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Background: We previously reported that the larval Echinococcus granulosus

(E. granulosus) infection can expand the population of regulatory B cells in mice, thereby

inhibiting the anti-infective immunity. However, the underlying mechanism is still largely

unknown. This study further investigated the holistic transcriptomic profiles of total

splenic B cells following the chronic infection of the parasite.

Methods: The infection model of larval E. granulosus was established by intraperitoneal

inoculation with 2000 protoscolexes. Magnetic-Activated Cell Separation (MACS) was

used to isolate the total splenic B cells. RNA sequencing was performed to screen

the differentially expressed genes (DEGs) after infection. The expression of selected

DEGs was verified using qRT-PCR. Gene Ontology (GO) analysis, Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway analysis, and Co-expression network analysis

were applied to predict these DEGs’ underlying biological processes, pathways, and

interactions respectively.

Results: A total of 413 DEGs were identified in larval E. granulosus infected B

cells, including 303 up- and 110 down-regulated genes. Notably, most DEGs related

to inflammation and chemotaxis were significantly upregulated after infection. In line

with these changes, significant expression upregulation of DEGs associated with fatty

acid oxidation, lipid synthesis, lipolysis, lipid transport, and cholesterol biosynthesis,

were observed in infected B cells. Co-expression network analysis showed an

intimate interaction between these DEGs associated with immune and metabolism.
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Conclusions: The present study revealed that the larval E. granulosus infection

induces metabolic reprogramming of B cells, which provides a novel clue to clarify the

immunoregulatory mechanism of B cells in parasitic infection.

Keywords: Echinococcus granulosus, protoscoleces, B cells, immune regulation, metabolic reprogramming, lipid

metabolism

INTRODUCTION

Echinococcus granulosus (E. granulosus) is one of the cestodes
that cause cystic hydatid disease, which poses a serious risk for
public health and economic development (1). The distribution of
the parasite is endemic and it is frequently observed in Central
Asia, China, South America, and Africa (2). Dogs get infected
mainly through ingestion of organs (such as the livers and lungs
of animals) with fertile cysts. Because of a polluted environment
or intimate contact with infected dogs, humans often acquire
the infection by accidentally swallowing the parasite’s eggs. This
parasite can survive in the hosts (including human beings and
many animals) for decades without obvious clinical symptoms,
which is partially due to the perfect strategies of immune
regulation (3). Exploration of these immunological mechanisms
may facilitate the development of several novel therapies for
the disease.

B cells are in charge of generating protective antibodies
after differentiating into antibody-secreting cells in the humoral
immune response (4). During the last decade, a population
of suppressor B cells, collectively named regulatory B cells
(Bregs), has been demonstrated to be associated with the
suppression of excessive inflammation (5). Bregs are capable of
helping to maintain immunological tolerance. It can limit the
immunopathology by producing cytokines such as IL-10, IL-35,
and TGF-β, which prevent the proliferation of pathogenic T cells
and other pro-inflammatory lymphocytes (6). Several studies
have reported that Bregs can be induced by the infection of
parasites such as Leishmania major and Schistosoma japonicum
(7–9). We also showed the accumulation of Bregs after the
infection of larval E. granulosus in mice (10). Given the strong
immunosuppressive function, Bregs are thought to be a major
immunomodulator in anti-infective immunity. However, how
parasitic infection reprograms the function of B cells has yet
been identified.

Immunometabolism is a burgeoning field that aims to
explore the contribution of key metabolic pathways to immune
cell development, differentiation, and function. Accumulating
studies have uncovered those metabolic pathways, such as
glycolysis, fatty acid oxidation, fatty acid synthesis, and
glutaminolysis, that can preferentially determine immune cells’
destiny and action (11–14). This phenomenon is due to the
lack of large nutrient stores in immune cells, and these effector
reactions can only be sustainable when immune cells can
dramatically improve their uptake of glucose, fatty acids, and
amino acids from their microenvironment (15). On the one
hand, the increased uptake of nutrients can provide the substrates
for adenosine triphosphate (ATP) synthesis, allowing activated

immune cells to maintain their numerous cellular programs. On
the other hand, it offers the raw materials for the production
of macromolecules like RNA, DNA, proteins, and membranes,
which are required for immune cell proliferation and activation.
For example, the intrinsic fatty acid reprogramming within
immune cells is demonstrated to regulate the outcome of
immune response (16, 17). In addition, there is evidence that
metabolic reprogramming commits differentiation of human
CD27+IgD+ B cells to plasmablasts or CD27−IgD− B cells
(18). Thus, in response to extracellular signals, a critical step in
the maturation of immune cells is the reprogramming of their
cellular metabolism. However, it is still unknown if metabolic
reprogramming occurs in B cells infected with the larval stage of
E. granulosus.

The present study aimed to investigate the specific metabolic
reprogramming events associated with the regulatory function
of splenic B cells in the mice infected by the larval E.
granulosus. Using the RNA sequencing technology, a total of
413 differentiated expressed genes (DEGs) (including 303 up-
and 110 down-regulated DEGs) were identified after infection.
Interestingly, most upregulated DEGs after infection were related
to inflammation and chemotaxis, which was accompanied by
the elevated expression of key regulators in lipid synthesis and
catabolism. Furthermore, a complex network was observed in the
DEGs associated with immune and lipid metabolism. Overall,
the present study shows that the larval E. granulosus infection
induces metabolic reprogramming in B cells, which provides a
novel clue for clarifying the underlying mechanism of B cell
differentiation in parasitic infection.

MATERIALS AND METHODS

Mice, Parasites, Infection
Female C57BL/6J mice (aged 6–8 weeks) were purchased from
Shanghai Laboratory Animal Center (SLAC, Shanghai, China)
and raised at Xuzhou Medical University’s Experimental Animal
Center. The mice were randomly assigned into E. granulosus
group (Eg group) and control group, with 15 mice in each group.
The protoscoleces (PSCs) of E. granulosus (EgPSC) were acquired
by puncture of fertile sheep hydatid cysts in aseptic conditions.
Themousemodel of larval E. granulosus infection was established
based on the previous studies (3, 19, 20). The Eg model was
established by intraperitoneal injection of 200 µl saline solution
containing 2000 live EgPSC for each mouse, and the control mice
received 200 µl saline solution. All mice were sacrificed after 6
months after infection. In all our studies, a successful infection is
judged by the existence of cysts in the inner organs or abdominal
cavity of mice.
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B Cell Isolation
The mouse CD19+ B cell isolation kit (Miltenyi, Bergisch
Gladbach, Germany) was applied to negatively sort CD19+ B
cells from the spleens of control and Eg mice. The purity of
cells identified via flow cytometry was routinely > 90%. In vitro
cultivation and RNA sequencing were further performed on these
isolated B cells.

Library Construction and Sequencing
For each sample, approximately 1 × 106 splenic B cells were
binned. Each group included three samples from three individual
control or infected mice. After total RNA was extracted,
eukaryotic mRNA was enriched by Oligo(dT) beads, while
prokaryotic mRNA was enriched by removing rRNA by Ribo-
ZeroTM Magnetic Kit (Epicenter). The enriched mRNA was then
fragmented into short fragments using fragmentation buffer and
reverse transcripted into cDNA with random primers. Second-
strand cDNA was synthesized by DNA polymerase I, RNase H,
dNTP, and buffer. Then the cDNA fragments were purified with
QiaQuick PCR extraction kit, end-repaired, poly(A) added, and
ligated to Illumina sequencing adapters. The ligation products
were size selected by agarose gel electrophoresis, PCR amplified,
and sequenced using Illumina HiSeqTM 2500 platform by Gene
Denovo Biotechnology Co. (Guangzhou, China). The length of
pair-end reads was 150 bp.

Bioinformatics Analysis
The original image data obtained by sequencing was converted
into sequence data by Base Calling, which was called raw
data or raw reads. The results were stored in FASTQ format,
including the sequences of reads and the sequencing quality
of bases. To ensure the quality of data, quality control
and filtering of data were processed through software fastp
(version 0.12.4). Clean data (clean reads) were obtained by
removing reads containing adapter, reads containing poly-N,
and low-quality reads from raw data. Short reads alignment
tool Bowtie2 was used for mapping reads to the ribosome
RNA (rRNA) database (21). The rRNA mapped reads will be
removed. The rRNA removed reads of each sample were then
mapped to the reference genome by HISAT2 (version 2.1.0)
(22), respectively.

Gene abundances were quantified by software RSEM (23). The
gene expression level was normalized by using the Fragments
Per Kilobase of transcript per Million mapped reads (FPKM)
method. The FPKM method can eliminate the impacts of
different gene lengths and sequencing depth amount on the
calculation of gene expression. Therefore, the calculated gene
expression can be directly used for comparing the difference of
gene expression among samples.

To identify differentially expressed genes between the two
groups, the edgeR package (http://www.rproject.org/) was used.
We identified genes with |log2FC| > 1 and a false discovery
rate (FDR) < 0.05 in a comparison as significant DEGs. DEGs
were then subjected to enrichment analysis of GO functions and
KEGG pathways.

The biological function of differentially expressed mRNAs
was investigated by gene ontology (GO) analysis with terms

involving biological processes (BP), cellular components (CC),
and molecular functions (MF). All DEGs were mapped to GO
terms in the GO database [GO.db.3.8.2 (2019/04/26)], gene
numbers were calculated for every term, significantly enriched
GO terms in DEGs compared to the genome background were
defined by hypergeometric test. The calculated P-value was gone
through FDR Correction, taking FDR ≤ 0.05 as a threshold.
GO terms meeting this condition were defined as significantly
enriched GO terms in DEGs. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) is the major public pathway-
related database (Release 94), which was used to identified
significantly enriched metabolic pathways or signal transduction
pathways in DEGs. The calculated P-value was gone through
FDR Correction, taking FDR ≤ 0.05 as a threshold. Pathways
meeting this condition were defined as significantly enriched
pathways in DEG.

Co-expression Network Analysis
The co-expression network of mRNAs and protein-coding genes
was analyzed with Cytoscape (version 3.8.0). Correlations with
P < 0.05 were considered to be statistically significant.

Validation of Transcriptomic Data Using
qRT-PCR
Four genes were chosen randomly for qRT-PCR analysis to
obtain further validation of RNA-seq results. Total RNA was
isolated fromCD19+ B cells using TRIzol reagent, and cDNAwas
synthesized from the RNA using PrimeScriptTMRT Master Mix.
Quantitative PCR analyses were performed in a LightCycler R©

480II detection system (Roche Applied Science, Penzberg,
Germany) under the following thermal cycler conditions:
one cycle of 5min denaturation at 95◦C and then 30 s at
95◦C, 30 s at 60◦C and 30 s at 72◦C for 45 cycles. All
experiments were carried out three times and the relative
expression of related genes was represented by comparing cycling
threshold (Ct) values, which were normalized relative to the
endogenous reference (β-actin) on the basis of the 2−11Ct

method. The primer sequences used in this study were listed
in Table 1.

TABLE 1 | The qRT-PCR primer sequences used in the study.

Primer names Sequences (5′ to 3′)

mt-Nd6 Forward: 5′-AGTTCATTATTTTTGGTTG-3′

Reverse: 5′-TCTCTGGATATTCCTCAGT-3′

Wfdc17 Forward: 5′-CAAATCCATACCTCCCAAC-3′

Reverse: 5′-TGTCCTTCCTTCTTCTTCC-3′

S100a9 Forward: 5′-CAGCATAACCACCATCATC-3′

Reverse: 5′-CTCTTCTCTCACAAGCCAA-3′

Gimap4 Forward: 5′-TCAGAGAAGGTCAAAGG-3′

Reverse: 5′-ATTATCAGGCTGGAAAC-3′

β-Actin Forward: 5′-CGTGGGCCGCCCTAGGCACCA-3′

Reverse: 5′-TTGGCCTTAGGGTTCAGGGGGG-3′
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FIGURE 1 | Bioinformatics analysis of DEGs in splenic B cells infected with the larval E. granulosus. (A) The number of the DEGs. (B) The volcano plot shows the

distribution of DEGs. n = 3 mice per group. The significantly up- and down-regulated RNAs are presented as red or green dots (|log2FC| > 1 and FDR < 0.05),

respectively, while the expression of mRNAs not significantly differently expressed is presented as black dots.

RESULTS

Identification and Validation of DEGs in
Splenic B Cells Post Larval E. granulosus
Infection
B cells represent important regulatory cells that mediate the
anti-parasite immune response (24). Our previous studies have
shown that larval E. granulosus infection induces function
changes of B cell function, and notably, numerous differential
metabolites were identified in splenic B cells of infected mice
(25). To further investigate the specific downstream mechanism
of E. granulosus on B cell function, total CD19+ B cells in
spleens were collected from Eg infected and control mice for
the RNA sequencing analysis. In order to ensure data quality,
it is necessary to quality control and filter the data before
information analysis. We further filtered the clean data (clean
reads) obtained after the initial filtering to obtain high-quality
(HQ) clean data (clean reads) for subsequent information
analysis. Q30 percentages of HQ clean data for all samples
were higher than 92.88%, and the GC contents of the HQ
clean data for all samples ranged between 46.70 and 48.34%
(Supplementary Table S1). For further analysis, the HQ clean
reads were mapped to the reference genome. Approximately
82.86 to 84.76% of the reads were successfully mapped to the
reference genome, and 82.26–84.13% of the reads were uniquely
mapped to the reference genome (Supplementary Table S2).
All obtained transcriptome data were stored in the SRA
database under the number PRJNA726828. The |log2FC| >

1 and FDR < 0.05 were considered as the standard to
identify DEGs. As shown in Figures 1A,B, a total of 413
DEGs were screened out, including 303 up-regulated and 110
down-regulated DEGs. Hierarchical clustering analysis revealed
significant differences in mRNA expression patterns between Eg
and control groups.

FIGURE 2 | qRT-PCR validation of randomly selected DEGs from the

RNA-seq data. n = 3–5 mice per group.

For validating the RNA-Seq data, four DEGs (mt-Nd6,
Wfdc17, S100a9, Gimap4) were randomly selected for qRT-PCR.
Overall, the target gene regulatory direction and expression level
differences measured by RT-qPCR were in agreement with the
RNA sequencing results (Figure 2), which suggested the data
obtained were accurate and reliable.

GO Analysis of DEGs in Splenic B Cells
Post Larval E. granulosus Infection
To investigate the underlying biological functions of DEGs
between Eg and control groups, the GO enrichment analysis
was executed. GO analysis is commonly used to annotate
the physiological functions of a huge number of discovered
genes. The enriched GO terms were ordered based on the
three categories, including biological processes (BP), cellular
components (CC), and molecular function (MF). Three hundred
and three upregulated and 110 downregulated DEGs were
assigned to 54 and 45 GO terms, respectively. These DEGs
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FIGURE 3 | Gene Ontology (GO) analysis of the DEGs in the splenic B cells infected with the larval E. granulosus. GO annotation of DEGs with remarkable enrichment

scores covering domains of (A) biological processes, (B) cellular components, and (C) molecular functions. The GO terms with FDR (corrected P-value) ≤ 0.05 were

considered significant.

were mainly involved in “biological regulation (GO:0065007),”
“metabolic process (GO:0008152),” “signaling (GO:0023052),”
“immune system process (GO:0002376),” “cell (GO:0043657),”
“catalytic activity (GO:0003824)” and “signal transducer activity
(GO:0004871)” (Figure 3). These enrichment results could lay
the foundation for further exploring the specific mechanisms by
which E. granulosus regulates the function and differentiation of
B cells.

KEGG Pathway of DEGs in Splenic B Cells
Post Larval E. granulosus Infection
Genes in an organism perform their biological functions in a
coordinated manner. To further evaluate the significant DEGs
related to B cell function and better understand the biological
functions of these DEGs, we further carried out KEGG pathway
enrichment analysis. DEGs in splenic B cells after infection
were mapped to KEGG reference pathways and allocated to
197 pathways. The top 30 enriched pathways were shown in
Figure 4. Among them, “Cytokine-cytokine receptor interaction
(ko04060),” “ECM-receptor interaction (ko04512),” “PI3K-AKT
signaling pathway (ko04151)” and “JAK-STAT signaling pathway
(ko04630)” were significantly enriched (Table 2). These pathways
were thought to be closely associated with the differentiation
and function of B cells after larval E. granulosus infection and
deserved further study.

Inflammatory Profile of Splenic B Cells
Post Larval E. granulosus Infection
Cytokines are high-inducible secreted proteins that act as bridges
for intercellular communication within the immune system
(26). To characterize the cytokine profile of splenic B cells
after infection, we analyzed the clustering heatmap of immune-
related DEGs between the two groups. As shown in Figure 5,
with the infection of larval E. granulosus, there were higher
expression levels of many inflammatory factors in splenic B
cells, such as Cxcl5, Il1r1, S100a8, S100a9, and CD14, which

form a complex network of immune regulation. Notably, IL-
10 was found to be expressed at a high level. Several cytokines
were expressed at low levels, including stat1, Gvin1, Arhgef10,
Il10rb, Tnfrsf11b, Tnfrsf8 Il5ra, CD55, Slamf1and Lilra6. It
has been reported that down-regulation of Il5ra inhibits TNF-
α induced inflammatory response in human nucleus pulposus
cells (27). Furthermore, most DEGs related to inflammation
and chemotaxis were significantly upregulated after infection.
These results were consistent with our previous results that
LPS stimulates infected B cells to produce both high levels of
pro-inflammatory and anti-inflammatory cytokines (25).

Metabolic Events of Splenic B Cells Post
Larval E. granulosus Infection
Growing evidence suggests that specific metabolic adaptations
are required to allow B cells to develop and differentiate
in various environments (28). In this study, these key genes
related to fatty acid oxidation (Cyp1b1, Alox12, Figure 6A),
lipid synthesis (Enpp2, Agpat4, Ptgis, Steap4, Acpp, Lepr,
B4galt6, Figure 6B), lipolysis (Pla2g7, Ddhd1, Gpx3, Figure 6C),
lipid transport (Apol10b, Ldlr, Cav1, Figure 6D), cholesterol
biosynthesis (Hmgcs2, Sult1a1, Figure 6E) were significantly
upregulated. Lipid metabolism plays a crucial role in the function
of immunocytes (29). Agpat4/LPA axis in colorectal cancer
cells has been validated to regulate p38/p65 signaling-dependent
macrophage polarization (30). Besides, in our previous study,
13 differential metabolites involved in lipid metabolism were
identified in splenic B cells upon larval E. granulosus infection
(25). These results indicated that larval E. granulosus infection
can reprogram lipid metabolism in B cells, thereby modulating
its immune function.

Co-expression Network of Immune and
Metabolism Associated DEGs in Splenic B
Cells Post Larval E. granulosus Infection
Signal transduction and metabolic pathways work together to
determine cellular outcomes in an integrated network (28). To
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FIGURE 4 | Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis (top 30) of the DEGs in the splenic B cells infected with the larval E. granulosus. The size of

each point represents the number of DEGs. The larger the point, the more genes fall into this pathway. Moreover, the point of different colors represents the different

P-values, and the greener point means higher significance of enrichment. The rich factor indicates the degree of enrichment.

TABLE 2 | The KEGG pathways of differentially expressed mRNAs.

Pathway DEGs genes with

pathway

annotation

P-value Q-value Pathway ID Genes

Immune system

Hematopoietic cell lineage 13 3.24E-08 6.38E-06 ko04640 Ighg1;Il5ra;Cd34;Il1r1;Il1r2;Cd55;Gp9;Cd9;

Itga2b;Cd1d2;Gp1bb;Cd14

Complement and coagulation cascades 8 0.000231228 5.69E-03 ko04610 Cd46;Serping1;C3;Cfh;Cd55;F5;Plat;C1s1

Signal transduction

PI3K-AKT signaling pathway 18 0.000269776 5.91E-03 ko04151 Ighg1;Col6a1;Col1a1;Lama4;Egfr;Col6a2;

Osmr;Fn1;Itgav;Pdgfra;Col1a2;Fgfr2;Gng11;

Itga2b;Thbs1;Ghr;Col6a5

JAK-STAT signaling pathway 11 0.000436539 8.60E-03 ko04630 Il5ra;Il27ra;Mpl;Osmr;Fhl1;Stat1;Il12a;Il20rb;Lifr;

Ghr;Lepr

Calcium signaling pathway 10 0.005951313 7.33E-02 ko04020 Ighg1;Plcg1;Egfr;Pde1b;Htr7;Cacna1s;Pdgfra;

Adrb1;Ptger3

Signaling molecules and interaction

Cytokine-cytokine receptor interaction 21 8.46E-08 7.28E-06 ko04060 Il5ra;Mpl;Egfr;Osmr;Cxcl13;Il1r1;Il1r2;Il12a;

Pdgfra;Cxcl5;Pf4;Cxcl1;Ccl7;Ccl2;Il20rb;

Acvr2a;Lifr;Ghr;Lepr;Cxcl2;Tnfrsf11b

ECM-receptor interaction 12 1.11E-07 7.28E-06 ko04512 Col6a1;Col1a1;Lama4;Col6a2;Fn1;Itgav;

Col1a2;Gp9;Itga2b;Thbs1;Gp1bb;Col6a5

reveal the correlation of DEGs among cytokine, lipid metabolism
enzyme, and signaling pathway, the co-expression network
was built based on mathematical correlation (Correlation
> 0.99, Correlation < −0.99, and P-value < 0.05). The

co-expression network was constructed by using Cytoscape
(version 3.8.0) (Figure 7), which indicated that larval E.
granulosus infection induces complex metabolic reprogramming
in B cells.
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FIGURE 5 | The heatmap of DEGs related to inflammatory signaling molecules, cytokine, and chemokines in the splenic B cells infected with the larval E. granulosus.

Red color means the upregulated mRNAs and green color means the down-regulated mRNAs.

DISCUSSION

The present study identified a total of 413 DEGs, including

303 up- and 110 down-regulated genes, in the total splenic

B cells in mice chronically infected with larval E. granulosus.

Most DEGs related to inflammation and chemotaxis were

significantly upregulated after infection, especially a higher
mRNA expression of key regulators associated with lipid
metabolism. Furthermore, intimate interaction between these
genes of immune and metabolism was shown by co-expression
network analysis. Correspondingly, our recent study also
identified lots of differential metabolites associated with the
functional differentiation and lipid metabolism in the splenic
B cells post the parasitic infection (25). Overall, these findings
primarily established the potential functional link of metabolic
events and B cells’ differentiation and function in response to the
long-term infection of the larval E. granulosus.

Cysticercosis (CE) is a disease resulting from larvae of
E. granulosus and is one of the most frequent zoonotic
diseases in both developed and developing countries (31). The

parasite has developed sophisticated strategies to evade host
immune responses (3, 20). There is growing evidence that B
cells have a crucial role in the modulation of anti-infectious
immune response post parasite infection. B cells producing IL-
10 were reported to inhibit type I hypersensitivity in mice
with Leishmania major infection (7). During Trypanosoma cruzi
infection, IL-17+ producing B cells can drive the inflammatory
response and favor host resistance (32). Our previous study
found an accumulation of IL-10+CD19+ B cells post larval E.
granulosus infection (3). Both the inflammatory cytokines (TNF-
α, IL-6) and anti-inflammatory cytokines (IL-10) production
were significantly elevated in B cells of infected mice after
exposure to LPS (25). These results implicated that the
parasitic infection alters B cell function. The present study
utilized transcriptomics to further characterize the profiles of
infected B cells, which offers a novel clue for investigating the
fundamental mechanisms.

Immunometabolism is an emerging field of research
that reveals the effects of key metabolic pathways on the
proliferation/differentiation and function of immune cells (33).
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FIGURE 6 | The expression profile of the key genes involved in lipid metabolism in the splenic B cells infected with the larval E. granulosus. The expression levels of

genes related to fatty acid oxidation (A), lipid synthesis (B), lipolysis (C), lipid transport (D), and cholesterol biosynthesis (E) were shown. n = 3 mice per group.

Cyp1b1, cytochrome P450, family 1, subfamily b, polypeptide 1; Alox12, arachidonate 12-lipoxygenase; Enpp2, ectonucleotide pyrophosphatase/phosphodiesterase

2; Agpat4, 1-acylglycerol-3-phosphate O-acyltransferase 4; Ptgis, prostaglandin I2 (prostacyclin) synthase; Steap4, STEAP family member 4; Acpp, acid

phosphatase, prostate; Lepr, leptin receptor; B4galt6, UDP-Gal:beta GlcNAc beta 1,4-galactosyltransferase, polypeptide 6; Pla2g7, phospholipase A2, group VII

(platelet-activating factor acetylhydrolase, plasma); Ddhd1, DDHD domain containing 1; Gpx3, glutathione peroxidase 3; Apol10b, apolipoprotein L 10b; Ldlr, low

density lipoprotein receptor; Cav1, caveolin 1, caveolae protein; Hmgcs2, 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2; Sult1a1, sulfotransferase family 1A,

phenol-preferring, member 1.

Metabolic reprogramming is well-recognized as the critical
event in these processes. For example, metabolic pathways
such as fatty acid oxidation, fatty acid synthesis, glycolysis,
and glutaminolysis, can preferentially determine immune
cells’ destiny and effector functions (11–14). It is reported that
inflammatory stimulants such as LPS and cytokines, can promote
the fatty acid synthesis for M1 type macrophages (34). Moreover,
compared with Th1, Th2, and Th17 cells, the expression of genes
participating in FAO (including CPT1α) is upregulated in Treg
cells (35, 36). Likewise, lipid metabolic pathways are reported to
regulate B cell fate and function. Studies have shown that energy
generated from extracellularly acquired glucose metabolism is
used partially to support de novo lipogenesis of splenic B cells
in response to LPS stimulation, and fatty acid oxidation in vivo
and in vitro can determine the development and survival of
optimal germinal center B cells (37, 38). Particularly, HMG-CoA
reductase is reported to be a critical enzyme in the early steps of
the cholesterol metabolic pathway, and inhibition of HMG-CoA
reductase diminishes the ability of B cells to generate IL-10 at

the mRNA and protein levels (39). However, the progress of
lipid metabolism in B cell differentiation and function is rare
in the context of parasitic infection. We previously identified
13 different metabolites related to lipid metabolism after the
larval E. granulosus infection (25). Moreover, we observed that
glutathione, taurine, and inosine can remodel the immune profile
in B cells (25). We herein reported the significantly upregulated
expression of key genes associated with lipid metabolism.
Consequently, these identified differential metabolites and genes
may be pivotal in managing B cell differentiation and function
via reprogramming metabolic fluxes.

The high expression of lipid metabolism is closely related
to the reprogramming progress of B cells infected with
larval E. granulosus, but the specific regulatory mechanism
has not been clarified. Autotaxin (ATX), a lysophospholipase,
encoded by ENPP2, was upregulated in our study. Autotaxin
(ATX)-mediated hydrolysis of lysophospholipid precursors in
the extracellular environment produces lysophosphatidic acid
(LPA) species. There is evidence that both inflammation and
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FIGURE 7 | Co-expression network of DEGs in the splenic B cells infected with the larval E. granulosus. The network was based on the mathematical relevance

(Correlation > 0.99, Correlation < −0.99, and P-value < 0.05) to search similar expression profiles of mRNAs using Cytoscape software (version 3.8.0). The hexagon

represents inflammation-related genes. V represents the genes related to lipid metabolism. The diamond represents the DEGs in JAK-STAT signaling pathway and

PI3K-AKT signaling pathway. Red and green indicate the upregulated and downregulated genes, respectively. The gray line represents the edge that interacts

between genes.

mineralization of the aortic valve are mediated by ATX (40), and
glucose homeostasis and insulin sensitivity in older adults are also
associated with serum levels of ATX (41). Moreover, glutathione
peroxidase 3 (GPx3), accounting for the main antioxidant
activity in the plasma, was upregulated in the infected B cells.
Insulin receptor expression in white adipose tissue is correlated
positively with Gpx3 expression (42). GPx3 overexpression in
adipocytes ameliorates hyperglucose-induced insulin resistance
and diminished expression of inflammatory genes, while
GPx3 neutralization in adipocytes enhances expression of pro-
inflammatory genes (43). However, the role of these identified
DEGs in the function or differentiation of splenic B cells post E.
granulosus infection requires further investigation.

KEGG pathway enrichment analysis forecasts the complicated
pathways for a general understanding of changes on B cells
after infection This study showed that the top enriched KEGG
pathways were “ECM-receptor interaction,” “hematopoietic
cell lineage,” “PI3K-AKT signaling pathway,” and “JAK-STAT

signaling pathway.” PI3K-AKT signaling pathway is engaged
in regulating multiple cellular functions such as transcription,
translation, proliferation, growth, and survival (44). Class IA of
PI3K is specifically required for the growth of B cells, and it
mediated signals that induce the expression of the transcription
factor Paired box 5 (Pax5), which is instrumental in commitment
and differentiation of B cells by activating central B cell-specific
signaling proteins such as SLP-65 and CD19 (45). Besides, a
previous study showed that IL-10 production by B cells was
activated by cecal bacterial lysate through TLR-2 and PI3K
(p110δ subunit) pathways (46). PI3K-AKT signaling pathway is
critical for the development of pre-B cells and the maintenance
of mature B cells (47). JAK-STAT3 signaling pathway plays
a key role in regulating many cellular functions such as cell
differentiation and proliferation and is strongly related to
inflammation due to its involvement in IL-6-signaling (48–51).
For example, the JAK-STAT3 signaling pathway, activated by
the binding of IL-6 to gp130, has been reported to participate
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in the growth and differentiation of B cells into plasma cells
(49). Notably, JAK-STAT3 signaling pathway can participate in
lipid metabolism. The pathway has been reported to regulate
fatty acid β-oxidation, which enhances breast cancer stem cells
and cancer chemoresistance (52). JAK kinase is also an activator
of the PI3K-AKT signaling pathway, and phosphorylated JAK
activates PI3K, which in turn activates its downstream cascade
(53). In addition, the extracellular matrix (ECM) is composed of
a complex mixture of structural and functional macromolecules.
Specific interactions between cells and the ECM are mainly
mediated by integrins (54). Cellular activities such as adhesion,
migration, differentiation, proliferation, survival, and apoptosis,
are controlled directly or indirectly by these interactions (55).
This study showed that DEGs were significantly enriched in these
pathways, suggesting that they may play a role in B cell expansion
and differentiation.

The present study observed extensive alternation of
inflammation-related DEGs in B cells post the infection of
larval E. granulosus. This indicated that B cells may be an
important contributor to the expression of cytokines. The
laminated layer (LL) is the outer layer of the hydatid cyst (the
form of larval E. granulosus in intermediate hosts). It was
reported that in LPS-treated splenocyte cultures, LL crude
extract can elevate the mRNA expression levels of Treg-related
cytokines (TGF-β, IL-10) and decrease the mRNA expression
levels of pro-inflammatory cytokines (IFN-γ, IL-1β, TNF-α)
(56). In line with this finding, another study showed that in the
early post-infection phase (3–4 weeks), the Th1-type cytokine
profile dominates, and then, the response shifts to a Th2-type
cytokine profile (57). Thus, it is proposed that the host immunity
including B cell response, is tightly reprogrammed by the
number and size of the cysts. Furthermore, what we have to point
out is that only female mice were used in this study, which were
widely used in other studies and ours related to E. granulosus
infection (3, 10, 20, 25, 56, 57). There is no evidence of gender
differences in regard to the parasitic infection, but the effect of
gender can’t be excluded. Therefore, future studies should focus
on the problem, which may help a better understanding of B
cells’ role and mechanism in the anti-infective immunity induced
by larval E. granulosus.

CONCLUSIONS

In summary, the present study revealed the functional alternation
along with dramatic lipid metabolic reprogramming of the

splenic B cells in the mice infected by larval E. granulosus.
The DEGs were identified, and Co-expression network analysis
indicated an intimate interaction between the genes of immune
and metabolism in the intrinsic B cells. These results provide
a base for further clarifying the underlying mechanism of B
cell differentiation and function in response to the long-term
infection of larval E. granulosus.
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