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Toll-like receptor 3 (TLR3) is an important member of the TLR family, which is an important
group of pathogen-associated molecular patterns. TLR3 can recognize double-stranded
RNA and induce activation of NF-kB and the production of type I interferons. In addition to
its immune-associated role, TLR3 has also been detected in some tumors. However TLR3
can play protumor or antitumor roles in different tumors or cell lines. Here, we review the
basic signaling associated with TLR3 and the pro- or antitumor roles of TLR3 in different
types of tumors and discuss the possible reasons for the opposing roles of TLR3
in tumors.
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INTRODUCTION

The link between cancer and inflammation has been firmly established by epidemiological
investigations and in vivo and in vitro studies (1). Nearly 25% of cancers are attributable to
chronic inflammation triggered by infection or physicochemical agents (2). Pattern recognition
receptors (PRRs) can detect nonself or altered molecular patterns that act as important upstream
regulators to control inflammation. Toll-like receptors (TLRs) are the best characterized PRRs that
detect pathogen-associated molecular patterns (PAMPs) (3). Activation of TLRs triggers multiple
proinflammatory and other signaling cascades to eliminate pathogens. However, if pathogens
cannot be eliminated, they may elicit chronic inflammation though TLR signaling (4). In addition to
PAMPs, TLRs recognize damage-associated molecular patterns (DAMPs), which are proteins or
nucleic acids released during necrosis. Cell death results in the release of numerous DAMPs, such as
heat-shock proteins (HSPs), fibrinogen, and endogenous double-stranded (ds) and single-stranded
RNA. Once these molecules and substances are released from necrotic cells, they can activate TLRs
expressed on other cells, which subsequently upregulate NF-kB expression and release cytokines
and chemokines (5).

The TLR family is composed of 10 members (TLR1-TLR10) in humans (6). TLRs are
characterized by extracellular leucine-rich repeat (LRR) domains that recognize pathogens, a
transmembrane domain for cellular localization and an intracellular Toll/IL-1 receptor (TIR)
domain for the transduction of downstream signals (7). Different TLR members have specific
subcellular localizations and agonists. TLR 1, -2, -4, -5, -6, and -10 are cell surface proteins. TLR3
and TLR7-9 are located inside the cell in endocytic compartments and the endoplasmic reticulum.
Surface TLR members respond to various bacterial lipoproteins, glycolipids, lipopolysaccharides
and flagella. The intracellular proteins recognize oligonucleotides from self and microbial origins
[for more details on TLR ligands, see review (8) and (9)].
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Like other TLRs, TLR3 is predominantly expressed in innate
immune cells such as macrophages, dendritic cells (DCs) and
natural killer (NK) cells and are thus involved in the activation of
innate immunity, which results in the production of
proinflammatory cytokines, chemokines, and adhesion
molecules (10). Intriguingly, increasing evidence has
demonstrated that TLR3 is also expressed in tumor cells. The
activation of TLR3 in both tumor cells and the tumor
microenvironment, such as in typical innate immune cells,
might play an opposing role in tumor progression.

In this review, we focus on the “double-edged sword” roles of
TLR3 in tumor initiation and progression. We summarize the
mechanism and clinical trials associated with the role of TLR3 in
tumor behavior. In addition, we discuss the possible reasons for
the dual roles of TLR3 in tumors.
BASIC STRUCTURE AND CLASSIC
SIGNALING PATHWAYS OF TLR3

TLR3 is normally located in endosomes, where its luminal
ectodomain (ECD) encounters its ligands, most important of
which is dsRNA. The TLR3-ECD is composed of 23 LRRs and
resembles a long solenoid bent into the shape of a horseshoe (11).
The TLR3-ECD horseshoe is flat and highly glycosylated. The
flatness of the TLR3 horseshoe facilitates ligand binding and
signaling (12). The binding site of TLR3 is specific for dsRNA but
does not distinguish between base sequences of dsRNA ligands.
TLR3-ECDs interact with dsRNA at two sites on the glycan-free
lateral surface. These sites interact only with the ribose-
phosphate backbone of the dsRNA, which leads to nonspecific
base sequence binding of the TLR3 ligand (13). The minimum
length required for dsRNA binding to TLR3 is 40-45 bp, and the
optimal pH for dsRNA binding to TLR3-ECD is below 6.5 (13,
14). The affinity of TLR3 for dsRNA is high (~10 nM) under
optimal conditions but decreases as the pH increases above 6 and
the dsRNA length decreases below 45 bp (13).

Once dsRNA binds to the TLR3-ECD, the adaptor protein
TIR domain-containing adapter inducing interferon-b (TRIF or
TICAM1) is recruited via a TIR-TIR domain interaction. Then,
downstream signaling molecules access their binding sites upon
colocalization of TRIF and TLR3 (15, 16). TRIF recruits
downstream signaling molecules such as NAK-associated
protein 1 (NAP1), tumor necrosis factor receptor-associated
factor 3 (TRAF3), IRF-3-activating kinases, TANK-binding
kinase 1 (TBK1) and IkB kinase (IKK-cc), which bind to the
N-terminal region of TRIF. This results in activation,
phosphorylation and dimerization of IRF3 and IRF7, which
induce the secretion of type I IFNs (17).

TLR3 can also activate NF-kB in a TRIF-dependent manner
via receptor interacting protein 1 (RIP1) (18). Upon activation of
TLR3, RIP1 is recruited to TRIF, where it is phosphorylated and
polyubiquitinated by Peli1, an E3 ubiquitin ligase, which leads to
the formation of a complex involving TRAF6, the TAK1-binding
protein TAB2, the ubiquitin-activated MAP3K, TAK1 and the
dsRNA-dependent kinase PKR (19, 20). This complex then
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translocates to the cytoplasm. Then, TAK1 is phosphorylated
and activated, which results in formation of the IKK complex,
which is composed of IKKa, IKKb, NEMO and NF-kB (19, 21,
22). Activation of NF-kB induces the expression of genes that
maintain cell proliferation, promote invasion, and activate
inflammatory cytokines. TAK1 can also activate MAP kinase
signaling pathways by phosphorylating MKK6 (19). TRIF can
recruit RIP3 and RIP1. The RIP1-RIP3 complex can play
synergistic roles in cell survival. RIP1 can recruit FADD and
induce caspase 8-mediated apoptosis. At the same time, RIP3
blocks RIP1-induced NF-kB-mediated cell survival (23). RIP1
and RIP3 can both participate in the generation of reactive
oxygen species (ROS), which induce cell apoptosis and necrosis
(24, 25).
ROLES OF TLR3 IN HUMAN CANCERS

TLR3 is expressed in certain types of cancers (Table 1) that are
often related to viral infection. TLR3 is closely related to clinical
characteristics, prognosis and the probability of metastasis.
However, the conclusions from in vitro or mouse model
studies vary greatly.

Cervical Cancer
High-risk human papillomavirus (HPV) types that are related to
the development of epithelial abnormalities of the cervix were
identified as a necessary cause of cervical cancer (57). TLR3 is
related to the clearance of HPV in healthy populations (58). HPV
has also been demonstrated to modulate TLR expression and
signaling, thus leading to persistent viral infection and
carcinogenesis (59). DeCarlo et al. compared the expression of
TLR3 among normal, premalignant and malignant cervical
tissues and found that TLR3 expression was increased in
dysplastic but not carcinomatous epithelium and that TLR3
mRNA levels were not changed in the carcinomatous stroma.
This finding indicates that TLR3 is involved in early cervical
carcinogenesis (26). In an in vitro study using the cervical cancer
cell line U14, treatment with TLR3-siRNA significantly
decreased cell growth, migration and invasion. This finding
indicates the role of TLR3 in the development of cervical
cancer (27). Polyinosinic-polycytidylic acid [i.e. poly(I:C)] is a
synthetic analog of double-stranded RNA (dsRNA). Upon
binding to its receptors, poly(I:C) is able to selectively activate
numerous signaling pathways depending on the conditions. Poly
(I:C) can be recognized by endosomal TLR3, thus usually
considered as the agonist of TLR3. However, in the HeLa cell
line, the TLR3 ligand poly (I:C) can induce apoptosis though
IFN-b production (28). Poly (I:C) can be an important adjuvant
that enhances tumor killing. In a cervical cancer mouse model,
poly (I:C) treatment after administration of the HPV E6/E7
oncogene-specific vaccine IVAG increased vaccine-specific IFN-
g-secreting CD8 T cells by 5-fold (29). Pretreatment with E7(44-
62) and poly (I:C) can increase TNF-a and IFN-g secretion in
NK92 cells and stimulate human DCs to secrete CD11c and
CD86, which ultimately increases cytotoxicity against HeLa
cells (60).
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Hepatocellular Carcinoma
The leading causes of hepatocellular carcinoma (HCC) are
chronic infections with hepatitis B (HBV) and hepatitis C
viruses (HCV) worldwide (61). In HCC tissues, the positive
detection rate of TLR3 varies from 52.7% to 91%, and TLR3 is
expressed in both the membrane and cytoplasm. Surface
stimulation of TLR3 did not affect cell viability even when NF-
kB was activated. However, cytoplasmic stimulation can induce
apoptosis by downregulating the expression of antiapoptotic
proteins (62, 63). Eiro et al. found that TLR3 levels were
significantly higher in large tumors than in small tumors (30).
However, TLR3 expression both in tumor cells and intratumoral
cells correlates with prolonged survival (64–66). TLR3 was
Frontiers in Immunology | www.frontiersin.org 3
expressed at lower levels in HCC tissues than in adjacent
tissues. Survivin, Bcl-2 and MMP2 expression were negatively
correlated with TLR3 expression, but caspase 3, -8, and -9 were
positively correlated with TLR3 signaling proteins in human
HCC tissues (31).

In an in vitro study, the TLR3 tended to have antitumor roles
in different HCC cell lines. HBV secretion by the HepG2.2.15 cell
line can be inhibited by dsRNA-mediated activation of TLR3
(67). In addition, the TLR3 agonist BM-06 can inhibit
proliferation and invasion and simultaneously promote
apoptosis of HepG2.2.15 cells by activating NF-kB (32). The
downstream factors Caspase 8, Bcl-2, and PCNA were all affected
(68). Guo et al. found that the TLR3 agonists BM-06 and poly (I:C)
TABLE 1 | TLR3 expressions in human cancers.

Cancer Type Tissue or Cell lines TLR3 roles on cancer Ref

Cervical cancer human cancer tissues early carcinogenesis (26)
U14 cell line protumor (27)
Hela cell line antitumor (28)
mouse model immune adjuvants (29)

Hepatocellular carcinoma human cancer tissues expressed more in large tumors (30)
human cancer tissues antitumor (31)
HepG2.2.15 cell line antitumor (32)
MHCC97H cell line antitumor (33)
SMMC-7721 cell line antitumor (33, 34)
HUVEC cell line antitumor (33)
mouse model antitumor (35)

Multiple myeloma KMM1 cell line protumor (36)
NCI-H929 cell line antitumor (36)
RPMI8226 cell line antitumor (36)
B16 implantation model antitumor (37)

Melanoma B16F10 mouse model antitumor (38)
C57BL/6 mouse model antitumor (39)

Breast cancer human cancer tissues related to recurrence and metastasis (40)
Cama-1 cell line antitumor (41)
BT-483 cell line antitumor (41)
SW527 cell line antitumor (41)
MCF-7 cell line surface stimulation of TLR3: protumor (42)
MCF-7 cell line cytoplasmic stimulation of TLR3: antitumor (42)
MDA-MB-231 cell line surface stimulation of TLR3: protumor (42)
MDA-MB-231 cell line cytoplasmic stimulation of TLR3: antitumor (42)
MDA-MB-231 cell line antimetastatic effect (43)
MDA-MB-231 cell line antitumor (44)

Prostate cancer human cancer tissues related to recurrence (45, 46)
LNCaP cell line antitumor (47, 48)
PC3 cell line antitumor (49)
DU145 cell line antitumor (49)

Head and neck cancers human cancer tissues related to poorly differentiated tumors (50)
PCI1 cell line protumor (50)
BHY cell line protumor (50)
Detroit-562 cell line protumor (51)
OC2 cell line protumor (52, 53)
HEp2 cell line antitumor (54)
SCC25 cell line antitumor (54)
HSC2、3、4 cell line antitumor (54)
SAS antitumor (54)
HSQ89 antitumor (54)
HO-1-u-1 antitumor (54)
HB antitumor (55)
CAL27 antitumor (55)
WSU-HN6 antitumor (55)
YD-10B antitumor (56)
YD-8 antitumor (56)
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can trigger apoptosis in MHCC97H, SMMC-7721 and HUVEC
cell lines and inhibit cell migration (33). As TLR3 can both activate
NF-kB and IRF3, Khvalevsky et al. observed short-term IRF3
activation and a low level of IFN-b in the Huh7 HCC cell line
after TLR3 activation. In the HepG2 cell line, no induction of
proinflammatory factors was observed, but apoptosis was induced
via TLR3 activation (35). In the SMMC-7721 cell line, the
combination of poly (I:C) and ATO can inhibit cell growth by
increasing ROS generation and inducing mitochondrial
dysfunction, in addition to upregulating caspase 3/8/9 and Bax
and downregulating Bcl-2, survivin and Bid (34). In an HCC
mouse model, poly (I:C)-induced TLR3 signaling can lead to a
reduction in tumor enlargement and decrease tumor growth and
cell proliferation (69, 70). In addition, in a spontaneous liver tumor
mouse model, poly (I:C) treatment can increase remodeling of the
tumor microenvironment, including intratumoral chemokine
expression, NK cell activation and infiltration and proliferation
of tumor-infiltrating T cells (64).

Multiple Myeloma
Many studies have investigated the roles of TLR3 in multiple
myeloma (MM). There are many established myeloma cell lines.
Jego et al. found that TLR3 was expressed in 5 of 16 investigated
cell lines (NCI-H929, SBN, XG1, RPMI8226, and KMS11) (71).
In addition, Abdi et al. found that the Fravel, L363, UM6, UM9,
OPM1, OPM2 and U266 cell lines also expressed TLR3 (72).
Among these TLR3-expressing myeloma cell lines, the effects of
poly (I:C) stimulation are not consistent. A study by Chiron et al.
showed that even though XG1 and OPM2 cells express TLR3,
they did not respond to poly (I:C). Poly (I:C)-mediated activation
of NF-kB was observed in NCI-H929, RPMI8226 and KMM1
cells, which express TLR3. After stimulation, the proliferation of
KMM1 cells was increased, but the proliferation of NCI-H929
and RPMI8226 cells was decreased. Apoptosis of the latter two
cell lines was due to activation of the IFN-a-p38-MAPK pathway
and ERK1/2 pathway, which are involved in cell death (36).
Apoptosis in myeloma can also be induced through the TLR3/
TRIF/caspase-8 pathway (73), TLR3/IFN-b pathway (74) and
TLR3/IFN-a/Bcl-2 pathway and caspase-3, caspase-9, X-IAP,
cFLIP, and A20 (75). Immune cells can efficiently affect myeloma
cells via stimulation with TLR3 agonists. In a B16 tumor
implantation model, poly (I:C) can activate mDC-derived
antitumor NK cells, which led to the retardation of tumor
growth (37).

Melanoma
TLR3 is highly expressed on human melanoma cells, and TLR3
activation can induce activation of downstream NF-kB and cell
migration (76). In a poorly immunogenic B16-OVA melanoma
tumor model, poly (I:C) was used an adjuvant that combined
with anti-CD40 and efficiently induced tumor rejection (77).
These antitumoral effects must occur in combination with the
induced immunochemotherapeutic regimen of vaccination
against tumor antigens (78). In the B16F10 mouse model, poly
(I:C) liposomes can inhibit melanoma growth in a dose-
dependent manner, accompanied by increasing numbers of
Frontiers in Immunology | www.frontiersin.org 4
TRP-2-tetramer(+)CD8(+) cells in lymph nodes, maturation of
DCs and increasing numbers of TRP1-specific IFN-g-producing
cells in lymph nodes and the spleen (38). Poly (I:C) can also
inhibit the metastasis of myeloma cells. In a B16 melanoma cell
C57BL/6 mouse model, intraperitoneal injection of poly (I:C)
can inhibit lung and liver metastasis of B16 cells in a manner
dependent on NK cells and IFN-g, along with increasing the
number of IFN-producing killer DCs in the spleen, lung and
liver (39).

Breast Cancer
IFN-g is considered a key factor associated with the immune
dysfunction that is common in breast cancer. Amarante et al.
found that among patients with high expression of IFN-g, TLR3
mRNA expression was significantly higher in breast cancer
tissues than in healthy tissues, while TLR3 protein expression
did not differ between healthy and breast cancer tissues (79). In
contrast, Gonzalez et al. found that the expression level of TLR3
was related to recurrence and an increased probability of
metastasis (40). In a randomized clinical trial, adjuvant
treatment with poly(A:U) dsRNA was associated with a
significant decrease in the risk of metastatic relapse in TLR3(+)
breast cancer patients but not in TLR3(-) patients (80).

In an in vitro study, activation of TLR3 by dsRNA can trigger
apoptosis in human breast cancer cells, which involves Toll/IL-
1R domain-containing adaptors that induce IFN-b and type I
IFN autocrine signaling, as well as activation of extrinsic caspases
(41). Interestingly, a study by Bondhopadhyay et al. used MCF-7
andMDA-MB-231 breast cancer cell lines and found that surface
stimulation of TLR3 can increase cellular survivability, growth,
E-cadherin expression and thus metastasis. However,
cytoplasmic stimulation led to a decrease in cell survival (42).
Another TLR3 agonist, poly (A:U), did not have cytotoxic or
apoptotic effects on the MDA-MB-231 cell line but decreased the
expression of MMP2 at high concentrations, which indicated an
antimetastatic effect (43). Galli et al. found that after treatment
with poly (I:C), microRNA (miR)29b, miR29c, miR148b, and
miR152 were increased in MDA-MB-231 cells. These
microRNAs led to demethylation and re-expression of the
oncosuppressor RARb, thus inducing apoptosis (44). TLR3
stimulation can also result in the induction of breast cancer
stem cells (CSCs). TLR3 stimulation can trigger coactivation of
NF-kB and b-catenin, which promote breast cancer cells to
acquire a CSC phenotype in vivo and in vitro (81).

Prostate Cancer
Prostate cancer tissues exhibited higher expression levels of
TLR3 than healthy tissues, which was also related to a higher
probability of biochemical recurrence (45). Schulz et al. also
found that the expression of TLR3 was associated with prostate
cancer recurrence (46). In vitro, the prostate cancer cell lines
LNCaP and DU-145 can respond to TLR3 agonists through NF-
kB activation, but the more aggressive PC3 cell line cannot. After
activation of TLR3, LNCaP and DU-145 cells upregulated
inflammatory molecules and cytokines that attracted immune
effectors (47). In the LNCaP cell line, poly (I:C) induced intrinsic
and extrinsic apoptotic pathways through interferon regulatory
April 2021 | Volume 12 | Article 667454

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zheng et al. TLR3 in Human Tumors
factor-3 signaling (48), and the PI3K/Akt pathway was
inactivated, accompanied by the participation of the
autophagy-, proliferation- and apoptosis-related proteins cyclin
D1, c-Myc, p53 and NOXA (82). Mitogen-activated protein
kinases were activated by poly (I:C) in both LNCap and PC3
cells. In addition, the interferon-independent pathway p38 and
c-jun N-terminal kinase/protein kinase C a were also activated
in the LNCaP cell line (83). Surprisingly, in PC3 cells, activation
of TLR3 can increase the expression of the specific I.3 isoform of
HIF-1a, which results in reduced apoptosis and VEGF secretion;
that is, TLR3 plays an antitumor role. In the LNCaP cell line,
activation of TLR3 cannot induce nuclear accumulation of HIF-2
a (49). A study by Palchetti et al. focused on the role of the
TLR3/Scr/STAT1 axis in apoptosis in PC3 and DU145 cell
lines (84).

Head and Neck Cancers
Head and neck cancers also express TLR3. Approximately 73.2%
of oral squamous cell carcinoma (OSCC) tissues express TLR3,
and TLR3 expression is correlated with poorly differentiated
tumors. TLR3 can activate NF-kB/c-Myc and increase the
proliferation of head and neck squamous cell carcinoma
(HNSCC) cells. TLR3 was considered to contribute to the
malignant phenotype that leads to invasion (50). In the
HNSCC cell line Detroit-562, activation of TLR3/NF-kB can
upregulate the expression of ICAM-1, IL-6, IL-8, and IL-1b and
promote cell migration but decrease cell viability (51). TLR3
activation can induce metabolic reprogramming and lead to
increased aerobic glycolysis and cell migration though changes
in the expression of pyruvate kinase, CD44 variants and MMP9
in Detroit 562 cell line (52). Stimulation of the TLR3-expressing
OC2 cell line (a head and neck cancer cell line) with poly (I:C)
can induce the phosphorylation of IRF3 and IkB, ultimately
increasing the secretion of IL-6 and CCL5. CCL5 can promote
the migration of OC2 cells (53). TLR3 may contribute to tumor
development and lead to cisplatin resistance in OC2 cells (54).
However, in 8 other head and neck cancer cell lines (HEp2,
SCC25, HSC2, HSC3, HSC4, SAS, HSQ89 and HO-1-u-1), poly
(I:C)-stimulated TLR3 induced apoptosis in these cell lines
though downregulating survivin expression (55). In addition,
in the OSCC cell lines HB, CAL27 and WSU-HN6, poly (I:C)
induced apoptosis via TLR3 though the production of IFN-b and
activation of caspase 3 and 9 (56). In the OSCC cell lines YD-10B
and YD-8, apoptosis was induced via a mitochondria-dependent
pathway (85).

Other Tumors
In colorectal cancer, TLR3 is considered a marker of colon tissue
metaplasia. The normal colonic mucosa expresses the highest levels
of TLR3. As the malignancy stage increases from polyp to stage I to
III adenocarcinoma, the expression of TLR3 decreases (86, 87). In
vitro, poly (I:C) can induce necroptosis in the colon cancer cell line
CT26 though the TLR3-TICAM-1-RIP3 axis to produce reactive
oxygen (88). In mouse colon tumor models, the combination of
poly (I:C) and vaccination with the CEA epitope can cause increase
the number of mature DCs and induce elevated expression IL-12
and proliferation of lymphocytes (89). TLR3 is highly expressed in
Frontiers in Immunology | www.frontiersin.org 5
human gastric cancer tissues and is correlated with worse clinical
characteristics such as poor overall survival, lymph node invasion
and poor prognosis (90). However, in neuroblastomas, positive
TLR3 expression is associated with favorable histology and
prognosis (91). In normal renal tissues, TLR3 expression is
limited. In clear cell renal cell carcinoma (CCRCC), TLR3 is
highly expressed and correlated with lung metastasis (92). TLR3
is also highly expressed in nonsmall cell lung cancer and esophageal
squamous cells compared with that of healthy tissues (93, 94).
Activation of lung alveolar epithelial TLR3 by tumor exosomal
RNAs can recruit neutrophils, which can promote the formation of
the lung premetastatic niche (95). However, activation of TLR3 in
the Lewis lung cancer cell line 3LL induces M1 polarization of
tumor-associated macrophages and can inhibit tumor growth (96).
The inhibitory role of TLR3 has been are verified in LL/2 and A549
NSCLC cells (97). The expression of TLR3 can be considered a
biomarker for lymph node metastasis and increased depth of
invasion of esophageal squamous cell carcinoma (94). In pituitary
adenomas (PAs), TLR3 is expressed in every PA sample and
correlated with the invasion and proliferation of PAs. In an in
vitro study, activation of TLR3 in the rat pituitary adenoma GH3
cell line induced proliferation, invasion and secretion of
inflammatory cytokines (98).
CLINICAL APPLICATIONS OF TLR3-
BASED IMMUNE ADJUVANTS

Tumor vaccines are used to treat and protect against tumors. The
innate immune response is important in supporting the
development of adaptive immunity and thus can be used to
accelerate and enhance induction of vaccine-specific responses
(99). Stimulation with poly (I:C) can result in strong type I and
III interferon and Th1 cytokine responses. Type I interferon
production is considered to be critical for efficacy of poly (I:C) as
a Th1-inducing adjuvant (100), which can impact APC
maturation, antigen processing and the responding antigen-
specific B and T cells (101, 102). As high doses of poly (I:C)
have been shown to cause shock, renal failure and coagulopathies
in Phase I-II clinical trials of cancer patients (103), two safer
derivatives of poly (I:C) were produced, poly-ICLC (Hiltonol®)
and poly-IC12U (Ampligen®).

Poly-IC12U has been shown to induce functional, mature DCs
in cancer patients (104). In Phase I and Phase II clinical trials for
leukemia and neuroblastoma cancer patients, poly-ICLC elicited
strong interferon responses and was partially successful in
inducing tumor regression (105, 106). In addition, poly-ICLC
also enhanced antibody titers and CD4 and CD8 T cell responses
in an ovarian cancer clinical trial (107). Poly-IC12U was well
tolerated in long-term Phase I-II clinical trials involving cancer
patients (108). High-dose poly-ICLC therapy was associated with
hypotension, fever and anemia. However, once the dose and
frequency of delivery were optimized, the treatment was be well
tolerated in patients (106, 109, 110). A defined TLR3-specific
adjuvant, which is a chimeric molecule consisting of
April 2021 | Volume 12 | Article 667454
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phosphorothioate ODN-guided dsRNA, was synthesized that
can’t activate the RIG-1/MDA5 pathway. It elicited far less
cytokine production than poly(I:C) in vitro and in vivo (111).
TLR3 DIVERSITY IN DIFFERENT TUMORS

The expression of TLR3 in cancer cells seems to be quite
common, but the roles and molecular mechanism of TLR3 in
cancers are quite complicated. The downstream factors NF-kB
and IRF3 are two important transcription factors associated with
TLR3 signaling (6). Activation of NF-kB can induce
inflammatory cytokine and MMP secretion, which may
promote cancer progression (112). However, activation of IRF3
can induce the production of type I interferon, which can result
in cancer cell apoptosis (17). These two different pathways may
be the basis of the different outcomes of TLR3 activation in
cancer cells. Overall, TLR3 tends to play an antitumor role, but
its protumor role should be mentioned in clinical applications.

TLR3 is normally located in endosomes. Cell surface TLR3
expression has been detected in fibroblasts, vascular endothelial
cells and epithelial cells (113). In some immune cells, cell surface
expression of TLR3 has also been detected. TLR3 is not expressed
on the cell surface of human monocyte-derived DCs (114), but
an established mAb against mouse TLR3 was used to show that
TLR3 was highly expressed on the cell surface of splenic CD8+

DCs and marginal zone B cells. TLR3 is also expressed on the
surface of macrophages, and even though its expression is weak,
it can enhance TLR3 responses to dsRNA (115). Activation of
cell surface TLR3 leads to a proinflammatory response, whereas
TLR3 activation in endosomal compartments by dsRNA is
characterized by type I interferon production and plays an
anti-inflammatory role (113). In different types of tumors, the
Frontiers in Immunology | www.frontiersin.org 6
expression of TLR3 varies greatly. There is not enough
information on cell surface expression of TLR3 in different
tumors. This may be the reason why in different cancers, the
effects of TLR3 can be varied. In addition, in the same kind of
cancer, the role of TLR3 also differs in diverse cell lines, as we
previously mentioned.
CONCLUSION

In further studies on TLR3, the role of cell surface TLR3 should
not be ignored. Cell surface TLR3 expression should be measured
and localized by immunohistochemistry or other methods. The
downstream signaling of TLR3 should be comprehensively
considered, both the NF-kB pathway and the IRF3/7 pathway.
In related TLR3 clinical trials, the dual role of TLR3 should be
considered, and activation of TLR3 may increase the progression
of some kinds of tumors or in some individuals. Further
mechanistic investigations on the dual roles of TLR3 in tumor
biology are needed.
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