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ABSTRACT
Artificial intelligence (AI) and deep learning has made 
much headway in the consumer and advertising sector, 
not only affecting how and what people purchase these 
days, but also affecting behaviour and cultural attitudes. It 
is poised to influence nearly every aspect of our being, and 
the field of cardiology is not an exception. This paper aims 
to brief the clinician on the advances in AI and machine 
learning in the field of cardiology, its applications, while 
also recognising the potential for future development in 
these two mammoth fields. With the advent of big data, 
new opportunities are emerging to build AI tools, with 
better accuracy, that will directly aid not only the clinician 
but also allow nations to provide better healthcare to its 
citizens.

INTRODUCTION
Despite significant advances in diagnosis 
and treatment, cardiovascular disease (CVD) 
remains the most common cause of morbidity 
and mortality worldwide, accounting 
for approximately one- third of annual 
deaths.1 2 Early and accurate diagnosis is key 
to improving CVD outcomes. A core of these 
can be tackled through regular screenings. 
Although screening programmes at present 
can be cost inefficient for niche diseases, 
artificial intelligence (AI) has most defi-
nitely broken the rules of what our present 
cardiovascular health monitoring tools can 
be capable of; From using ECG’s for detec-
tion of left ventricular systolic dysfunction, 
to cardiovascular risk prediction with accu-
racies higher than a mammogram.3 In this 
paper, we wish to briefly touch on the recent 
advancements in the field, and how AI could 
not only bring the birth of new technology, 
but also expand the capabilities of current 
tools available to us.

A BRIEF INTRODUCTION TO AI PRINCIPLES FOR 
THE CLINICIAN
Machine learning and deep learning
AI has under it a few major subsets, two of 
them being machine learning (ML) and 
deep learning (DL).4 ML is an application of 
AI that includes algorithms that parse data, 

learn from that data, and then go on to make 
informed decisions based on what they’ve 
interpreted from it. In the music streaming 
industry, this would help to analyse the bulk 
of songs a user listens to, compare it for simi-
larities with a bunch of other users using the 
same service and then provide suggestions 
from listeners with similar musical taste.

A subfield of ML is what is known as DL 
(figure 1). DL is more akin to how we as 
humans ‘think’, working through what is 
known as a ‘neural network’. Unlike an ML 
algorithm, a DL neural network will have 
multiple layers, each layer consisting of an 
algorithm that in most simplistic terms takes 
an input, runs it through a mathematical 
function, and provides a relevant ‘insightful’ 
output. This output can then be passed on as 
input to another layer to get another feature 
detail, so on and so forth, each layer honing 
in and picking out the most relevant details 
with respect to the task at hand (figure 2).

In DL, one can stack multiple such layers 
to create a neural network of ‘n’ size, limited 
only by the amount of computing ability and 
processing time available at hand.

DL, with its ability to learn by itself, has 
significantly created newer avenues in AI 
research. In the field of cardiology, this 
technology is being used to detect and clas-
sify arrhythmias and murmurs using ECG 
tracings and stethoscope recordings respec-
tively. In echocardiography (ECHO), AI 
image processing can help in automation of 
multiple parameter detection like Ejection 
fraction, as well as in quick screening exams.

Natural language processing
While most of the fields applying AI rely on 
data that can be easily accessed by a computer, 
medicine isn’t one of them. Clinical narra-
tives comprise more than 80% of data in elec-
tronic health records.5 Much of this data is 
free- text and unstructured whose summarisa-
tion would be time and labour- intensive. For 
it to be made computer- manageable, tools 
for automatic identification and extraction of 
relevant data would be hence needed.
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Fortunately, recent advances in technology, especially 
natural language processing (NLP), have enabled this 
automatic information extraction from narrative text. 
NLP is another AI method that converts unstructured 
text into a structured, machine readable form. Presently, 
NLP has been used to extract information from clinical 
notes, radiology reports and pathology reports.

The advancements in NLP have been tied to advance-
ments in AI and DL which rely on ‘big data’ for their 
accuracy, making possible it’s venture into the field of 
medicine.

AI IN CARDIOLOGY
Electrophysiology
An ECG records the electrical signals produced by the 
heart through sensors placed on the skin. One of the 
most common tests used to quickly detect a variety of 
heart diseases, its utility was thus far limited though, in 
comparison to more advanced imaging techniques such 
as two- dimensional (2D)- ECHO.

Asymptomatic left ventricular dysfunction (ALVD), a 
treatable condition, is present in 3%–6% of the general 
population, and associated with reduced quality of life 
and longevity. Classified as stage B heart failure, it is 
defined as depressed left ventricular systolic function in 

Figure 1 The brain, AI, ML and DL—the relationship.35 AI, artificial intelligence; ARDA, automated retinal disease assessment; 
DL, deep learning; ML, machine learning.

Figure 2 A DL neural network using data from multiple 
variables to predict the visibility in a foggy situation at an 
airport36 in simplest of terms, the neural network accepts 
multiple inputs through its input layer. At each node, the data 
are analysed using a mathematical filter function, before 
being passed onto the next node. This repeats for hidden 
layers of ‘N’ depth, creating a feature map that summarises 
the presence of detected features in the input, honing and 
refining itself at each depth of layer before finally being 
passed out through the output layer. DL, deep learning.
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the absence of clinical heart failure. Early detection and 
initiation of therapy in patients with presumed ALVD has 
shown to lead to better outcomes.6 Presently 2D- ECHO is 
the only way to diagnose this condition, but AI seems to 
be on the verge of changing that.

Attia et al trained a convolutional neural network to 
identify patients with ventricular dysfunction using ECG 
data alone.7 In their study, of the patients without ventric-
ular dysfunction on presentation, those with a positive AI 
screen were at four times the risk of developing future 
ventricular dysfunction compared with those with a nega-
tive screen. This makes the study one of the pivotal one’s 
in the field, owing to the use of a cheaper and more 
widely accessible modality such as ECG providing a func-
tionality once exclusive to an ECHO.

While long- term cardiac monitoring, such as a Holter 
exam, provides information mostly about cardiac rhythm 
and repolarisation, the standard, short duration, 12- lead 
ECG can detect a wider range of cardiac electrical activity. 
These include arrhythmias, conduction disturbances, 
acute coronary syndromes, chamber hypertrophy and 
enlargement, effects of drugs and electrolyte distur-
bances. Thus, a DL approach that allows for accurate 
interpretation of the 12 lead ECG would have the greatest 
impact.

A majority of physicians, including cardiologists calcu-
late QTc incorrectly, potentially missing a long QT 
syndrome, which could be deadly.8 Although present ECG 
Machines can provide automated estimation of various 
intervals, AI- based automatic ECG interpretation could 
aid in decreasing physician mishaps by allowing better 
accuracies(4% error rate) and offer more functionalities 
such as detecting ischaemic cardiac beats.9 Furthermore, 
with the development of newer architectures and faster 
chips, smaller mobile devices capable of interpreting 
an ECG may well be an effective screening tool for both 
acquired and congenital long QT syndrome in a variety 
of clinical settings, especially where a standalone 12- lead 
electrocardiography is not accessible or cost- effective.10

AI has also been used to detect arrhythmias such as 
atrial fibrillation and conduction blocks. Lyon et al have 
been able to identify and classify ECG phenotypes asso-
ciated with arrhythmic risk markers in hypertrophic 
cardiomyopathy.11

The accuracy of these predictions is based on the large 
datasets, which are now increasingly and easily available 
thanks to digitisation, paving the way for future advances 
in this modality.

Echocardiography
ECHO remains the principal imaging modality in cardi-
ology for the evaluation of cardiac structure and function. 
Unfortunately, being an ultrasonography based imaging 
modality, the acquisition and interpretation of echocar-
diograms remains highly dependent on operator expe-
rience and hence open to human errors. This allows an 
opportunity for AI which could be used to minimise such 
errors, and open up the possibility of standardisation.

A recent study conducted by Narang et al concluded 
that AI can indeed be used to assist untrained personnel, 
to acquire echocardiographic studies with diagnostic 
potential.12 In this study, 8 untrained nurses in ultraso-
nography used AI guidance to scan 30 patients with a 
10- view ECHO protocol. Five expert echocardiographers, 
did a blind review of these scans and felt they were of 
diagnostic quality for left ventricular size and function 
in 98.8% of patients, right ventricular size in 92.5%, and 
presence of pericardial effusion in 98.8%. Their AI guid-
ance algorithm represents a step forward in the inter-
action of medical imaging, and novice sonologists, as 
also opening up the possibility of ultrasonography into 
settings that ordinarily would not have access due to lack 
of trained personnel.

Compared with a human, ML models have also been 
shown to provide an almost instantaneous assessment of 
an echocardiogram. In a study by Knackstedt et al, left 
ventricular ejection fraction could be analysed in approx-
imately 8 s,13 which is far quicker than what a trained 
cardiologist with years of experience would be able to 
achieve. This quick measurement would allow cardiolo-
gists to save time, allowing for an increase in the number 
of scans, decreasing the reporting time, and providing a 
cost- benefit advantage.

Further work (table 1) has shown that AI models used 
to identify borders can provide an accurate identification 
of left and right ventricular cavities so as to derive their 
respective volumes, comparable to those measured by 
cardiac MRI (figure 3.14–18

Stress ECHO
Stress ECHO is one of the most commonly used func-
tional imaging tests for coronary artery disease.

A meta- analysis of 62 published stress ECHO studies 
demonstrated a wide variation in reported sensitivities 
and specificities for dobutamine stress echocardiography. 
Sensitivity ranged from 33% to 98%, while the specificity 
ranged from 38% to 97% resulting in average sensitivity 
and specificity for dobutamine stress ECHO of 81% and 
82%, respectively. In essence, one in every five patients 
could be potentially misdiagnosed.19

Quantitative assessment of changes in regional wall 
motion is important in stress ECHO to identify patients 
with prognostically significant coronary disease. It is also 
used in assessment of systolic heart failure. A study by 
Omat et al20 found that using a DL technique of convo-
lutional neural networks provided a sensitivity of 81.1% 
compared with an expert operator interpretation, 
although most studies until have been on relatively small 
datasets. Nevertheless, they show promise that ML models 
may be able to support decision making in stress ECHO, 
reducing the incidence of a patient being misdiagnosed.

AI in clinical cardiology and daily life
Clinical decision support and preventive cardiology
In clinical practice, the main goals are the right diagnosis 
and effective treatment of the patient.
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Yan et al.21propose an interesting concept—they 
propose that wherein the traditional model involved a 
clinician analysing and giving ‘instructions’ to a patient 
directly, a novel approach would rather be the clinician 
giving instructions to an AI solution acting as a liason.22 
The AI programme would then search for flaws in the 
clinician’s interpretation and if any such were found, 
would then request help from a senior clinician before 
finally passing the corrected advice on to the patient. 
This approach would most definitely help in decreasing 
errors in medical practice, acting as a redundancy tool.

Take for example, Google has been able to determine 
cardiovascular risk factors from retinal fundus photo-
graphs, such as age, gender, smoking status, blood pres-
sure and major adverse events.23 This work allowed the 
scientists to use this data to predict the patient’s risk of 
CVD, with an accuracy as high as 70%.

It gives hope that the future clinician may be able to 
ascertain a much better depth of a patient’s past history 
using devices that incorporate this tech, and hence better 
guide them in their medications and lifestyle.

When it comes to predicting prognosis, studies 
also showed that echocardiographic data and clin-
ical factors can be used by AI tools to facilitate heart 
failure diagnosis, classification, severity estimation and 
prediction of adverse events.24–26 Work by Nakashima 
et al allowed highly precise estimates of risk for out- of- 
hospital cardiac arrests using a ML model.27 Although 
few, studies in the in- patient setting are nevertheless 
promising. Zhang et al integrated AI with their hospital 
management system to analyse 14 clinical variables and 
predict in real- time the risk of major adverse cardiac 
events in patients presenting with chest pain.28 Other 
studies have shown that DL had high sensitivity and a 
low false- alarm rate at detecting patients with cardiac 
arrest in an in- patient setting.29 This would mean that 
in the future AI based tools, integrated with the hospital 
record management system, could well act as an early 
warning system to alert the clinician of patients who 
could potentially worsen in the coming days, and tailor 
treatment thus accordingly.

To note here would be that as with any new tech-
nology, it’s implementation poses to remain a challenge. 
AI is no stranger to this. This could well be guided by 
the Nonadoption, Abandonment, and Challenges to 
the Scale- Up, Spread, and Sustainability framework 
proposed by Greenhalgh et al.30 It is based on the premise 
that when considering on whether a technology will be 
successfully accepted or not, it is important to keep in 
mind that ‘it is not individual factors that make or break a 
technology implementation effort but the dynamic inter-
action between them’. When it comes to AI, we have a 
host of factors ranging from the cost of setup and it’s inte-
gration, to ethical and humanitarian issues and funding. 
In resource poor countries, with the lack of a basic elec-
tronic medical record system in most clinical setups and 
hence the relevant digital infrastructure, this would pose 
an even bigger challenge.Ta
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The digital stethoscope
With the development of higher quality and robust 
microphones such as Micro- Electro- Mechanical System, 
the development of the digital stethoscope was not far 
behind, opening up the field of computer- aided auscul-
tation.

Today’s digital stethoscopes can not just allow record-
ings to be shared wirelessly, but also use ML software to 
provide automatic arrhythmia detection with accuracies 
as high as 87%, and acoustic based automatic diagnosis 
of cardiac dysfunction. Audio recorded on such stetho-
scopes can further be uploaded online to services which 
greatly enhance the scope of the acoustic data.31

Wearable sensors
The Food and Drug Administration recently approved an 
ECG acquisition technology designed by Apple, for use in 
their Apple watch devices.32 In a standard ECG limb lead, 
lead 1 is the potential difference between the right arm 
and the left arm. For the apple watch to detect an ECG, 
the user has to touch the digital crown of the watch. The 
watch also contains electrodes on the back of the device 
which are in continuous contact with the user’s wrist. The 
watch then acquires the electrical potential between the 
electrodes and digital crown(essentially the potential 
differences between the two arms) to display a waveform. 
Software in the watch can then use this data to detect a 
sinus rhythm or an abnormality such as atrial fibrillation 
(Afib).

Wearable plethysmographs available today in most 
digital watches too can provide AFib detection. AI 
has been shown to improve the sensitivity and speci-
ficity of atrial fibrillation detection in wearable devices 

dramatically compared with conventional methods.33 
WATCH- AF(SmartWATCHes for Detection of Atrial 
Fibrillation) trial is one such study that showed that the 
photoplethysmographic algorithm had very high speci-
ficity and diagnostic accuracy compared with ECG data 
measured by cardiologists, but was limited by a high 
dropout rate owing to insufficient signal quality.34

MOVING FORWARD: FUTURE PROSPECTS
‘Cultural lags’, as proposed by William Ogbur, is the idea 
that as technological changes leap forward, they create 
a cultural lag in society, which then need to adapt to 
the new realities introduced by innovations (Ogburn, 
1922). The day when AI replaces a cardiologist is not yet 
in sight, nor may ever be. Although not mainstream yet, 
we are definitely in the era where AI is assisting cardi-
ologists across the world daily in faster and better diag-
nosis and image interpretations. The future lies in uing 
this technology in areas not yet ventured into due to 
cost constraints. Furthermore, integration of automatic 
diagnosis and cardiovascular risk assessment systems into 
existing electronic medical record software would not 
only improve holistic treatment, but also aid in coun-
selling of patients on modifiable risk factors, improving 
morbidity and mortality.
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