
Orozco et al. Translational Psychiatry           (2019) 9:243 

https://doi.org/10.1038/s41398-019-0578-3 Translational Psychiatry

ART ICLE Open Ac ce s s

Metabolomics analysis of children with autism,
idiopathic-developmental delays, and Down
syndrome
Jennie Sotelo Orozco1, Irva Hertz-Picciotto2, Leonard Abbeduto3,4 and Carolyn M. Slupsky 1,5

Abstract
Although developmental delays affect learning, language, and behavior, some evidence suggests the presence of
disturbances in metabolism are associated with psychiatric disorders. Here, the plasma metabolic phenotype of
children with autism spectrum disorder (ASD, n= 167), idiopathic-developmental delay (i-DD, n= 51), and Down
syndrome (DS, n= 31), as compared to typically developed (TD, n= 193) controls was investigated in a subset of
children from the case–control Childhood Autism Risk from Genetics and the Environment (CHARGE) Study.
Metabolome profiles were obtained using nuclear magnetic resonance spectroscopy and analyzed in an untargeted
manner. Forty-nine metabolites were identified and quantified in each sample that included amino acids, organic
acids, sugars, and other compounds. Multiple linear regression analysis revealed significant associations between 11
plasma metabolites and neurodevelopmental outcome. Despite the varied origins of these developmental disabilities,
we observed similar perturbation in one-carbon metabolism pathways among DS and ASD cases. Similarities were also
observed in the DS and i-DD cases in the energy-related tricarboxylic acid cycle. Other metabolites and pathways were
uniquely associated with DS or ASD. By comparing metabolic signatures between these conditions, the current study
expands on extant literature demonstrating metabolic alterations associated with developmental disabilities and
provides a better understanding of overlapping vs specific biological perturbations associated with these disorders.

Introduction
It is estimated that about one in six children between

the ages of 3 and 17 years in the United States have one or
more developmental disability1. Developmental delays
may impact day-to-day functioning, and usually last
throughout a person’s lifetime. Some developmental
delays have a known cause, such as the atypical cell
division resulting in an extra portion of chromosome 21
(HSA21) that results in Down syndrome (DS). However,
most developmental disabilities are thought to be caused
by a combination of factors that include genetics and/or
environment. One such example is autism spectrum

disorder (ASD), which has been linked with genetic
mutations and environmental exposures and thus has a
complex gene-environmental origin2,3.
Although developmental delays are a group of condi-

tions specifically affecting learning, language, and beha-
vior, there is evidence that disturbances in metabolism
may also be present4. ASD has been associated with
increased oxidative stress5,6, decreased methylation
capacity6,7, impaired sulfur metabolism8,9, gut micro-
biome dysbiosis10,11, and altered energy metabolism12,13.
Comorbidities of trisomy HSA21 include overexpression
of amyloid protein that results in increased Alzheimer’s
risk14 as well as overexpression of superoxide dismutase 1
that results in the increased oxidative stress observed in
individuals with DS15. Although, gene products of HSA21
may also be interacting with genes/proteins on other
chromosomes resulting in widespread metabolic
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consequences. Interestingly, a set of dizygotic twins (one
with DS, and the other with autism) was reported to have
similar alterations in the methionine cycle and transsul-
furation pathways6.
Metabolomics, the profiling of small-molecule meta-

bolites, provides a tool to define perturbations in meta-
bolic pathways. Indeed, the metabolome reflects the
interaction between genetic and environmental influences
and therefore can provide information to bridge the gap
between genotype and phenotype. In this study, the
plasma metabolome profiles of children (n= 442) diag-
nosed with ASD, DS, or idiopathic-developmental delay
(i-DD), were compared to age-matched typically devel-
oped (TD) children. The objective of this study was to
determine if there are identifiable plasma metabolome
differences and commonalities associated with develop-
mental delays of different etiologies.

Subjects and methods
Study population
All children in the present study are a subset of the

Childhood Autism Risk from Genetics and Environment
(CHARGE) Study16. The CHARGE study is a population-
based case–control study which aims to uncover the
environmental causes of autism and examine genetic
factors and the interactions between genes and environ-
ment in the etiology of autism. Details about the study
have previously been published16. Eligible children met
the following criteria: (a) aged between 24 and 60 months
at recruitment, (b) living with a biological parent who
speaks English or Spanish, (c) born in California, and (d)
residing in the study catchment areas. Participants were
sampled from three strata: children with ASD, children
with a developmental delay but not ASD (DD), and chil-
dren from the general population (TD). ASD and DD
children were recruited from the State of California
Department of Developmental Services (DDS). The pri-
mary aim of CHARGE was to investigate ASD, and
therefore TDs were matched for frequencies on age, sex,
and broad geographic distribution of the autism cases.
Each child’s diagnosis (ASD, DD, or TD) was confirmed at
the UC Davis MIND (Medical Investigation for Neuro-
developmental Disorders) Institute (Sacramento, CA) as
previously reported16.
The sample size used in this study was based on a prior

power test with some knowledge from previous literature.
Using Bonferroni correction to account for multiple
comparison (taking into account ~340 metabolites avail-
able in the Chenomx Profiler library, at α= 0.05, yielded
an adjusted α of 0.0001), a total sample size of 300 (with
equal numbers of each child’s diagnosis) would provide
>99.9% power to detect a 1 SD difference; 94.7% power to
detect a 0.8 SD difference, and 89% for a 0.75 SD differ-
ence for each pairwise comparison (e.g., ASD vs TD).

Other choices for distributing the 300 samples (e.g., 130
ASD, 80 DD, 90 TD) would also yield adequate power
even in the DD vs TD comparison, e.g., >80% power down
to a 0.8 SD difference. A total of 836 children from
CHARGE were considered for this analysis who had
sufficient ACD plasma for metabolomics analysis. Indi-
viduals with frequent gastrointestinal symptoms were
excluded (n= 366) from further analysis. Additionally,
children with other genetic conditions (n= 12), too little
volume or NMR processing errors (n= 15), and co-
occurring conditions (n= 1) were also excluded. Fur-
thermore, the original DD group in CHARGE was sub-
divided into an idiopathic DD (i-DD) group (with an
unknown etiology) and a DS group (which was reported
by a parent). Our final sample size was increased from the
original power calculations to a total of 442 children (167
ASD, 51 i-DD, 31 DS, and 193 TD) due to the increased
availability of samples and reduced cost of analysis
(Fig. 1).
The CHARGE study was approved by the State of

California Department of Developmental Services and the
institutional review boards at the University of California,
Davis, and Los Angeles. Informed consent was obtained
prior to participation and any collection of data.

1H nuclear magnetic resonance (NMR) metabolomics
analysis
Whole blood from each child was collected in yellow

top (Acid Citrate Dextrose) tubes (BD Biosciences, San
Jose, CA) at the time of child’s enrollment. Plasma was
isolated and frozen at −80 °C until further analysis. For
metabolomics analysis, thawed samples were filtered
through an Amicon 3000MW cut-off Centrifugal Device
to remove lipids and proteins. The water-soluble filtrate
was collected, and volume was adjusted with Type I
ultrapure water from Millipore Synergy UV system
(Millipore, Billerica, MI) if insufficient sample was col-
lected. An internal standard (ISTD) containing DSS-D6
([3-(trimethylsilyl)-1-propanesulfonic acid-d6], 0.2%
NaN3, in 99.8% D2O) was added, and the pH of each
sample was adjusted to 6.8 ± 0.1 by adding small amounts
of NaOH or HCl. Volumes of HCl and NaOH added were
recorded. An aliquot of the mixture was transferred to a
labeled 3mm Bruker NMR tube and stored at 4 °C until
NMR acquisition (within 24 h of sample preparation).
Samples were run on a Bruker AVANCE 600MHz

NMR spectrometer equipped with a SampleJet auto-
sampler using the NOESY-presaturation pulse sequence
(noesypr). NMR spectra were acquired at 25 °C, with
water saturation of 2.5 s during the prescan delay, a
mixing time of 100 ms, 12 ppm sweep width, an acquisi-
tion time of 2.5 s, 8 dummy scans, and 32 transients. All
spectra were zero-filled to 128 K data points and Fourier
transformed with a 0.5 Hz line broadening applied.
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Spectra were manually phased and baseline-corrected and
metabolites were identified and quantified using NMR
Suite v8.1 (Chenomx Inc., Edmonton, Canada)17. The
Chenomx profiler is linked to a database containing
metabolite NMR spectral signatures encoded at different
spectrometer 1H frequencies, including the 600MHz
containing 339 metabolites in its library valid at a pH
between 4 and 9 (ideally close to 7). To ensure metabolite
cluster fits remained within valid Chenomx profiler pH,
the average pH was collected ((adjusted pH−pH post-
NMR)/2) and manually input for each sample during
sample processing. The average pH in all of our samples
was 7.06 ± 0.3, ensuring all spectra were within a valid pH
range for the quantification of metabolites. Comparison of
the spectral data obtained for each plasma sample with
the Chenomx metabolite library resulted in a list of
compounds together with their respective concentrations
based on the known concentration of the added internal
standard. All compounds in the database have been ver-
ified against known concentrations of reference NMR
spectra of the pure compounds and have been shown to
be reproducible and accurate18–20. Neurodevelopmental
diagnosis remained blinded from investigators during
sample preparation as well as NMR data acquisition and
analysis.

Statistical analysis
Demographic characteristics of TD controls were

compared to each of the ASD, i-DD, and DS case groups

using the chi-square test for categorical variables and
ANOVA for continuous variables. Metabolite concentra-
tions (µM) were adjusted for any dilutions and log
transformed because of the wide variation and skewed
distribution. A total of 59 metabolites of diverse chemical
classes were identified in plasma samples. However,
metabolites identified in samples but originating from
sample preparation (e.g. glucose, citrate, ethanol, gly-
cerol), or falling below the detection limit for at least 20%
of samples (e.g. fructose, maltose, beta-alanine, propio-
nate, mannose, isopropanol) were excluded in the final
analysis. Therefore a total of 49 metabolites were analyzed
in this study and included those involved in amino acid
metabolism, glutathione metabolism, glycolysis, homo-
cysteine metabolism, ketone body synthesis, lipid meta-
bolism, tricarboxylic acid (TCA) cycle, urea cycle, and
others.
Multiple linear regression (MLR) (glm function) was

performed for each metabolite to assess the association
between neurodevelopmental diagnosis (independent
variables) and plasma metabolites (dependent variable).
TD children were used as a reference group for the
neurodevelopmental outcome. Possible confounders for
neurodevelopmental diagnosis and metabolite con-
centrations were explored through a literature review and
directed acyclic graphs (DAG) prior to model-building
(Supplementary Fig. 1). Covariates considered in our
DAG were child’s sex, child’s race/ethnicity, child’s age,
child’s year of birth, maternal age at child’s birth, maternal

CHARGE subset for metabolomics analysis 

Down 
Syndrome (DS) 

n=31

Austism Spectrum 
Disorder (ASD) 

n=167

Idiopathic-
Developmental 

Delay (i-DD) 
n=51

Typical 
Development (TD) 

n=193

Excluded: (Total n=28)
*samples with too little volume, 
or NMR processing errors (n=15)
*co-occuring ASD and DS (n=1)
*other genetic conidtions (n=12)

Developmental Delay
(DD)
n=82

Final groups 
in analysis

(Total n=442)

CHARGE Study 

ASD=358,  TD=298,  DD=180 (Total n=836)
Sufficient plasma sample availible for NMR-based metabolomics

Excluded: 
Individuals with frequent
gastrointestinal issues (n=366) 

ASD=173, TD=198, DD=99 (Total n=470)

Fig. 1 Flow chart of the study population
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race/ethnicity, maternal birthplace, year of blood collec-
tion, most recent food intake, and attributes pertaining to
maternal socioeconomic variables such as parental
homeownership and maximum maternal education. From
the DAG, we then identified a sufficient set of adjustment
factors that would remove confounding and minimize
bias in the estimated associations between diagnostic
group and metabolites. These included child’s sex (cate-
gorical: male/female [reference]), child’s race/ethnicity
(categorical: Hispanic, Other, White [reference]), child’s
age (continuous), year of plasma collection (categorical:
2003–2005, 2006–2008 [reference], 2009–2014), and
parental homeownership (categorical: yes [reference], no).
To account for multiple testing, we adjusted p values from
regression analysis by controlling the false discovery rate
(FDR) at 5% using the Benjamini–Hochberg procedure (p.
adjust.method = "BH") with pFDR values < 0.05 as statis-
tically significant. Effect size between ASD vs TD, i-DD vs
TD, and DS vs TD was evaluated using Cliff’s delta (δ)
statistic (cliff.delta function from the effsize package).
|δ| < 0.33 corresponds to small, |δ| < 0.474 corresponds to
medium, and |δ| > 0.475 corresponds to large effect size in
metabolite concentration differences. KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathway database
(http://www.genome.ad.jp/kegg/), HMDB (Human meta-
bolome database)21 (www.hmdb.ca), and MetaboAnalyst
Web application (www.metaboanalyst.ca) were used to
further examine the identified metabolic pathways. Sta-
tistical analyses were performed using R 3.3.3 (R Foun-
dation for statistical computing, version 3.0.1, Vienna
Austria. URL http://www.R-project.org) and SAS software
version 9.4 (SAS Institute Inc).

Results
General characteristics of participants in this study are

presented in Table 1. Children with ASD tended to be
socio-demographically similar to TD children. I-DD and
particularly DS children were more likely to be female than
were TD children. This was because the TD sex distribution
was matched to the projected ASD sex ratio of 4:1 (males:
females), but the DD group was not matched. I-DD cases
were more likely to be Hispanic and their mothers tended
to be the least educated. A larger proportion of mothers of
children with DS and TD were homeowners compared to
mothers of children with ASD and i-DD. The majority of
mothers were born in the US. Additionally, as expected,
mothers of children with DS tended to be older.
MLR analysis (Table 2) demonstrated significant asso-

ciations between 28 plasma metabolites and neurodeve-
lopment when comparing ASD, i-DD, and DS cases to TD
controls adjusting for child’s sex, child’s race/ethnicity,
child’s age, year of blood collection, and parental home-
ownership. Eleven metabolites remained significant after
FDR correction.

ASD cases had lower levels of 2-aminobutyrate (β=
−0.034, p= 0.018), 2-hydroxybutyrate (β=−0.054, p=
0.018), and 3-hydroxyisobutyrate (β=−0.057, p= 0.010),
but higher plasma concentrations of betaine (β= 0.029,
p= 0.032), choline (β= 0.027, p= 0.034), cis-aconitate
(β= 0.048, p= 0.023), lactate (β= 0.053, p= 0.014),
ornithine (β= 0.051, p= 0.001), and the amino acids
alanine (β= 0.040, p= 0.0001), arginine (β= 0.037, p=
0.043), asparagine (β= 0.030, p= 0.039), glycine (β=
0.038, p= 0.003), histidine (β= 0.031, p= 0.004), and
serine (β= 0.031, p= 0.003) compared to TD controls.
Only higher levels of alanine (pFDR= 0.009), glycine (pFDR
= 0.022), ornithine (pFDR= 0.016), and serine (pFDR=
0.041) remained significant after FDR correction but had
small effect sizes (|δ| < 0.33).
Children with i-DD had, similar to the ASD children,

higher plasma cis-aconitate (β= 0.065, p= 0.033) and
lactate (β= 0.073, p= 0.022); distinct from the ASD
children, they also had higher plasma 2-oxoglutarate (β=
0.060, p= 0.032), acetate (β= 0.109, p= 0.012), glutamate
(β= 0.109, p= 0.007), and succinate (β= 0.059, p=
0.021), but lower levels of acetoacetate (β=−0.198, p=
0.011) compared to TD controls. After FDR correction,
none of the metabolites remained significant; however,
trends for elevated plasma acetate, glutamate, lactate, and
the TCA cycle intermediates (2-oxoglutarate, cis-aconi-
tate, and succinate) were close to significant among i-DD
cases as compared to controls.
Children with DS had higher plasma 2-oxoglutarate

(β= 0.142, p < 0.0001), acetate (β= 0.134, p= 0.0102),
carnitine (β= 0.065, p < 0.0001), cis-aconitate (β= 0.094,
p= 0.014), choline (β= 0.104, p < 0.0001), creatinine
(β= 0.078, p < 0.0001), dimethyl sulfone (β= 0.133, p=
0.002), lysine (β= 0.059, p= 0.020), myo-inositol (β=
0.075, p= 0.008), N,N-dimethylglycine (β= 0.104, p=
0.0002), O-acetylcarnitine (β= 0.152, p < 0.0001), and
urea (β= 0.070, p= 0.015) compared to TD controls.
After FDR adjustment, lipid metabolism metabolites
carnitine (pFDR= 0.008) and O-acetylcarnitine (pFDR=
0.0004), homocysteine metabolism metabolites (N,N-
dimethylglycine (pFDR= 0.027) and choline (pFDR=
0.0004)), TCA cycle intermediate 2-oxoglutarate
(pFDR = 0.0004), as well as creatinine (pFDR= 0.0004),
and dimethyl sulfone (pFDR= 0.029) remained elevated
in DS cases as compared to TD controls. Large effect
sizes (|δ| > 0.475) were observed for these metabolites.

Discussion
In this study, we investigated the plasma metabolomic

profiles of children with ASD, i-DD, and DS compared to
age-matched TD controls. Interestingly, we observed per-
turbation in one-carbon metabolism pathways among DS
and ASD cases, although ASD was associated with the folic
acid-folate cycle, whereas the methionine cycle was affected
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in DS (Fig. 2a). Similarly, DS, i-DD, and ASD cases each
showed some differences from TD children in mito-
chondrial dysfunction and/or the TCA cycle, with the i-
DD and DS tending to be the highest for several TCA
cycle metabolites (Fig. 3a). However, other metabolites
were uniquely associated with DS and ASD (Fig. 3e–i).

In comparison with TD controls, there were large effect
size differences for children with DS, who had sig-
nificantly elevated levels of choline and N,N-dimethyl-
glycine (N,N-DMG) (Fig. 2b). A trend for elevated betaine
was also found among ASD cases compared to controls.
Choline and its oxidation product betaine can serve as

Table 1 Sociodemographic of the study population

Characteristics of study population ASD cases (N= 167) i-DD cases

(N= 51)

DS cases (N=31) TD controls

(N= 193)

P valuea

Child’s sex, % (n)

Male 73.65 (123) 58.82 (30) 35.48 (11) 73.06 (141) <0.0001a

Female 26.35 (44) 41.18 (21) 64.52 (20) 26.94 (52)

Child’s age (months)

Mean (SD)b 43.96 (10.23) 46.67 (7.88) 44.41 (9.18) 43.09 (9.76) 0.13a

Child’s race/ethnicity, % (n)

White 44.91 (75) 39.22 (20) 48.39 (15) 52.33 (101) 0.22a

Hispanic 35.53 (61) 43.41 (22) 38.71 (12) 26.42 (41)

Other 18.56 (31) 17.65 (9) 12.90 (4) 21.24 (41)

Year of blood collection, % (n)

2003–2005 30.54 (51) 7.84 (4) 3.23 (1) 13.47 (26) 0.0002a

2006–2008 32.34 (54) 37.25 (19) 35.48 (11) 37.82 (73)

2009–2011 21.56 (36) 39.22 (20) 32.26 (10) 31.61 (61)

2012–2014 15.57 (26) 15.69 (8) 29.03 (9) 17.10 (33)

Maximum maternal education in home, % (n)

High school graduate or less 18.56 (31) 17.65 (9) 16.13 (5) 14.51 (28) 0.37a

Some college or technical, vocational or

associate degree

35.33 (59) 50.98 (26) 32.26 (10) 32.64 (63)

Bachelor’s degree 34.13 (57) 25.49 (13) 41.94 (13) 38.86 (75)

Graduate or professional degree 11.98 (20) 5.88 (3) 9.68 (3) 13.99 (27)

Maternal birthplace

US 74.85 (125) 78.43 (40) 80.25 (25) 84.97 (164) 0.24a

Mexico 9.58 (16) 7.84 (4) 9.68 (3) 3.63 (7)

Other 15.57 (26) 13.73 (7) 9.68 (3) 11.40 (22)

Maternal age at child’s birth (years), % (n)

≤19 3.59 (6) 3.92 (2) 0.00 (0) 5.18 (10) 0.005a

20–29 37.12 (62) 49.02 (25) 29.03 (9) 36.79 (71)

30–34 31.14 (52) 23.53 (12) 12.90 (4) 36.27 (70)

≥35 28.14 (47) 23.53 (12) 58.06 (18) 21.76 (42)

Homeownership, % (n)

Yes 63.47 (106) 60.78 (31) 70.97 (22) 74.09 (143) 0.10a

No 36.53 (61) 39.22 (20) 29.03 (9) 25.91 (50)

aX2 test (nominal data) or ANOVA test (continuous data) was performed
bSD standard deviation
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Table 2 Multiple linear regression (MLR) analysis of log-transformed plasma metabolites concentrations for children
with autism spectrum disorder (ASD; n= 167), idiopathic-developmental delay (i-DD; n= 51), and Down syndrome (DS;
n= 31), each compared to children with typical development (TD; n= 193)

Pathway Metabolite Diagnosis β 95% CI P FDR δ

Bacterial metabolite Acetate ASD −0.025 (−0.082, 0.033) 0.683 −0.01

i-DD 0.109 (0.024, 0.193) 0.097 0.28

DS 0.134 (0.029, 0.239) 0.097 0.37

Dimethyl sulfone ASD −0.026 (−0.072, 0.020) 0.575 −0.17

i-DD 0.012 (−0.056, 0.079) 0.903 0.05

DS 0.133 (0.049, 0.217) 0.030 0.87

BCAA metabolism, amino acid metabolism 2-Hydroxyisovalerate ASD −0.023 (−0.055, 0.008) 0.407 −0.18

i-DD −0.040 (−0.086, 0.006) 0.288 −0.28

DS 0.009 (−0.048, 0.066) 0.913 0.07

3-Hydroxyisobutyrate ASD −0.057 (−0.101, −0.014) 0.094 −0.26

i-DD −0.020 (−0.084, 0.044) 0.839 −0.13

DS 0.038 (−0.042, 0.117) 0.618 0.15

3-Methyl-2-oxovalerate ASD 0.003 (−0.030, 0.035) 0.956 −0.02

i-DD 0.010 (−0.037, 0.057) 0.861 0.02

DS 0.051 (−0.007, 0.110) 0.286 0.32

Isoleucine ASD 0.007 (−0.024, 0.039) 0.861 0.05

i-DD 0.002 (−0.045, 0.049) 0.984 0.01

DS 0.036 (−0.022, 0.094) 0.511 0.22

Leucine ASD 0.004 (−0.024, 0.032) 0.915 0.01

i-DD 0.003 (−0.037, 0.044) 0.956 0.03

DS 0.026 (−0.025, 0.076) 0.609 0.19

Valine ASD −0.002 (−0.027, 0.024) 0.977 −0.04

i-DD −0.007 (−0.045, 0.031) 0.888 −0.08

DS 0.041 (−0.006, 0.088) 0.286 0.32

Glutathione metabolism 2-Aminobutyrate ASD −0.034 (−0.062, −0.006) 0.113 −0.22

i-DD −0.014 (-0.056, 0.027) 0.795 −0.04

DS 0.000 (−0.052, 0.051) 0.995 0.05

Glutathione metabolism, amino acid metabolism 2-Hydroxybutyrate ASD −0.054 (−0.098, −0.009) 0.113 −0.18

i-DD 0.015 (−0.050, 0.080) 0.861 0.08

DS 0.040 (−0.041, 0.121) 0.609 0.16

Histidine ASD 0.031 (0.010, 0.053) 0.051 0.16

i-DD −0.013 (−0.045, 0.018) 0.691 −0.12

DS −0.019 (−0.059, 0.020) 0.609 −0.16

Glutathione metabolism, lipid metabolism, glycine, serine,

threonine metabolism, amino acid metabolism

Serine ASD 0.031 (0.010, 0.051) 0.039 0.25

i-DD 0.027 (−0.003, 0.057) 0.260 0.31

DS −0.006 (−0.043, 0.031) 0.913 0.04

Glycine, serine, threonine metabolism, amino acid metabolism Threonine ASD 0.020 (−0.008, 0.047) 0.426 0.12

i-DD 0.020 (−0.021, 0.060) 0.609 0.18
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Table 2 continued

Pathway Metabolite Diagnosis β 95% CI P FDR δ

DS 0.027 (−0.024, 0.077) 0.589 0.24

Glycolysis Lactate ASD 0.053 (0.011, 0.095) 0.101 0.17

i-DD 0.073 (0.011, 0.135) 0.122 0.41

DS 0.071 (−0.006, 0.148) 0.260 0.48

Pyruvate ASD −0.007 (−0.072, 0.058) 0.938 −0.08

i-DD −0.021 (−0.117, 0.074) 0.861 0.02

DS −0.042 (−0.160, 0.077) 0.787 0.00

Glycolysis, amino acid metabolism Alanine ASD 0.040 (0.018, 0.062) 0.010 0.28

i-DD 0.019 (−0.013, 0.052) 0.540 0.20

DS 0.024 (−0.017, 0.064) 0.546 0.35

Homocysteine metabolism Betaine ASD 0.029 (0.003, 0.056) 0.155 0.19

i-DD 0.000 (−0.040, 0.039) 0.995 0.03

DS −0.016 (−0.064, 0.033) 0.839 −0.05

N-N-Dimethylglycine ASD 0.017 (−0.018, 0.052) 0.618 0.06

i-DD −0.001 (−0.053, 0.051) 0.984 −0.03

DS 0.104 (0.039, 0.168) 0.028 0.67

Homocysteine metabolism, glutathione metabolism, glycine,

serine, threonine metabolism, amino acid metabolism

Glycine ASD 0.038 (0.015, 0.061) 0.023 0.24

i-DD 0.019 (−0.015, 0.052) 0.581 0.24

DS 0.029 (−0.012, 0.071) 0.437 0.36

Homocysteine metabolism, lipid metabolism Choline ASD 0.027 (0.002, 0.051) 0.156 0.12

i-DD 0.035 (−0.002, 0.071) 0.238 0.26

DS 0.104 (0.059, 0.149) 0.000 0.98

Homocysteine metabolism, methionine cycle, amino acid

metabolism

Methionine ASD 0.019 (−0.020, 0.058 0.609 0.09

i-DD 0.014 (−0.043, 0.071) 0.861 0.08

DS −0.011 (−0.082, 0.060) 0.913 −0.05

Ketone body 3-Hydroxybutyrate ASD −0.033 (−0.113, 0.046) 0.691 −0.02

i-DD 0.026 (−0.091, 0.143) 0.861 0.01

DS 0.133 (−0.011, 0.278) 0.260 0.23

Acetoacetate ASD −0.027 (−0.130, 0.075) 0.861 −0.05

i-DD −0.198 (−0.349, −0.046) 0.094 −0.39

DS −0.136 (−0.324, 0.052) 0.414 −0.38

Acetone ASD −0.028 (−0.062, 0.007) 0.342 −0.09

i-DD 0.012 (−0.039, 0.063) 0.861 0.07

DS 0.060 (−0.003, 0.123) 0.238 0.24

Lipid metabolism Carnitine ASD −0.010 (−0.029, 0.010) 0.609 −0.17

i-DD 0.018 (−0.011, 0.046) 0.511 0.25

DS 0.065 (0.030, 0.100) 0.009 0.82

O-Acetylcarnitine ASD −0.008 (−0.046, 0.030) 0.861 0.01

i-DD 0.029 (−0.026, 0.084) 0.589 0.19

DS 0.152 (0.083, 0.221) 0.000 0.82
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Table 2 continued

Pathway Metabolite Diagnosis β 95% CI P FDR δ

Lysine metabolism, amino acid metabolism Lysine ASD 0.006 (−0.021, 0.034) 0.861 0.01

i-DD 0.002 (−0.039, 0.042) 0.984 0.08

DS 0.059 (0.009, 0.109) 0.120 0.57

Neurotransmitter precursor amino acid, amino acid

metabolism

Phenylalanine ASD 0.005 (−0.016, 0.027) 0.861 −0.03

i-DD 0.019 (−0.013, 0.051) 0.540 0.20

DS 0.008 (−0.032, 0.047) 0.887 0.14

Tyrosine ASD −0.004 (−0.035, 0.026) 0.916 −0.06

i-DD 0.012 (−0.033, 0.057) 0.861 0.06

DS −0.047 (−0.103, 0.009) 0.306 −0.33

Neurotransmitter precursor amino acid, glutathione

metabolism, amino acid metabolism

Glutamate ASD −0.015 (−0.069, 0.039) 0.861 −0.08

i-DD 0.109 (0.030, 0.188) 0.076 0.42

DS 0.059 (−0.040, 0.157) 0.540 0.28

Neurotransmitter precursor amino acid, glutathione

metabolism, urea cycle, amino acid metabolism

Glutamine ASD 0.026 (−0.009, 0.061) 0.407 0.09

i-DD −0.033 (−0.085, 0.019) 0.511 −0.13

DS −0.015 (−0.079, 0.049) 0.861 −0.03

Neurotransmitter precursor amino acid, tryptophan

metabolism, amino acid metabolism

Tryptophan ASD 0.038 (−0.019, 0.095) 0.487 0.21

i-DD 0.008 (−0.076, 0.092) 0.947 0.06

DS 0.005 (−0.099, 0.110) 0.977 0.00

One-carbon metabolism Formate ASD −0.014 (−0.040, 0.012) 0.589 −0.01

i-DD 0.018 (−0.020, 0.056) 0.627 0.09

DS −0.011 (−0.058, 0.036) 0.861 −0.24

Other, amino acid metabolism Taurine ASD −0.004 (−0.029, 0.022) 0.914 −0.09

i-DD 0.004 (−0.033, 0.041) 0.938 0.13

DS −0.026 (−0.072, 0.021) 0.581 −0.10

Others, proline metabolism Trans-4-Hydroxy-L-proline ASD 0.001 (−0.029, 0.031) 0.984 −0.03

i-DD 0.000 (−0.044, 0.045) 0.995 0.06

DS 0.021 (−0.034, 0.076) 0.746 0.21

Polyamines & creatine Creatine ASD −0.001 (−0.025, 0.023) 0.977 −0.07

i-DD −0.019 (−0.054, 0.017) 0.589 −0.15

DS 0.037 (−0.007, 0.081) 0.308 0.29

Creatinine ASD −0.001 (−0.019, 0.017) 0.984 −0.02

i-DD −0.004 (−0.030, 0.023) 0.916 0.09

DS 0.078 (0.045, 0.111) 0.000 0.80

Purine metabolism Hypoxanthine ASD −0.053 (−0.146, 0.041) 0.581 −0.10

i-DD 0.039 (−0.099, 0.177) 0.861 0.08

DS 0.038 (−0.133, 0.209) 0.861 0.03

Sugar derivatives Myo-inositol ASD 0.007 (−0.023, 0.038) 0.861 −0.04

i-DD 0.010 (−0.035, 0.054) 0.861 −0.01

DS 0.075 (0.020, 0.131) 0.079 0.54
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methyl group donors during folate deficiency for one-
carbon metabolism. Indeed, low folate availability has
previously been shown to upregulate the choline depen-
dent remethylation of homocysteine22, and a concomitant
increase in blood N,N-DMG concentration23. Our results
suggest upregulation of choline, betaine, and N,N-DMG
pathway as methyl donors in DS and ASD is potentially

related to folate availability. Obeid et al.24 reported similar
findings in methylation pathway metabolites and found
elevated blood cystathionine, cysteine, betaine, choline,
and N,N-DMG in children and young adults with DS (n=
35) compared to age-matched controls (n= 47). More-
over, new one-carbon units primarily enter the folate
cycle as 5,10-methylene-THF (5,10 methyl-THF) made

Table 2 continued

Pathway Metabolite Diagnosis β 95% CI P FDR δ

TCA cycle 2-Oxoglutarate ASD 0.036 (−0.002, 0.073) 0.238 0.10

i-DD 0.060 (0.005, 0.115) 0.155 0.37

DS 0.142 (0.074, 0.210) 0.000 0.93

Cis-aconitate ASD 0.048 (0.007, 0.088) 0.123 0.17

i-DD 0.065 (0.005, 0.126) 0.156 0.40

DS 0.094 (0.019, 0.168) 0.101 0.53

Fumarate ASD 0.004 (−0.032, 0.040) 0.938 0.03

i-DD 0.014 (−0.039, 0.066) 0.861 0.06

DS 0.002 (−0.064, 0.067) 0.984 0.00

TCA cycle Succinate ASD 0.010 (−0.024, 0.044) 0.854 0.07

i-DD 0.059 (0.009, 0.110) 0.120 0.41

DS 0.049 (−0.013, 0.111) 0.352 0.45

Urea cycle Ornithine ASD 0.051 (0.021, 0.081) 0.017 0.24

i-DD 0.033 (−0.011, 0.077) 0.392 0.28

DS 0.035 (−0.020, 0.090) 0.511 0.37

Urea ASD −0.028 (−0.058, 0.003) 0.276 −0.20

i-DD −0.036 (−0.081, 0.009) 0.352 −0.30

DS 0.070 (0.014, 0.126) 0.101 0.43

Urea cycle, amino acid metabolism Arginine ASD 0.037 (0.001, 0.072) 0.184 0.23

i-DD 0.020 (−0.033, 0.072) 0.757 0.13

DS 0.034 (−0.031, 0.099) 0.589 0.25

Asparagine ASD 0.030 (0.001, 0.058) 0.173 0.11

i-DD −0.036 (−0.078, 0.006) 0.289 −0.24

DS 0.007 (−0.045, 0.058) 0.926 0.12

Proline ASD −0.002 (−0.032, 0.028) 0.965 −0.07

i-DD 0.009 (−0.036, 0.053) 0.887 0.05

DS 0.020 (−0.036, 0.075) 0.787 0.21

Xenobiotic Glycolate ASD −0.025 (−0.050, 0.001) 0.238 −0.08

i-DD 0.025 (−0.013, 0.063) 0.487 0.18

DS −0.010 (−0.057, 0.037) 0.861 −0.17

MLR models were adjusted for child’s sex, child’s race/ethnicity, child’s age at blood draw, parental homeownership, and year of blood collection. Beta-coefficients (β)
and 95% confidence intervals (CI) are presented. Complete list of plasma metabolites identified and quantified in study is presented. The metabolites which remained
significant after FDR correction (PFDR) at 5% are in bold. Effect size (δ) between ASD vs TD, i-DD vs TD, and DS vs TD is presented below: |δ| < 0.33 corresponds to small,
|δ| < 0.474 corresponds to medium, |δ|>0.475 corresponds to large effect sizes
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from the choline/betaine/N,N-DMG metabolism pathway,
or from the interconversion of the amino acids serine and
glycine. Interestingly, we found elevated levels of glycine

and elevated serine among ASD cases compared to con-
trols (Fig. 2c). Glycine is the simplest amino acid with a
number of functions including fat metabolism,
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neurological function, muscle development, and incor-
poration into the antioxidant glutathione25. Polymorph-
isms in the 5,10-methylenetetrahydrofolate reductase
(MTHFR, EC 1.5.1.20) enzyme (MTHFR 677 C→T) affect
folate availability26 and increase the need for other
interdependent metabolites including choline and
betaine27. Our results demonstating elevated glycine and
serine provides additional evidence of the reduced ability

of the folate cycle to utilize one-carbon units in ASD.
Surprisingly, the MTHFR 677T alleles (with decreased
enzymatic activity) have been found to be more prevalent
among children with DS28–30 and among individuals with
ASD31–33. There is also a higher frequency of MTHFR 677T
alleles among Hispanics than in non-Hispanics34,35, which
may be a contributing factor to the increased risk of DS
reported among Hispanic populations36. Though a greater
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proportion of our DS cases were Hispanic compared to
controls (Table 1), our final MLR models were adjusted for
race/ethnicity. However, we did not account for MTHFR
genotype, which may play a contributing factor.
Mitochondria are complex cellular organelles governing

many metabolic processes including oxidative phosphor-
ylation, the electron transport chain, fatty acid oxidation,
the tricarboxylic (TCA) acid cycle, and many others.
Elevated plasma alanine among ASD cases, in addition to
trends for elevated lactate levels in children with DS, i-
DD, and ASD, suggests peripheral mitochondrial dys-
function associated with these disorders (Fig. 3b). Indeed,
these specific biochemical changes and mitochondrial
dysfunction more generally have previously been reported
in individuals with DS, motor delays, impaired neurolo-
gical function, developmental delays, and ASD15,37–42. In
addition, based on our observation of elevated levels of
plasma 2-oxoglutarate, we identified abnormalities in the
TCA cycle among DS cases (Fig. 3c). Morevover, there
also was a trend for increased 2-oxoglutarate and succi-
nate among i-DD cases, and a trend for elevated cis-
aconitate among DS, i-DD, and ASD cases. The TCA
cycle takes place in the mitochondrial matrix and is cri-
tical for converting carbohydrates and fats into cellular
energy. Although the cause of developmental delays in i-
DD cases is unknown, elevated levels of TCA cycle
metabolites could play a role in symptomology and/or
etiology. For example, inborn errors of metabolism
(including inborn errors in the TCA cycle) often result in
adverse neurodevelopment in affected individuals43. Col-
lectively, these findings show that TCA cycle metabolism
is altered in DS and i-DD cases, and potentially ASD cases
which also had a trend for elevated cis-aconitate, and
peripheral markers of mitochondrial dysfunction (lactate
and alanine). Interestingly, we found a large effect size for
elevated carnitine and O-acetylcarnitine (acetylated car-
nitine) in DS (Fig. 3d), suggesting altered mitochondrial
fatty acid oxidation as these metabolites serve as shuttles
in the mitochondria for fatty acid beta-oxidation. Overall,
our findings provide evidence of similarly altered mito-
chondrial function in the TCA cycle in DS and i-DD
cases. As well as altered carnitine metabolism among
DS cases.
Other metabolites uniquely perturbed in DS included

elevated creatinine and a trend for elevated urea com-
pared to TD controls (Fig. 3e, f), possibly suggesting
reduced kidney glomerular filtration. Indeed, elevated
levels of blood creatinine and urea have previously been
described in DS cases with reduced renal function44.
Interestingly, nephropathy is a common complication of
congenital heart disease45 (a condition which affects about
40–50% of individuals with DS46) and may play a con-
tributing role. However, elevated creatinine may also be
related to further evidence of altered methylation in DS,

considering the production of creatine (creatinine’s pre-
cursor) from guanidinoacetate requires a methyl group
from S-adenosyl-methionine (SAM). We observed DS
cases also had significantly elevated levels of dimethyl
sulfone compared to TD controls (Fig. 3g). Dimethyl
sulfone can be derived from various sources including
diet, human endogenous methanethiol metabolism, and
intestinal microbiota metabolism47. Elevated dimethyl
sulfone in plasma and cerebrospinal fluid was previously
reported in patients with neurometabolic disease48,
including patients with methionine adenosyltransferase I/
III deficiency (MAT I/III)48 (the enzyme responsible for
activating methionine to SAM in one-carbon metabo-
lism49), again implicating reduced methylation capacity in
DS. Of note, DS cases also had a trend for elevated levels
of myo-inositol compared to controls (Fig. 3h). Myo-
inositol can be obtained from the diet or be endogenously
produced. It plays an important role as a second mes-
senger50 and in the composition of phospholipids51. Ele-
vated myo-inositol has previously been reported52 in
elderly patients with Alzheimer’s disease (a common
comorbidity in DS53), suggesting abnormalities in the
inositol messenger pathway occur early in the etiology of
Alzheimer’s. Collectively, the metabolites altered in DS
cases appear to be related to methylation pathways, the
TCA cycle, carnitine metabolism, or comorbidities
common in DS.
We also found some evidence of altered amino acid

metabolism among children with ASD. Elevated orni-
thine, a non-proteinogenic amino acid which plays an
important role in the urea cycle, was significantly elevated
among ASD cases compared to controls (Fig. 3i). The urea
cycle, also known as the ornithine cycle, is the biochem-
ical reaction through which the body excretes excess
nitrogen by converting highly toxic ammonia to urea, a
pathway that partially takes place in the mitochondria.
Deficits in the urea cycle enzyme L-ornithine transcarba-
moylase (OTC), which catalyzes the transfer of the car-
bamoyl group of carbamyl phosphate to ornithine, were
previously attributed to autism-like symptoms in a case
study of a 4-year-old girl with undiagnosed urea cycle
disorder54. Interestingly, autism-like symptoms and
hyperactivity were no longer apparent after 1 year of
treatment. Certainly, it is possible that altered metabolic
pathways in ASD may be contributing to the symptoms,
severity, or perhaps etiology of the disorder. Collectively,
our metabolomics investigation imply reduced glu-
tathione production, dysregulated TCA cycle, mitochon-
drial dysfunction, and altered nitrogen/amino acid
metabolism are associated with ASD.
The developmental conditions under investigation in

this study have complex multifactorial etiologies influ-
enced by a number of factors, including gene–
environment interactions3. Although there is overlap in

Orozco et al. Translational Psychiatry           (2019) 9:243 Page 12 of 15



metabolite levels between the groups, our findings also
highlight substantial biochemical differences associated
with conditions and elucidate underlying metabolic
impairments contributing to clinical phenotypes. To the
best of our knowledge, this is the first study to collectively
investigate the plasma metabolome of children with ASD,
DS, and i-DD cases. Two previous studies have investi-
gated the metabolome of DS cases. One study investigated
DS pregnancies (i.e. mothers of children with DS)55, and
found metabolic alterations during the first trimester of
pregnancy associated with DS. Additionally, a more recent
study investigated the plasma and urine metabolome in
DS cases56 and identified impairments of the TCA cycle
consistent with our results. Only a few other studies have
looked at the blood metabolome in autism13,57–59,
although numerous others have looked at urine60–65.
However, many of these other metabolomic studies have
reported gastrointestinal (GI) issues as possible con-
founders in ASD12,66,67. Indeed, GI issues are one of the
most common medical conditions associated with aut-
ism68, and are also a common comorbidity in DS69. A
strength of our study is that we excluded individuals with
GI issues and examined a larger sample size compared to
similar metabolomics analyses. Had we included children
with common GI issues, it could have skewed our meta-
bolite analysis and introduced confounding from GI
issues.
This study is unique in that we were able to utilize the

existing case–control epidemiologic CHARGE16 study to
investigate the plasma metabolome and leverage the
extensive infrastructure of meta-data available. CHARGE
has contributed substantially to the current knowledge of
the environmental components relating to autism. For
example, it has reported data on associations of maternal
metabolic conditons70 and prenatal pesticides71 with
autism. Bridging metabolomics with existing epidemio-
logical studies can help decipher underlying biological
pathways, it can speed up analysis as samples are already
collected, and facilitate insights through interdisciplinary
collaboration. However, utilizing existing data sets for
metabolomics analysis also has its caveats. Notably, chil-
dren in this study did not fast before blood samples were
collected, and we did not account for differences in the
child’s current diet, which may affect some metabolites.
However, we found no association between child’s diag-
nosis (the predictor variable) and either time fasted (i.e.,
time since last food intake) or missingness for this vari-
able. Associations were evaluated in our DAG model and
a minimum but sufficient set of covariables need to
remove confounding was included in our final model.
Since child’s current diet is affected by their diagnosis72,73

and for reasons of temporality, it would not have played a
causal role in its etiology, but instead would be an inter-
mediate on the pathway from diagnosis to metabolite

profile. Hence adjustment for child’s current diet would
not be appropriate, and could introduce bias into the
analyses. Additionally, another limitation in our study is
that plasma metabolites were measured after neurodeve-
lopmental diagnosis was made. Therefore, it is not pos-
sible to draw conclusions about whether metabolic issues
contribute to the onset of any of these conditions. We also
did not address maternal metabolomic contributions to in
utero or postnatal brain development, although it is
plausible that placental transfer or breastfeeding might
transmit metabolic influences on early neurodevelop-
ment, potentially explaining observed associations of
maternal diabetes with autism or cognitive impair-
ment70,74–76. Furthermore, we did not investigate the role
of MTHFR genotype and folate status, which may explain
alterations in metabolites related to methylation.
Lastly, we did not investigate the dual diagnosis of these
neurodevelopmental disorders, such as the co-occurrence
of ASD and DS which occurs in about 8–38% of DS
cases77–79.
In conclusion, we identified several metabolic pathways

which were affected in children with ASD, DS, and i-DD.
Children with DS stood out as having more profound
alterations to methylation metabolism, carnitine/O-acet-
ylcarnitine, dimethyl sulfone, and myo-inositol. Those
with DS or i-DD had similar alterations to the TCA cycle
and mitochondrial dysfunction. We also found evidence
of altered peripheral mitochondrial dysfunction, glu-
tathione biosynthesis, one-carbon metabolism, urea cycle,
and amino acid/nitrogen metabolism in ASD cases.
Additional studies investigating developmental delays as
metabolic disorders in other study designs could build on
the present findings, confirm results, and point to devel-
opment of potential treatments to mitigate challenging
symptoms.
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