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Abstract: Whether disruption of iron metabolism is implicated in human muscle aging is presently
unclear. We explored the relationship among iron metabolism, muscle mitochondrial homeostasis,
inflammation, and physical function in older adults and young controls. Eleven young and 23 older
men and women were included. Older adults were classified into high–functioning (HF) and
low–functioning (LF) groups according to their Short Physical Performance Battery score. Vastus
lateralis muscle biopsies were assayed for total iron content, expression of 8-oxoguanine and DNA
glycosylase (OGG1), 3-nitrotyrosine (3-NT) levels, and mitochondrial DNA (mtDNA) content and
damage. Circulating ferritin and hepcidin levels were also quantified. Muscle iron levels were
greater in the old group. Protein expression of transferrin receptor 1, Zrt-Irt-like protein (ZIP) 8,
and ZIP14 were lower in old participants. Circulating levels of ferritin, hepcidin, interleukin 6 (IL6),
and C-reactive protein were higher in the old group. Old participants showed lower mtDNA content
and greater mtDNA damage. OGG1 protein expression declined with age, whereas 3-NT levels were
greater in old participants. Finally, a negative correlation was determined between ZIP14 expression
and circulating IL6 levels in LF older adults. None of assayed parameters differed between HF and
LF participants. Our findings suggest that muscle iron homeostasis is altered in old age, which might
contribute to loss of mtDNA stability. Muscle iron metabolism may therefore represent a target for
interventions against muscle aging.

Keywords: iron overload; hepcidin; transferrin; ferritin; ZIP; inflammation; mtDNA; mitochondrial
dysfunction; muscle aging; physical performance

1. Introduction

Iron is the most abundant transition metal in living organisms and is involved in multiple
biochemical processes including oxygen binding and transport, energy production, regulation of cell
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growth and differentiation, and a variety of enzyme reactions. Most body iron is incorporated into
haem proteins (e.g., haemoglobin, myoglobin, cytochromes, and haem thiolates). Non-haem iron
serves instead as an enzyme cofactor (i.e., atomic iron) or iron reserve (e.g., bound to cytosolic ferritin
and haemosiderin) and is integral to electron transport chain complexes (i.e., iron-sulphur clusters) and
transferrin (Tf) [1,2]. Approximately 5% of cellular iron exists as chelatable non-haem iron, referred to
as labile iron pool. This iron fraction consists of both ferrous (Fe2+) and ferric (Fe3+) ions associated
with a variety of small molecules, including organic anions, polypeptides, and phospholipids. Fe2+

ions can participate in Fenton reactions thereby producing highly destructive radicals, which are
thought to be major contributors to the generation of protein and DNA oxidative adducts [3–5]. Hence,
a tight coordination encompassing iron absorption, uptake, efflux, and sequestration is crucial to
preserve cell homeostasis.

Circulating iron is bound and transported by Tf. However, in the setting of iron overload,
the iron-binding capacity of plasma Tf can be exceeded and accumulation of non-Tf-bound iron (NTBI)
occurs [6]. As such, NTBI needs to be adequately disposed. Fourteen divalent metal transporters
belonging to the Zrt-Irt-like protein (ZIP) family, named ZIP1 to ZIP 14, have been identified [7].
Of them, ZIP8 and ZIP14 have similar amino acid sequences [8] and contribute to the import of
several divalent ions, including iron [9]. In particular, Zip14 mediates, at least in part, NTBI uptake by
hepatocytes in the context of iron overload [10].

Iron metabolism is modulated by the defensin-like hormone hepcidin [11] via binding and
subsequently degrading of the iron exporter ferroportin at the level of key iron sources [i.e., duodenal
enterocytes (absorption of dietary iron), splenic and hepatic macrophages (recycling iron from
erythrophagocytosis), and hepatocytes (iron stores)] [12]. In particular, circulating iron concentrations
decrease as a consequence of intestinal absorption and release of iron from recycling macrophages [11].

Skeletal muscle is a major reservoir of body iron, which is comprised by 60% of non-haem
fraction [13]. Studies have shown that non-haem iron accumulates in muscle during ageing possibly
causing oxidative damage to biomolecules and organelles, including mitochondria [14–18]. As such,
iron dyshomeostasis is advocated as a mechanism involved in the pathogenesis of sarcopaenia of
ageing and disuse-induced muscle atrophy [19].

Along with iron imbalance and mitochondrial dysfunction, chronic inflammation is a hallmark of
ageing and a factor involved in functional decline [20,21]. A link between mitochondrial damage and
chronic low-grade inflammation has recently been hypothesised [21,22]. However, little is known about
the relationship among iron dyshomeostasis, inflamm-ageing, mitochondrial dysfunction, and physical
performance in older adults. To provide an initial appraisal of the subject, the present study was
undertaken to assess total iron content, the expression of selected iron transporters, and indexes of
mitochondrial damage in muscle biopsies obtained from healthy young adults and older people with
varying levels of physical performance. The relationship between muscle iron content and systemic
inflammation was also explored.

2. Materials and Methods

2.1. Participants

Participants were community-dwelling men and women aged 70 years or older. Healthy young
adults between the ages of 18 and 35 years were recruited as controls. Participant recruitment was
coordinated by the Recruitment Core of the University of Florida Claude D. Pepper Older Americans
Independence Center, as detailed elsewhere [23–25].

A set of eligibility criteria was chosen to minimise the possible confounding effect of co-morbid
conditions, medications, or lifestyle habits on the relationship among physical performance, iron
metabolism, and indexes of muscle mitochondrial damage [26]. Briefly, candidates were not included
if presenting with any of the following characteristics: smoking in prior 12 months; engagement in
regular physical exercise; history of drug or alcohol abuse; active treatment for cancer or cancer in
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the past three years; heart failure New York Heart Association class III–IV; stroke with upper and/or
lower extremity involvement; Parkinson’s disease or other neurological disorders likely to interfere
with physical function; major psychiatric illnesses; peripheral vascular disease Lériche–Fontaine
stage 3–4; history of life-threatening cardiac arrhythmias; cognitive impairment (i.e., Mini Mental
State Examination score ≤ 21); renal disease requiring dialysis; lung disease requiring steroids;
chronic viral diseases (e.g., hepatitis B and C, HIV); lower extremity amputation; severe knee or
hip osteoarthritis limiting mobility; diabetes with visual, vascular or neuropathic complications;
inflammatory diseases (e.g., rheumatoid arthritis, vasculitis, autoimmune disorders, inflammatory
bowel disease); taking growth hormone, oestrogen replacement, testosterone, anticoagulants, steroids,
or non–steroidal anti–inflammatory drugs on a regular basis; severe obesity [i.e., body mass index (BMI)
≥35]; underweight (i.e., BMI ≤18.5); active weight loss >5 kg in prior three months; life–threatening
illnesses with an estimated life expectancy <1 year. Candidates on statin treatment were asked to refrain
from drug administration one month prior to blood drawn upon their general practitioner’s approval.

Old enrolees were categorised as high–functioning (HF) and low–functioning (LF) based on their
Short Physical Performance Battery (SPPB) summary score [27]. Specifically, participants with a SPPB
score ≥11 were classified as HF, while those who scored ≤7 were categorised as LF. These cut-offs
were selected based on their ability to predict several relevant health outcomes in older adults
(e.g., functional limitations, institutionalisation, mortality) [27–31]. Individuals scoring 8–10 on the
SPPB were excluded to allow greater discrimination in physical function and possibly biochemical
parameters between groups.

Prior to enrolment in the study, all participants provided written informed consent. The study
protocol was approved by the University of Florida’s Institutional Review Board (IRB201300790).

2.2. Blood Collection and Processing

Blood samples were obtained in the morning by venipuncture of the median cubital vein
after overnight fasting, using commercial ethylenediaminetetraacetic acid (EDTA) collection tubes
(BD Medical, Franklin Lakes, NJ, USA). Samples were immediately centrifuged at 1000× g for 10 min
at 4 ◦C, aliquots were prepared, and stored at −80 ◦C until analysis.

2.3. Collection of Muscle Biopsies

Muscle samples were obtained from the vastus lateralis of the dominant lower extremity by
percutaneous needle biopsy, under local anaesthesia, as previously described [25]. Muscle specimens
were cleaned of any visible blood and fat, snap-frozen in liquid nitrogen, and subsequently stored at
−80 ◦C until analysis.

2.4. Measurement of Circulating Iron Transporters and Inflammatory Biomarkers

Plasma levels of the iron transporter ferritin and the iron regulator hepcidin as well as those of
C-reactive protein (CRP) and interleukin (IL) 6 were measured using enzyme-linked immunosorbent
assays (ferritin: Human ELISA Kit, Thermo Scientific (Waltham, MA, USA); hepcidin: Intrinsic Hepcidin
IDx™ ELISA Kit, Intrinsic LifeSciences (La Jolla, CA, USA); CRP: Human C-Reactive Protein/CRP
Quantikine ELISA Kit, R&D Systems (Minneapolis, MN, USA); IL6: Human IL-6 Quantikine HS
ELISA Kit, R&D Systems). Plate processing and data collection were carried out according to the
manufacturer’s instructions. Absorbance was read on a Synergy HT Multi-Detection microplate reader
(BioTek, Winooski, VT, USA). Concentrations of ferritin, hepcidin, and CRP are shown as ng/mL, whilst
IL6 levels are reported in pg/mL.

2.5. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) Determination of Total Iron in Muscle Biopsies

Total iron content in muscle samples was determined by ICP-MS as described previously with
modifications [32]. Briefly, 15–30 mg of vastus lateralis muscle samples were digested in 1 mL
concentrated nitric acid (HNO3 Optima-grade) in capped Teflon (Savillex Corporation, Eden Prairie,
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MN, USA) vials for 24 h. Afterwards, 1 mL of 30% hydrogen peroxide (H2O2 Optima-grade) was
added to each vial and placed opened on a hot plate (100 ◦C) to let the mixture evaporate. Subsequently,
1 mL of HNO3 and 1 mL of H2O2 were added to the dry residue and incubated on the hot plate
(100 ◦C) overnight to digest any remaining organic material. After this second digestion, samples
were evaporated to dryness, followed by addition of 0.8 N HNO3 spiked with 8 parts per billion (ppb)
rhenium (Re) and rhodium (Rh). Vials were then incubated at 100 ◦C overnight to ensure complete
dissolution. A fraction of the sample solution was removed and further diluted with 0.8 N HNO3

spiked with 8 ppb Re and Rh to obtain a final dilution of approximately 300×. The exact final dilution
for elemental analyses was achieved according to the weight of each sample. Trace element analysis
was conducted on a Thermo Finnigan Element2™ high–resolution ICP-MS (Thermo Fisher Scientific,
San Jose, CA, USA) in medium resolution using Re and Rh as internal standards. In order to avoid
analytical biases, all samples were run in the same day and in the same sequence. Results were
quantified by external calibration using a combination of gravimetrically prepared ICP-MS standards
obtained from QCD Analysts (www.qcdanalysts.com). Iron concentrations are reported in parts per
million (ppm), with an analytical error < ±5%.

2.6. Western Immunoblotting

Protein content of Tf receptor 1 (TFR1), ZIP8, ZIP14, and 8-oxoguanine DNA glycosylase (OGG1),
and levels of 3-nitrotyrosine (3-NT) were measured in muscle samples by Western immunoblotting.
Whole-tissue extracts were prepared as described elsewhere [24]. Briefly, 50 µg proteins were
separated on 12%–15% polyacrylamide gels (Bio-Rad Laboratories, Hercules, CA, USA), transferred
onto polyvinylidene difluoride membranes (Bio-Rad Laboratories), and blocked for 1 h in 5% milk in
Tris-buffered saline Tween (Bio-Rad Laboratories). Blots were probed with commercially available
primary antibodies for OGG1 (1:2500, Abcam, Cambridge, MA, USA; #ab63942), TFR1 (1:1000, Cell
Signaling Technology, Beverly, MA, USA; #13113), ZIP14 (1:1000, Sigma–Aldrich, St. Louis, MO, USA;
#HPA016508), and 3-NT (1:1000, Cell Signaling Technology; #9691S). A custom-made polyclonal rabbit
primary antibody was used for detecting ZIP8 (1:1000). The antibody was raised to a peptide [(NH2)
FGNDNFGPQEKT (COOH)] selected from the full-length sequence [33] designed by Dr. Tolunay
Beker Aydemir (University of Florida, Gainesville, FL, USA) who also performed the purification [34].
To allow affinity purification, a cysteine residue was added to the N terminus for coupling to the
carrier protein and for conjugation to Sulfolink (Pierce, Rockford, IL, USA). The antibody was prepared
in rabbit as previously described [35]. Anti-rabbit secondary antibody conjugated with horseradish
peroxidase (1:10000, Cell Signaling Technology; #7074) was used to enable subsequent protein detection.
Protein bands were visualised with SuperSignal West Femto Maximum Sensitivity Substrate (Thermo
Scientific) using a ChemiDoc XRS imager (Bio-Rad Laboratories). Spot density of the target bands was
normalised to the amount of protein loaded in each lane, as determined by densitometric analysis of
the corresponding Ponceau S-stained membranes [36]. Bands were quantified using Image Lab 6.0
software (Bio-Rad Laboratories) according to the “Total Lane Protein” setting.

2.7. Quantification of Mitochondrial DNA (mtDNA) Content

Genomic DNA was purified from muscle samples using a Wizard Genomic DNA Purification Kit
according to the manufacturer’s instructions (Promega, Madison, WI, USA). Briefly, 10–20 mg of muscle
tissue were homogenised in 1 mL of nuclei cell lysis solution using a hard tissue disposable probe
(Omni international, Kennesaw, GA, USA) on a PowerGen 500 homogenator (Thermo Fisher Scientific).
Total DNA quantification was carried out on a NanoDrop 1000 spectrophotometer (Thermo Fisher
Scientific) and integrity was verified by gel electrophoresis on 0.8% agarose gel in 1× Tris-borate-EDTA
(TBE) (90 mM Tris-borate pH 7.4, 90 mM boric acid, 2.5 mM EDTA). Determination of mtDNA
content was performed with the Human Mitochondrial DNA Monitoring Primer Kit (Takara Bio,
Mountain View, CA, USA) using real-time polymerase chain reaction (RT-PCR). Amplification reactions
were run on a CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad Laboratories). Primers

www.qcdanalysts.com
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included in the kit specifically amplified mitochondrial genes corresponding to mitochondrial NADH
dehydrogenase subunit 1 and 5 (ND1, ND5) and nuclear genes corresponding to solute carrier organic
anion transporter family, member 2b1 (SLCO2B1), and serpin family A member 1 (SERPINA1) [37].
Melting curve analysis, non-template control reactions, and gel electrophoresis of PCR products were
used to check amplification specificity of each experiment. Each sample was analysed in triplicate in
20 µL final volume. The reaction mixture consisted of 1× Terra qPCR Direct SYBR Premix (Takara Bio),
0.2 µM forward and reverse primers, and 10 ng of genomic DNA template. Amplification proceeded
for 40 cycles. Quantification of relative mtDNA content was accomplished according to the Pfaffl

mathematical model [38]. Differences in threshold cycle values for the ND1/SLCO2B1 pair (∆Ct1 = Ct
for SLCO2B1 – Ct for ND1) and the ND5/SERPINA1 pair (∆Ct2 = Ct for SERPINA1 – Ct for ND5) were
calculated, and the average of 2∆Ct for the values of ∆Ct1 and ∆Ct2 was used as a measure of relative
mtDNA abundance.

2.8. Analysis of mtDNA Damage

Quantitative RT-PCR was used to assess mtDNA damage according to the method described
by Furda et al. [39] with minor adjustments. Briefly, 225 ng of purified total DNA was digested
with PvuII Restriction enzyme (New England Biolabs, Ipswich, UK). Fifteen ng of digested DNA
were used to amplify a 8.9-kb mtDNA fragment (accession number: J01415; 5′ sense position: 5999;
5′ antisense position: 14841) [39] with a TaKaRa LA Taq® DNA Polymerase with GC Buffer (Takara
Bio) and a 221-bp mtDNA fragment (accession number: J01415; 5′ sense position: 14620; 5′ antisense
position: 14841) [39] with a DreamTaq DNA Polymerase (Thermo Fisher Scientific). Amplification
was carried out using a CFX96 Touch™ PCR Detection System (Bio-Rad Laboratories) as described by
Furda et al. [39]. Each sample was analysed in triplicate in 20 µL final volume. The reaction mixture for
the 8.9-kb mtDNA fragment consisted of 1×GC Buffer I, 2U TaKaRa LA Taq® DNA Polymerase (Takara
Bio), 0.2 mM dNTPs, and 0.4 µM forward and reverse primers. The reaction mixture for the 221-bp
mtDNA fragment included 1×DreamTaq Buffer (Thermo Fisher Scientific), 0.2 mM dNTPs, and 0.4 µM
forward and reverse primers. Prior to quantification, amplification products of the 8.9-kb and the
221-bp fragments were electrophoresed on 0.8% agarose and 1.5% agarose gels, respectively, to check
for PCR product specificity. Amplicons were quantified by Pico-Green (Thermo Fisher Scientific) using
a Synergy HT multidetection microplate reader (BioTek) with excitation and emission wavelengths at
485 and 530 nm, respectively. Data obtained from the 221-bp mtDNA fragment were used to normalise
results of the 8.9-kb fragment amplification. The number of mtDNA lesions was calculated using the
equation: D = [1 − 2−(∆8.9-kb − ∆221-bp)] × 10,000 bp/8900 bp [40].

2.9. Statistical Analysis

The normal distribution of data was ascertained through the Kolmogorov–Smirnov test.
Comparisons for normally distributed continuous variables were performed by one-way analysis
of variance (ANOVA) followed by Tukey′s post-hoc test when applicable. The non-parametric tests
Mann–Whitney U and Kruskal–Wallis H (with Dunns′ post-hoc test as appropriate) were applied to
assess differences for non-normally distributed continuous data. Differences in categorical variables
among groups were determined via χ2 statistics. Correlations between variables were explored via
Pearson′s or Spearman′s tests as appropriate. All analyses were performed using the GraphPrism 5.03
software (GraphPad Software, Inc., San Diego, CA, USA), with statistical significance set at p < 0.05.

3. Results

3.1. Characteristics of Study Participants

A total of 34 volunteers were enrolled, 11 young (six men and five women; mean age:
24.7 ± 4.4 years) and 23 older persons (14 men and nine women; mean age: 77.5 ± 8.0 years).
Participant characteristics according to age groups and physical performance categories are shown
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in Table 1. No differences were observed among groups for gender distribution, BMI, or number of
disease conditions and medications. The two subgroups of older adults did not differ for age. As per
the study design, HF participants showed higher SPPB scores than LF older adults (p = 0.0002).

Table 1. Participant characteristics according to age groups and physical performance categories.

Old (n = 23)

Characteristic Young (n = 11) HF (n = 16) LF (n = 7) p Value

Age (years), mean ± SD 24.7 ± 4.4 76.0 ± 6.0 * 81.0 ± 3.7 * <0.0001
Gender (female), n (%) 5 (45.5) 4 (25.0) 5 (71.4) 0.1076

BMI (kg/m2), mean ± SD 24.9 ± 4.2 27.7 ± 3.6 27.8 ± 4.2 0.1604
Number of diseases ¥, mean ± SD 1.0 ± 0.8 1.9 ± 1.4 2.1 ± 1.8 0.1274

Number of medications #, mean ± SD 2.9 ± 2.6 3.7 ± 3.2 1.7 ± 1.4 0.3112
SPPB summary score, mean ± SD – 11.4 ± 0.5 6.1 ± 1.7 § 0.0002

Abbreviations: BMI, body mass index; HF, high functioning; LF, low functioning; SD, standard deviation; SPPB,
Short Physical Performance Battery. * p < 0.05 vs. young group. § p < 0.05 vs. HF. ¥ includes hypertension,
coronary artery disease, prior stroke, peripheral vascular disease, diabetes, chronic obstructive pulmonary disease,
and osteoarthritis. # includes prescription and over-the-counter drugs.

3.2. Quantification of Total Iron and Selected Metal Transporters in Vastus Lateralis Muscle Biopsies

To evaluate whether iron levels in muscle were associated with age and physical performance,
total iron content was quantified by ICP-MS. Iron levels were significantly greater in muscles of old
enrolees compared with the young group (p < 0.05), with no differences between SPPB categories
(Figure 1).
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Figure 1. Total content of iron in the vastus lateralis muscle of young and old participants. Bars
represent mean values (± standard deviation) in the three experimental groups. Values are expressed
in ppm. * p < 0.05 vs. young group (n = 11). HF: high-functioning (n = 16); LF: low-functioning (n = 7).

Protein levels of selected iron transporters (TFR1, ZIP8, and ZIP14) were assayed by Western
immunoblotting. The expression of TFR1, the primary cellular iron importer, was significantly lower
in old LF participants compared with the young group (p < 0.05; Figure 2A). Also, lower protein levels
of ZIP8 were detected in old enrolees compared with their younger counterparts (Figure 2B). A pattern
similar to TFR1 was found for ZIP14 (p < 0.05; Figure 2C).
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3.3. Circulating Levels of Ferritin, Hepcidin, and Selected Inflammatory Biomarkers

Perturbations in iron status have been associated with chronic low-grade inflammation during
ageing [41]. In turn, inflammation is acknowledged as a major mechanism contributing to functional
impairment [42]. We, therefore, verified whether circulating levels of ferritin, hepcidin, and selected
inflammatory biomarkers were associated with age and functional status.

An age-dependent increase was observed for plasma ferritin concentrations (p = 0.0291; Figure 3A),
with no differences between SPPB categories. Circulating levels of the defensin-like hormone hepcidin
were also increased with age (p = 0.0232; Figure 3B). The post-hoc test revealed significantly higher
hepcidin concentrations in LF older adults compared with young enrolees.
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A similar pattern was described for plasma IL6 (p = 0.0174; Figure 4A) and CRP (p = 0.0488;
Figure 4B).

We performed a correlation analysis to test the hypothesis of an association between inflammation
and iron status in LF older adults. As reported in Table 2, ZIP14 was the only iron transporter showing
a significant negative correlation with IL6.
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Table 2. Relationship between plasma concentrations of IL6 and protein expression of iron transporters
in muscle in old low-functioning participants.

TFR1 ZIP14 ZIP8

Pearson r −0.09161 −0.9976 0.5968
95% confidence interval −0.8408–0.7779 0.0444 −0.4167–0.9488

R square 0.008392 0.9951 0.3561
p value (two-tailed) 0.863 0.0444 0.2111
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3.4. Determination of mtDNA Content and Damage

mtDNA homeostasis in muscle becomes impaired during ageing and in the setting of atrophying
conditions [43]. However, whether the abundance and integrity of mtDNA in muscle are associated
with physical function in old age is still debated [44]. In the attempt to shed light on this relevant
research question, we determined the relative content of mtDNA and mtDNA damage load in muscle
samples of young and old enrollees. As depicted in Figure 5, older participants showed lower mtDNA
content (p = 0.0012, Figure 5A) and greater mtDNA damage (p = 0.0001, Figure 5B) compared with
young controls, with no differences between HF and LF individuals.
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3.5. Protein Levels of Selected Markers of Oxidative/Nitrosative Damage

Protein expression of the repair enzyme OGG1 and levels of nitrosative stress-associated 3-NT
were determined in muscle samples to obtain indications on the extent of oxidative-related molecular
damage [45].

OGG1 protein expression declined with ageing (p = 0.0435), with no differences among individual
groups (Figure 6A). An age-related increase in 3-NT levels was observed (p = 0.0005, Figure 6B),
without differences between the two old groups.
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(n = 16); LF: low functioning (n = 7).

4. Discussion

Iron homeostasis is altered in muscle of old rodents, possibly contributing to muscle fibre atrophy
and loss via oxidative stress-mediated signalling pathways [18]. A specific form of non-apoptotic cell
death, referred to as ferroptosis, seems to occur upon intracellular iron overload, causing oxidative
injury which probably involves lipid peroxidation [46]. This iron-driven cell death may operate via
mitochondrial and NADPH-dependent oxidases reactive oxygen species burst [46]. However, to the
best of our knowledge, the relationship between iron status and physical function in old people was
not previously explored.

Studies from our group showed increased levels of muscle non-haem iron, including labile fraction,
with age in old rats following hind limb suspension [18]. Such changes were associated with elevated
expression of ferritin and decreased TFR1 content [18]. Age-dependent iron accumulation was also
reported in muscle subsarcolemmal mitochondria of rats [47]. Notably, mitochondrial iron levels were
shown to impact organelle RNA damage as well as the susceptibility to opening of the mitochondrial
permeability transition pore [47]. This prompted us to test the hypothesis of a relationship between
iron status and age-related functional decline involving muscular mitochondrial damage.

Our finding of an age-dependent accumulation of iron in skeletal muscle (Figure 1) paralleled
by decreased expression of two of the three metal importers assayed (i.e., TFR1 and ZIP14) in the LF
group (Figure 2A–C) supports the idea of a link between iron dyshomeostasis in muscle and functional
status. The analysis of iron-related circulating factors offered further insights into this association.
Indeed, ferritin levels, an indicator of stored iron, were found to be higher in both HF and LF older
adults (Figure 3A), which might arise from chronic inflammation [48]. This view is consistent with
our observation of an age-dependent elevation of plasma IL6 and CRP, the levels of which were both
higher in LF relative to HF participants (Figure 4A,B).

Although in apparent contrast to our original hypothesis, the measurement of circulating levels of
hepcidin provided interesting information regarding such an association. This defensin-like hormone,
produced mainly by the liver, plays a major role in modulating iron metabolism [11]. Indeed, via
binding to the iron exporter ferroportin at the level of key iron sources [i.e., duodenal enterocytes
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(absorption of dietary iron), splenic and hepatic macrophages (recycling iron from erythrophagocytosis),
and hepatocytes (iron stores)], hepcidin induces its own endocytosis and lysosomal degradation as
well as of ferroportin [12]. As a consequence, decreased intestinal absorption and release of iron from
recycling macrophages occur, ultimately resulting in lower circulating iron concentrations [11].

In the present investigation, higher levels of hepcidin were found in older participants, especially
in those classified as LF (Figure 3B), with a parallel increase in IL6 and CRP (Figure 4A,B). These results
are in line with previous reports pointing to IL6 as a major hepcidin inducer in older adults [49–51],
in whom it may be responsible for iron-limited erythropoiesis [52,53]. Whether inflammation reduces
iron availability for myoglobin assembly, thereby contributing to impairing muscle function, is presently
unknown. Further support to the link among inflammation, iron status, and functional impairment is
lent by the strong negative correlation (r = −0.99, p = 0.04) between circulating IL6 levels and muscle
expression of ZIP14 in LF older participants (Table 2). Although our experimental design does not
allow inferring about a direct involvement of ZIP14 in muscle iron clearance, a link between ZIP14
expression and IL6 induction has previously been reported and a role for ZIP14 in iron uptake has
been hypothesised [54].

A hepcidin-independent regulation of iron status with ageing cannot be excluded. Indeed, studies
conducted in older adults with anaemia and chronic inflammation did not detect increased levels of
hepcidin in urine or serum [55,56]. In this context, the co-occurrence of multiple age-related conditions
may explain changes in the iron status [57,58]. This could be the case for higher circulating ferritin
levels in HF participants, which may result, for instance, from the stimulation of ferritin expression by
reactive species [59,60].

mtDNA content and damage (Figure 5A,B) as well as the expression of OGG1, one major enzymatic
system of mtDNA base excision repair, and 3-NT (Figure 6A,B) showed an age-related association
rather than changes dependent on functional status. These findings are in line with previous results in
other aged post-mitotic tissues [61].

Taken as a whole, results from the present study suggest that altered iron metabolism during
ageing may predispose to oxidant generation and damage to cell components, including mitochondria.
In particular, the association of iron dyshomeostasis with systemic inflammation might represent a
kingmaker towards functional decline. Disruption of iron metabolism in myocytes might therefore
represent a novel target for interventions aimed at preserving muscle health in old age.

5. Limitations of the Study

While reporting novel findings, our work is not devoid of limitations that need to be discussed.
First of all, the study is exploratory in nature due to the small sample size and the limited amount of
muscle tissue available for analyses. In addition, the cross-sectional design hampers inference about
the time course of changes in analysed mediators and the development of functional decline. Also,
only total iron levels were measured and no information is available about haem and non-haem iron.
Likewise, neither haemoglobin levels nor mean corpuscular haemoglobin concentration in erythrocytes
were measured. Furthermore, plasma iron levels, Tf affinity and saturation, and ferritin capacity were
not assessed, which impeded a comprehensive appraisal of body iron homeostasis. Finally, the study
did not include a group of actively exercising older people. Both categories of old participants were
physically inactive and this did not allow appreciating the possible effect of physical activity on iron
status in muscle in old age.
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