3 nM towards hCA I (Table 
1). According to hCA I inhibitory activity results of the compounds, all Mannich bases synthesized (1a–g) had higher 
1 https://www.rcsb.org/
2 https://www.drugbank.ca/
3 http://www.swissadme.ch/

https://www.rcsb.org/)
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inhibitory activities than the reference compound, AZA. On the other hand, compound 1 had both the lowest inhibitory 
activity in the series and lower inhibitory activity than the reference compound, AZA. As a result, the aminomethylation 
from the 3rd position of the benzoxazolone ring by Mannich reaction caused a significant increase (in the range of 2.1–
12.5 times) in hCA I inhibition effects, as expected. This result suggested that the prevention of tautomerization between 
the nitrogen atom and carbonyl of the benzoxazolone ring had a crucial role in hCA I inhibitory activity. According to the 
Ki values presented in Table 1, the pyrrolidine derivative compound 1d had the highest inhibition effect in the series with 
a lower Ki value (12.3 ± 1.2 nM) than AZA (Ki = 84.4 ± 8.4 nM) towards hCA I. Including the nitrogen atom of Mannich 
base in a cyclic structure (pyrrolidine derivative compound 1d) led to an approximately three-fold increase in hCA I 
inhibitory activity comparing to diethylamine derivative compound 1b. On the other hand, replacing the pyrrolidine ring 
(compound 1d) with a six-membered ring (piperidine derivative compound 1e) led to an approximately two-fold decrease 
in hCA I inhibitory activity. Comparing the Ki values of compounds 1e and 1f pointed out that the replacement of the 
carbon atom on the piperidine heterocycle with the oxygen atom caused an increase in the hCA I inhibition effect. This 
may be due to the formation of a hydrogen bond between the oxygen atom and the active site of hCA I isoenzyme. 

According to Table 1, Ki values of the compounds 1, 1a–g were in the range of 8.6 ± 1.9 to 41.0 ± 5.5 nM towards hCA 
II isoenzyme. The hCA II inhibitory activity results of the compounds presented in Table 1 showed that all compounds 
synthesized (1 and 1a–g) showed higher inhibition effects with their lower Ki values than the reference compound AZA. 
Thus, the results presented in Table 1 pointed out that the aminomethylation from the 3rd position of the benzoxazolone 
ring by Mannich reaction generally resulted in an increase (except compounds 1b and 1f) in hCA II inhibitory activity. The 
most potent compound in the series was N-methyl piperazine derivative compound 1g with the remarkable Ki value of 8.6 
± 1.9 nM, which is approximately 7 times lower than AZA. Thus, compound 1g was the most important compound of the 
series in terms of hCA II inhibitory activity and can be regarded as a lead molecule for further investigations. According 
to Table 1, the morpholine derivative compound 1f had the lowest hCA II inhibition effect in the series with the Ki value 
of 41.0 ± 5.5 nM which is 1.4 times lower than AZA. The pyrrolidine derivative compound 1d including the nitrogen 
atom of Mannich base in a cyclic structure had higher inhibitory activity (Ki = 19.01 ± 3.0 nM) about 2 times towards 
hCA I than diethylamine derivative compound 1b (Ki = 37.6 ± 4.3 nM). Comparing the Ki values of compounds 1e and 1f 
towards hCA II showed that the replacement of the carbon atom on the piperidine heterocycle with the oxygen atom led 
to a decrease about 2 times in the hCA II inhibition effect. On the other hand, the inhibition results in Table 1 suggested 
that the compounds carrying the nitrogen atom of Mannich base in a cyclic structure (compounds 1d - g) generally had 
higher inhibitory activities towards hCA II isoenzyme than the compounds carrying the nitrogen atom of Mannich bases 
on a straight chain (compounds 1a–c). 

Table 1. Inhibition effects of the compounds 1 and 1a–g on hCA I, hCAII, and AChE 
enzymes.

Compounds
Ki (nM)

hCA I* hCA II* AChE*

1 154.0 ± 9.3 33.6 ± 4.5 158.9 ± 33.5
1a 31.4 ± 5.3 23.3 ± 2.0 129.9 ± 17.6
1b 36.8 ± 7.7 37.6 ± 4.3 142.1 ± 22.1
1c 22.3 ± 2.3 24.6 ± 4.7 115.8 ± 32.0
1d 12.3 ± 1.2 19.0 ± 3.0 97.6 ± 14.4
1e 27.6 ± 2.9 18.1 ± 3.5 84.0 ± 19.2
1f 20.4 ± 1.7 41.0 ± 5.5 35.2 ± 2.0
1g 53.0 ± 1.8 8.6 ± 1.9 48.5 ± 10.2
AZA** 84.4 ± 8.4 59.2 ± 4.8 -
TAC*** - - 68.6 ± 3.8

* Mean from three different assays.
**Acetazolamide (AZA) was used as a standard inhibitor for both hCA I and II isoenzymes.
***Tacrine (TAC) was used as a standard inhibitor for AChE enzyme.
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3.3. AChE inhibitory activities
The AChE inhibitory activities of the newly synthesized compounds 1 and 1a–g were reported for the first time in this 
study and the results were presented in Table 1. The reference drug used was tacrine (TAC) and its Ki value was 68.6 ± 
3.8 nM towards AChE enzyme. According to the results presented in Table 1, Ki values of the compounds 1 and 1a–g 
were in the range of 35.2 ± 2.0 to 158.9 ± 33.5 nM towards AChE. The inhibition results showed that compounds 1f and 
1g had higher inhibitory effects than the reference drug TAC. The morpholine derivative compound 1f was the most 
active compound in the series with the Ki value as 35.2 ± 2.0 nM. On the other hand, the chalcone compound 1 had 
the lowest inhibition effect in the series with the Ki value as 158.9 ± 33.5 nM. Thus, the inhibition results showed that 
synthesis of Mannich derivatives from the 3rd position of the benzoxazole ring of the compound 1 was a modification 
that contributed to the AChE inhibition effect. This may be due to the prevention of tautomerization between the amino 
and carbonyl groups of the benzoxazolone ring. Besides, the inhibition results presented in Table 1 pointed out that the 
compounds where the nitrogen atom of Mannich base was included in a cyclic structure (compounds 1d - g) had higher 
inhibitory effects on AChE enzyme than the compounds carrying the nitrogen atom of Mannich bases on a straight chain 
(compounds 1a–c). Even, adding one more heteroatom (oxygen or nitrogen) to this heterocyclic structure (compounds 1f 
and 1g, respectively) resulted in an increase in AChE inhibitory activity comparing to piperidine derivative compound 1e. 
3.4. Molecular docking studies
To demonstrate the binding model of the synthesized compounds 1 and 1a–g with the active sites of hCA I, hCA II, 
and AChE enzymes, docking studies were performed using AutoDockTools (ADT ver.1.5.6). The X-ray crystallographic 
structures of hCA I (4WR7), hCA II (3HS4), and AChE (1C2O) were obtained from the Protein Data Bank4. The chalcone 
compound 1 and the most potent compounds 1d (pyrrolidine derivative), 1g (N-methyl piperazine derivative), and 1f 
(morpholine derivative) in terms of hCA I, hCA II, and AChE inhibitory activities (respectively) were docked at the 
binding sites of the mentioned enzymes to describe and confirm the inhibition effects of the series.

First, the active sites of the hCA I, hCA II, and AChE were defined by using BIOVIA Discovery Studio Visualizer. Then, 
the reference drugs acetazolamide (AZA) and tacrine (TAC) were docked into the human carbonic anhydrases (hCA I 
and hCA II) and AChE, respectively. These simulations were done successfully and the binding free energy scores of the 
reference drugs were found as –6.53 (in 4WR7), –6.77 (in 3HS4), and –7.10 (in 1C2O) kcal / mol. Finally, the binding free 
energy scores and Ki values of the chalcone compound 1 and the most potent compounds 1d, 1g, and 1f in the series were 
calculated by docking simulations and the results were presented in Table 2. 

The energy score of the most active compound 1d (pyrrolidine derivative) towards hCA I was found as –8.18 kcal/mol. 
Thus, this suggested the strong interactions of the compound with the active site of the 4WR7, as expected. According 
to Figure 3, the carbonyl moiety of the benzoxazolone ring of the compound 1d realized a hydrogen bonding with the 
amino groups of the amino acids His200. This showed the importance of the prevention of tautomerization between the 
nitrogen atom and carbonyl of the benzoxazolone ring by Mannich reaction in designing hCA I inhibitory compounds in 
terms of the strong interactions with the enzyme. Besides, the pyrrolidine ring realized a hydrophobic interaction with the 
amino acid Thr199. According to the binding pattern of compound 1d presented in Figure 3, the π-cation interaction was 
exhibited between the benzoxazolone ring of the compound and the side chain of the amino acid His200. On the other 
4 https://www.rcsb.org/

Table 2. Docking results of the compounds 1, 1d, 1g, and 1f.

hCA I hCA II AChE

Compound Energy scrore Ki (µM) Energy scrore Ki (µM) Energy scrore Ki (nM)

1 –6.62 14.01 –7.43 3.6 –8.82 342.12
1d –8.18 1.01 - -
1g - - –8.05 1.25 - -
1f  - -      –10.17 35.38
AZA* –6.53 16.39 –6.77 10.97 
TAC** - - - - –7.1 6.3 µM

*Acetazolamide (AZA) was used as a reference compound for both hCA I (4WR7) and hCA II (3HS4).
**Tacrine (TAC) was used as a reference compound for AChE (1C2O).
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hand, seven hydrophobic interactions were exhibited between the compound 1d and the amino acids Phe91, His119, 
Leu131, Val143, Leu198, and Trp209. Furthermore, trifluoromethyl moiety of the compound 1d involved in a halogen 
bond with the amino acid Phe91. This pointed out that the trifluoromethyl group of the compounds designed had an 
important role in strong interactions with the active site of the hCA I isoenzyme, as planned.

Compound 1g, N-methyl piperazine derivative, showed higher inhibitory activity (Ki = 8.6 ± 1.9 nM) than AZA 
towards hCA II and its docking score was –8.05 kcal/mol that is lower than the reference drug’s binding free energy (–6.77 

Figure 3. Three-dimensional representation of compound 1d, showing its interaction with 
the active site of hCA I. Grey color represents hydrophobic interactions, blue color represents 
hydrogen bondings, green color represents halogen bonds, and red represents π-cation 
interactions.

Figure 4. Three-dimensional representation of compound 1g, showing its interaction with the 
active site of hCA II. Grey color represents hydrophobic interactions, blue color represents 
hydrogen bondings, and green represents π-stacking interactions.
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kcal/mol), as expected. The binding pattern of compound 1g with the active site of the hCA II enzyme (3HS4) is shown 
in Figure 4. In Figure 4, it was seen that the carbonyl group of benzoxazolone heterocycle of compound 1g realized a 
hydrogen bond with the side chain of the amino acid Gln92. This shows how the prevention of tautomerization between 
amino and carbonyl groups by aminomethylation contributes positively to hCA II inhibitory activity. Furthermore, two 
hydrogen bonds were observed between the oxygen atom of the benzoxazolone ring and the amino acids Asn62 and 
Asn67. On the other hand, the carbonyl group of chalcone structure of compound 1g realized a hydrogen bond with the 
side chain of the amino acid Trp5. According to the binding profile of compound 1g (Figure 4), π-stacking interaction 
was exhibited between the benzoxazolone ring of the compound and the amino acid His94. Besides, four hydrophobic 
interactions were seen between the compound 1g and the amino acids Trp5, Phe20, and Pro202. 

The morpholine derivative compound 1f had the highest inhibition effect on AChE enzyme in the series and docked 
in 1C2O to explain its inhibition effect. As expected, compound 1f had lower energy score, –10.17 kcal/mol, in AChE 
than reference drug TAC (–7.10 kcal/mol), recommending a strong interaction between the compound 1f and the 1C2O. 
According to Figure 5, the oxygen atom on the first position of the benzoxazolone ring interacted with the enzyme via 
two hydrogen bonds with the amino groups of the amino acids Phe295 and Arg296. Similarly, the oxygen atom of the 
morpholine moiety formed a hydrogen bond with the amino group of Ser293. Thus, this suggested that aminomethylation 
of benzoxazolone ring with morpholine was a useful modification in terms of strong interactions with the active site of 
AChE. On the other hand, eight hydrophobic interactions were detected between compound 1f and the amino acids 
Asp74, Trp86, Phe297, Tyr337, Phe338, and Tyr341 (Figure 5). Additionally, one halogen bond was exhibited between the 
trifluoromethyl group of the compound 1f and the side chain of the amino acid Thr83. This pointed out the importance of 
the trifluoromethyl moiety in designing in terms of AChE inhibition effect. 
3.5. Estimation of physicochemical properties
Both the physicochemical and the ADME properties of a compound are very crucial in oral drug-candidate designing. 
‘Drug-likeness’ is a term that describes the potentiality for a compound to be an oral drug in terms of bioavailability [72]. 
Lipinski’s 5 rules are used to evaluate this potentiality of a molecule [4,73]. In this study, both the physicochemical and the 
pharmacokinetic properties of the synthesized compounds 1 and 1a–g were estimated using the SwissADME5 web tool 
[4,72]. For this purpose, molecular weights, the numbers of hydrogen bond acceptors and donors, the topological surface 
5 http://www.swissadme.ch/index.php

Figure 5. Three-dimensional representation of compound 1f, showing its interaction with 
the active site of AChE. Grey color represents hydrophobic interactions, blue color represents 
hydrogen bondings, and the green represents halogen bonds.
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areas (TPSA; a sum of polar atoms’ surfaces), lipophilicities, water solubilities, and bioavailability of the synthesized 
compounds 1 and 1a–g are presented in Table 3.

The results in Table 3 showed that all of the synthesized compounds were in agreement with Lipinski’s rule of 5. 
The compounds’ ClogP values ranged between 3.70 and 5.29 (˂6.5), molecular weight range of 333.26–446.26 (˂500), 
HBA range of 6–8 (≤ 10), and HBD values 0–1 (˂5), suggesting that compounds 1 and 1a–g have desired drug-likeness 
properties. On the other hand, all of the compounds had desired logP values and were estimated to have high gastrointestinal 
absorption and to penetrate the blood-brain barrier. These are advantages for the oral use of the synthesized compounds 
as AChE inhibitors in AD.

The radar charts of the most potent compounds 1d, 1g, and 1f towards hCA I, hCA II, and AChE, respectively, are 
shown in Figure 6. The pink-colored areas in these charts demonstrate the ideal ranges for each physicochemical properties; 
LIPO (lipophilicity, XLogP: between –0.7 and +5.0), size (MW: between 150 and 500 g/mol), POLAR (polarity, TPSA: 
between 20 and 130 Å2), INSOLU (solubility, log S: not higher than 6), INSATU (saturation; the fraction of carbons in the 
sp3 hybridization not less than 0.25), FLEX (flexibility, no more than 9 rotatable bonds) [72]. The radar charts presented in 
Figure 6 pointed out that the physicochemical properties of the most potent compounds 1d, 1g, and 1f were fully located 
in the pink-colored area. As a result, the leading compounds 1d, 1g, and 1f of the series were predicted as oral bioavailable 
drug candidates due to having promising pharmacokinetic properties.

4. Conclusion
The designed compounds 1a–g, 3-(aminomethyl)-6-{3-[4-(trifluoromethyl)phenyl]acryloyl}-2(3H)-benzoxazolones, 
were synthesized and purified successfully. Their inhibition effects on hCA I, hCA II, and AChE enzymes were investigated 
for the first time. The inhibition results of the newly synthesized compounds showed that all Mannich bases had higher 
inhibitory activities against carbonic anhydrases (hCA I and hCA II) than the reference compound AZA. The pyrrolidine 
derivative compound 1d had the highest inhibition effect in the series on hCA I with a lower Ki value (12.3 ± 1.2 nM) 
than AZA (Ki = 84.4 ± 8.4 nM). Besides, the most potent compound in the series was the N-methyl piperazine derivative 
compound 1g having Ki value as 8.55 ± 1.90 nM towards hCA II. According to the hCA inhibition results, compounds 
1d and 1g were the most expressive lead compounds of the study with remarkable Ki values (12.3 nM and 8.55 nM, 
respectively) which are approximately 7 times lower than AZA. According to the AChE inhibitory activity results, the 
morpholine derivative compound 1f was the most active compound in the series with the Ki value as 35.2 ± 2.0 nM, which 
is about two-fold lower than the reference drug, TAC. On the other hand, the most active compounds 1d (pyrrolidine 
derivative) towards hCA I, 1g (N-methyl piperazine derivative) towards hCA II, and 1f (morpholine derivative) towards 
AChE were docked at the binding sites of the mentioned enzymes to explain the inhibitory activities of the compounds. 
The docking results showed that the compounds 1d, 1g, and 1f had strong interactions with the active sites of hCA I, hCA 
II, and AChE, as expected. ADME prediction studies of the compounds 1 and 1a–g pointed out that the newly synthesized 
Mannich bases were not only potent AChE and CAs inhibitory compounds but also had promising physicochemical 

Table 3. In silico physicochemical and pharmacokinetic properties of the compounds 1 and 1a – g.

Compound MWa HBAb HBDc TPSAd CLogPo/w
e logSf Bioavailability scoreg

1 333.26 6 1 63.07 3.88 - 4.49 0.55
1a 390.36 7 0 55.45 3.97 - 4.85 0.55
1b 418.41 7 0 55.45 4.57 - 5.33 0.55
1c 446.46 7 0 55.45 5.29 - 6.01 0.55
1d 416.39 7 0 55.45 4.28 - 5.29 0.55
1e 430.42 7 0 55.45 4.57 - 5.59 0.55
1f 432.39 8 0 64.68 3.70 - 4.83 0.55
1g 445.43 8 0 58.69 3.75 - 5.02 0.55

a Molecular weight (<500 Da), b Number of hydrogen bond acceptors (<10), c Number of hydrogen bond donors (<5), d 
Topological polar surface area (20–130 Å2), e Octanol/water partition coefficient (Consensus logP value, recommended range: 
−2.0 to 6.5), f Aqueous solubility prediction (not higher than 6), g Abbott bioavailability score (probability at least 10% oral 
bioavailability in rat).
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and ADME properties for further investigations. As a conclusion, in vitro inhibition results and in silico studies of the 
synthesized compounds showed that the aminomethylation from the 3rd position of the benzoxazolone ring of the 
chalcone compound 1 by Mannich reaction is a useful modification in terms of carbonic anhydrases and AChE inhibitory 
activities as well as optimization of physicochemical and pharmacokinetic properties.

Figure 6. Bioavailability radar charts of compounds 1d, 1g, and 1f.
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