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Abstract: We hypothesized that sphingolipids may be early biomarkers of gestational diabetes melli-
tus (GDM). Here, 520 women with normal fasting plasma glucose levels were recruited in the first
trimester and tested with a 75 g oral glucose tolerance test in the 24th–28th week of pregnancy. Serum
sphingolipids concentrations were measured in the first and the second trimester by ultra-high perfor-
mance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC/MS/MS)
in 53 patients who were diagnosed with GDM, as well as 82 pregnant women with normal glucose
tolerance (NGT) and 32 non-pregnant women. In the first trimester, pregnant women showed higher
concentrations of C16:0, C18:1, C22:0, C24:1, and C24:0-Cer and lower levels of sphinganine (SPA) and
sphingosine-1-phosphate (S1P) compared to non-pregnant women. During pregnancy, we observed
significant changes in C16:0, C18:0, C18:1, and C24:1-Cer levels in the GDM group and C18:1 and
C24:0-Cer in NGT. The GDM (pre-conversion) and NGT groups in the first trimester differed solely
in the levels of C18:1-Cer (AUC = 0.702 p = 0.008), also considering glycemia. Thus, C18:1-Cer
revealed its potential as a GDM biomarker. Sphingolipids are known to be a modulator of insulin
resistance, and our results indicate that ceramide measurements in early pregnancy may help with
GDM screening.

Keywords: gestational diabetes; sphingolipids; ceramides; lipidomic; C18:1-Cer

1. Introduction

Gestational diabetes mellitus (GDM) is defined as glucose intolerance first recognized
during pregnancy. It is usually the result of β-cell dysfunction on a background of chronic
insulin resistance [1]. Other factors affecting insulin sensitivity are maternal obesity, ex-
tensive hormones release, adipocytokine production, genetic and epigenetic changes, and
novel potential omics factors [2]. Hyperinsulinemic-euglycemic clamp studies in healthy,
lean women show that insulin sensitivity is reduced by 56% compared with pre-pregnancy,
and basal endogenous glucose production is increased by 30% in the third trimester [3,4].
During pregnancy, we observe an increase in lipid concentration, especially in triglycerides,
and, to a lesser extent, phospholipids and cholesterol. It is the result of altered maternal
metabolism [5].

Insulin resistance and hyperlipidemia are important physiological processes essential
during pregnancy to ensure sufficient fetal nutrition. In women with GDM, the physio-
logical changes in insulin and lipids are excessive but also transitional and may indicate
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underlying metabolic dysfunction [6,7]. As is well known, lipids perform a crucial role in
the biology of the human body, not only being an energy storage and a component of cell
membranes, but also acting as an agent in signaling pathways and altering the metabolism.
Disturbances in lipid metabolic signaling pathways are associated with inflammation and
systemic diseases such as the metabolic syndrome and hypertension [8]. Population-based
lipidomic studies indicate that a number of ceramides (Cers), sphingomyelins, and lactosy-
loceramides are significantly downregulated years before type 2 diabetes onset, suggesting
that the downregulation of sphingolipid metabolism could be partially responsible for the
future onset of type 2 diabetes among women with GDM history [9]. Furse et al. showed
that lipid metabolism was altered at least 10 weeks before a clinical diagnosis of GDM was
made [10].

Sphingolipids are a group of biologically active lipids involved in regulation of various
cellular processes including cell migration, inflammatory response, proliferation, differen-
tiation, and apoptosis [11,12]. The central molecule in sphingolipid metabolism and the
precursor for the complex sphingolipids is ceramide. Available data suggest that it is also
a major contributing factor of insulin resistance in skeletal muscles and the liver [13–15].
These compounds induce insulin resistance at the level of RACα serine/threonine-protein
kinase, also known as Akt or protein kinase B-PKB [16]. This compound activates protein
phosphataseA2 (PPA2) and directly catalyzes PKB/Akt dephosphorylation, thus, inhibiting
the activity of the insulin pathway [16]. Moreover, type 2 diabetes is often associated with
chronic, moderate inflammation. Sphingosine-1-phosphate (S1P) belongs to the sphin-
golipid family and is a pro-inflammatory compound that increases the expression and
secretion of cytokines (e.g., TNFα, IL-6, MCP-1) [17]. However, the effect of S1P on the
inflammatory response has been demonstrated to be dependent on a carrier protein. The
major carrier proteins for S1P are apolipoprotein M (apoM) and albumin. Most of the
plasma S1P is bound to the apoM/ApoM-S1P that binds preferentially to HDL. ApoM-S1P
has been shown to inhibit inflammatory responses in endothelial cells [18]. These features
suggest that S1P may induce the disorders leading to GDM, but there is little literature data
on this subject.

Here, we hypothesized that circulating sphingolipids may be early biomarkers of
GDM development. To test this hypothesis, serum sphingolipid levels were measured in
the first and the second trimester and compared between the patients with normal glucose
tolerance (NGT) and GDM diagnosed between 24 and 28 weeks of pregnancy.

2. Materials and Methods
2.1. Study Population

Women (n = 520) with normal fasting plasma glucose levels (<92 mg/dL (5.1 mmol/L))
were recruited in the first trimester of pregnancy from the Gynecological Out-Patient Clinic
of the Medical University of Bialystok. Women with a history of GDM, stillbirth, congenital
anomalies, pregnancy-induced hypertension, multiple pregnancy, pre-existing glucose
intolerance, or acute or chronic inflammation and active smokers were not included. All
patients underwent a 75 g oral glucose tolerance test (OGTT) in the 24th–28th week of
pregnancy and gestational diabetes was diagnosed in 53 women (GDM) according to the
WHO 2013 criteria [19]. Their results were compared with the results of the carefully
selected 82 pregnant women with normal glucose tolerance (NGT). We also enrolled a third
control group that consisted of 37 healthy, non-pregnant women. All groups were matched
for age, and pre-pregnancy BMI was calculated as weight in kilograms divided by height in
meters. Written informed consent was obtained from all participants before enrolment, and
the protocol was approved by the local ethics committee (Medical University of Bialystok).

2.2. Diabetic Parameters

In the 1st trimester, venous blood samples were collected in the fasting state. Serum
was collected by allowing freshly drawn blood to clot, followed by centrifugation at 2000× g
for 10 min in a refrigerated centrifuge. The resulting supernatant was collected and stored
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at−80 ◦C until further analysis. The 75 g oral glucose tolerance test (OGTT) was performed
in the 24th–28th week of pregnancy in the pregnant patients, as well as in the control group,
after an overnight fast. Blood samples were collected at 0, 30, 60, and 120 min after glucose
load. Plasma glucose concentration was measured via an enzymatic method with hexokinase
(Cobas c111, Roche Diagnostics Ltd., Switzerland). Serum insulin levels were assayed by immunora-
diometric method (DiaSource Europe SA, Belgium), and glycated hemoglobin (HbA1c) was evalu-
ated with a high-performance liquid chromatography technique (BIO-RAD Laboratories, Germany).
The following indices of insulin sensitivity and insulin secretion were calculated: (1) HOMA-IR
(the homeostasis model assessment of insulin resistance) = FPG (mmol/L)× FPI (µU/mL)/22.5,
HOMA-β [%] = 20× FPI (mU/L)/FPG (mmol/L)− 3.5; and (2) the Matsuda and de Fronzo in-
dex (ISOGTT) = 10,000/

√
((FPG × FPI) × (G × I)), where FPG = fasting plasma glucose,

FPI = fasting plasma insulin, G = mean glucose, and I = mean insulin during the OGTT [20]. Total
cholesterol, HDL-cholesterol, and triglyceride concentrations were measured by enzymatic
methods (Cobas c111, Roche Diagnostics Ltd., Rotkreuz, Switzerland). LDL-cholesterol
concentration was calculated using the Friedewald equation.

2.3. Sphingolipid Measurements

The concentration of serum sphingolipids was measured in the first and the sec-
ond trimester of pregnancy using a UHPLC/MS/MS approach according to Błachnio-
Zabielska et al. [21]. Briefly, an internal standard mix (17C-sphingosine, 17C-S1P, d17:1/8:0,
d17:1/18:0, d17:1/18:1 (9Z), d17:1/20:0, d17:1/24:0, and d17:1/24:1 (15Z)) (Avanti Polar
Lipids, Alabaster, Al), as well as an extraction mixture (isopropanol:water:ethyl acetate,
30:10:60; v:v:v), was added to each serum sample. The samples were vortexed and then
centrifuged. The supernatants were transferred to new tubes and pellets were re-extracted.
After centrifugation, supernatants were combined and evaporated under nitrogen. The
dried samples were reconstituted in LC Solvent B (2 mM ammonium formate, 0.15% formic
acid in methanol) for UHPLC/MS/MS analysis (Sciex 6500+; AB Sciex Germany GmbH,
Darmstadt, Germany). The chromatographic separation was performed on a reverse-phase
Zorbax SB-C8 column 2.1 × 150 mm, 1.8 µm (Agilent Technologies, Santa Clara, CA, USA)
in a binary gradient using 1 mM ammonium formate with 0.1% formic acid in water as
solvent A and 2 mM ammonium formate and 0.1% formic acid in methanol as solvent B
at the flow rate of 0.4 mL/min. Sphingolipids concentrations were analyzed via a triple
quadrupole mass spectrometer using positive ion electrospray ionization (ESI) (except for
S1P, which was analyzed in negative mode) with multiple reaction monitoring (MRM)
against the concentration standard curves.

2.4. Statistical Analysis

The data were analyzed by the STATISTICA 13 for Windows (StatSoft. Inc., Tulsa,
OK, USA). Data were shown as medians and interquartiles. Differences between the two
groups were compared by Mann–Whitney U test, differences between all three groups were
compared via a Kruskal–Wallis test, and relationships between variables were tested by
Spearman’s correlations. A Wilcoxon signed rank test was used to compare sphingolipids
levels in the 1st and 2nd trimester. A p-value less than 0.05 was considered statistically
significant. Data are shown as medians with interquartile ranges.

3. Results
3.1. Characteristics of the Studied Groups

Tables 1 and 2 compare the clinical and biochemical characteristics of the study patients.
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Table 1. Clinical characteristics of the groups studied in the 1st trimester.

Control NGT GDM (Pre-Conversion) p-Value

n 37 82 53

Age (years) 26 (23–31) 28 (24–32) 25.5 (24–30) 0.4 ◦

0.81 *

Gestational age (week) 11 (10–12) 11 (10–11) 0.19 *

Prepregnancy BMI (kg/m2) 21.9 (20.6–23.4) 20.9 (19.8–28.5) 24.1 (21.6–26.8) 0.42 ◦

0.87 *

Current BMI (kg/m2) 24.5 (20.4–29.8) 24.8 (22.0–26.7) 0.95 *

Fasting glucose (mg/dL) 90 (86–92) 86 (84–88) 87 (84.5–89.5) 0.0005 ◦

0.19 *

Fasting insulin (µU/mL) 7.5 (5.2–10.7) 11.6 (8.9–14.7) 11.3 (10.1–13.3) <0.0001 ◦

0.83 *

HOMA–IR 1.6 (1.1–2.4) 2.4 (1.8–3.2) 2.5 (2.1–2.9) 0.0002 ◦

0.89 *

HOMA–β 101.1 (67.3–149) 176.9 (151.9–226.8) 173.7 (155.7–220.0) <0.0001 ◦

0.82 *

HbA1c (%) 5.2 (5.0–5.4) 5.0 (4.9–5.3) 5.1 (4.9–5.4) 0.2 ◦

0.31 *

Total cholesterol (mmol/L) 166 (158–182) 174 (150–202) 172 (156.5–187) 0.64 ◦

0.64 *

HDL-cholesterol (mmol/L) 86 (69.6–102.8) 73 (63–88) 72.5 (59.5–80.5) 0.01 ◦

0.49 *

LDL-cholesterol (mmol/L) 64 (53–83) 78 (63.4–96.6) 87.6 (69.3–95.5) 0.03 ◦

0.79 *

Triglycerides (mmol/L) 69 (59–75) 87 (65–116) 84.5 (64.5–125.5) 0.0009 ◦

0.92 *

Data are shown as medians (interquartile range); ◦ differences between all groups were analyzed by Kruskal–Wallis
test. * The difference between NGT and GDM groups was compared by Mann–Whitney U test.

Table 2. Clinical characteristics of the groups studied in the 2nd trimester.

NGT GDM p–Value

n 82 53
Gestational age (week) 25 (24–26) 25.5 (24–26) 0.41
Current BMI (kg/m2) 26.17 (22.6–31.8) 27.8 (23.7–29.7) 0.76

Fasting glucose (mg/dL) 83 (80–86) 94 (89–97) <0.0001
Glucose 30’ (mg/dL) 127 (117–139) 157.5 (139.5–166) <0.0001
Glucose 60’ (mg/dL) 121.5 (103–139) 164 (129.5–184) <0.0001

Glucose 120’ (mg/dL) 108 (89–121) 124 (113–157) <0.0001
Fasting insulin (µU/mL) 11.1 (9.2–14.2) 15.9 (12.8–20.5) <0.0001

Insulin 30’ (µU/mL) 77.9 (56.2–115.1) 89.3 (61.1–137.3) 0.18
Insulin 60’ (µU/mL) 72.3 (47.9–112.8) 108.3 (91.1–152.4) <0.0001

Insulin 120’ (µU/mL) 56.0 (35.2–78.0) 104.8 (68.7–131) <0.0001
HOMA–IR 2.3 (1.9–2.9) 3.6 (2.8–4.7) <0.0001
HOMA–β 223.2 (169.8–276.1) 201.4 (154.4–244.3) 0.13
ISI OGTT 4.3 (3.3–5.4) 2.6 (2.1–3.4) <0.0001

HbA1c (%) 4.8 (4.7–5.1) 5.0 (4.8–5.2) 0.006
Total cholesterol (mmol/L) 243 (219–276) 233 (203–257) 0.04
HDL-cholesterol (mmol/L) 86 (73–95) 79 (65–93) 0.13
LDL-cholesterol (mmol/L) 120.4 (95.6–149.2) 119.2 (86.8–134.4) 0.08

Triglycerides (mmol/L) 172 (133–196) 179 (136–219) 0.31

Data are shown as medians (interquartile range); the difference between NGT and GDM groups was compared
the Mann–Whitney U test.

In the first trimester, the patients who were later diagnosed with GDM (converters) had
no significant differences compared with the women with NGT (Table 1). The comparison of
the three groups revealed significant differences between fasting glucose levels (p < 0.001),
which is a consequence of a variation in norms (19). Fasting insulin (p < 0.001), HOMA-IR
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(p < 0.001), HOMA-β (p < 0.001), and triglycerides levels (p < 0.001) were higher in both
pregnant women groups; HDL-cholesterol (p = 0.01) was higher in the control group.

In the second trimester, the GDM converters had significantly higher fasting and post-
load glucose concentration (p < 0.001); higher fasting and post-load insulin concentrations
(p < 0.001) except for insulin 30′, as well as higher HOMA-IR (p < 0.001) and HbA1c
(p = 0.006). Furthermore, GDM converters had lower ISI OGTT (p < 0.001) and lower total
cholesterol levels (p = 0.04) versus the NGT group (Table 2).

3.2. Sphingolipids Profile

The concentration of total serum ceramides was significantly lower in non-pregnant
women versus pregnant ones (p = 0.0006 versus the GDM pre-conversion and p < 0.0001
versus the NGT group). The control group had lower levels of C16:0-Cer (p = 0.02 vs. GDM
pre-conversion and p = 0.0002 vs. NGT), C18:1-Cer (p < 0.0001 vs. GDM pre-conversion
and p = 0.006 vs. NGT), C22:0-Cer (p < 0.0001 in both comparisons), C24:1-Cer (p = 0.0001
vs. GDM pre-conversion and p < 0.0001 vs. NGT), and C24:0-Cer (p = 0.03 vs. GDM pre-
conversion and p = 0.003 vs. NGT). The control group had higher sphinganine (SPA) and
S1P levels (p < 0.0001 in both comparisons vs. GDM pre-conversion and the NGT group).

Among the pregnant women, comparisons between the GDM converter group and
the NGT group using the Mann–Whitney U test revealed prominent differences in C18:1
concentration (p = 0.01) (Table 3, Figure 1). The diagnostic value of this ceramides species
was evaluated by ROC analysis. The values of AUC and optimal cut-off value for C18:1-Cer
were as follows: 0.702 confidence interval: 0.552–0.852, p = 0.008 (Figure 2).
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Table 3. The concentration of sphingolipids in the serum of patients in the non-pregnant control
group and pregnant GDM pre-conversion and NGT group in their 1st trimester.

Compound
Control Group NGT GDM Pre-Conversion p-Value

Me (Q1–Q3) [ng/mL] Me (Q1–Q3) [ng/mL] Me (Q1–Q3) [ng/mL]

Sph 23.4 (20.6–26.4) 18.02 (13.3–31.7) 17.2 (14.5–36.9)
* p = 0.73
◦ p = 0.2
∧ p = 0.09

SPA 37.5 (34.2–43.8) 13.89 (9.9–19.7) 10.82 (8.0–20.2)
* p = 0.28
◦ p < 0.0001
∧ p < 0.0001

S1P 400.93 (357.2–436.8) 348.81 (251.4–403.4) 296.78 (235.3–342.4)
* p = 0.06
◦ p < 0.0001
∧ p < 0.0001

C14:0 Cer 30.56 (26.5–34.7) 32.4 (25.6–42.9) 29.6 (23.4–36.7)
* p = 0.22
◦ p = 0.5
∧ p = 0.19

C16:0 Cer 135.68 (118.6–156.6) 183.37 (151.3–246.6) 178.01 (129.9–201.4)
* p = 0.49
◦ p = 0.02
∧ p = 0.0002

C18:1 Cer 16.33 (14.3–18.5) 20.72 (16.6–23.7) 24.16 (20.1–29.5)
* p = 0.01
◦ p < 0.0001
∧ p = 0.006

C18:0 Cer 127.75 (114.3–142.2) 133.01 (108.4–160.5) 132.87 (108.1–199.6)
* p = 0.57
◦ p = 0.6
∧ p = 0.5

C20:0 Cer 183.56 (156.4–206.7) 172.96 (130.1–194.2) 152.08 (123.6–177.9)
* p = 0.25
◦ p = 0.09
∧ p = 0.3

C22:0 Cer 215.53 (198.3–240.4) 280.68 (243.5–317.7) 316.04 (256.0–376.7)
* p = 0.1
◦ p < 0.0001
∧ p < 0.0001

C24:1 Cer 219.88 (200.8–251.5) 280.36 (237.9–336.5) 278.96 (241.5–320.3)
* p = 0.92
◦ p = 0.0001
∧ p < 0.0001

C24:0 Cer 1941.61 (1819.1–2306.9) 2200.14 (2040.8–2608.7) 2356.23 (2026.8–2917.9)
* p = 0.52
◦ p = 0.03
∧ p = 0.003

Cer Total 3023.67 (2738.7–3225.9) 3344.21 (3101.9–3682.7) 3552.17 (3007.1–3923.5)
* p = 0.39
◦ p = 0.0006
∧ p < 0.0001

Data are presented as medians (interquartile range). Analysis was performed with the Mann–Whitney U test.
* GDM vs. NGT; ◦ GDM vs. control; ∧ NGT vs. control.

Across the study population, the SPA concentration correlated negatively with serum
insulin (R = −0.33, p < 0.05), HOMA-IR (R = −0.3, p < 0.05), and HOMA-β (R = −0.38,
p < 0.05). Positive correlations with serum insulin parameters were observed in C22:0-
Cer with insulin (R = 0.3, p < 0.05), HOMA-IR (R = 0.3, p < 0.05), and HOMA-β (R = 0.31,
p < 0.05); C24:0-Cer correlated with insulin (R = 0.27, p < 0.05), HOMA-IR (R = 0.23, p < 0.05),
and HOMA-β (R = 0.32, p < 0.05). Furthermore, there were correlations between C18:1-Cer
and serum insulin levels (R = 0.21, p ≤ 0.05) and HOMA-β (R = 0.21, p ≤ 0.05), as well as
between C24:1-Cer and insulin level (R = 0.22, p ≤ 0.05) and HOMA-β (R = 0.29, p ≤ 0.05).

Wilcoxon analysis demonstrated progressive changes in ceramide concentration levels
during pregnancy (Table 4). We compared measurements from the first trimester with
measurements from the second trimester. The most relevant change was observed in
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NGT C24:0-Cer in the second trimester. This appeared to be higher compared to the first
(p < 0.001). Levels of C16:0-Cer and C18:0-Cer in the GDM group were increased while
these parameters were stable in the NGT group. C24:1-Cer in the GDM group was higher
in the first trimester than in the second; the NGT group had the opposite situation, but it
was not significant. Moreover, the concentration of C18:1-Cer in GDM decreased during
pregnancy, but it increased in NGT.

Table 4. The concentration of sphingolipids in the serum of patients from the GDM and NGT groups
by trimester.

Compound

NGT GDM Converters

1st Trimester 2nd Trimester 1st Trimester 2nd Trimester

Me Q1–Q3 Me Q1–Q3 Me Q1–Q3 Me Q1–Q3

Sph 18.02 13.3–31.7 18.7 15.3–23.7 17.2 14.5–36.9 18.07 15.4–20.8
SPA 13.89 9.9–19.7 16.14 12.6–21.5 10.82 8.0–20.2 14.71 10.9–18.5
S1P 348.81 251.4–403.4 307.53 214.1–423.3 296.78 235.3–342.4 263.73 180.9–304.2

C14:0 Cer 32.4 25.6–42.9 35.87 23.9–42.6 29.6 23.4–36.7 35.47 27.8–43.4
C16:0 Cer 183.37 151.3–246.6 184.34 133.8–234.7 178.01 * 129.9–201.4 214.38 * 178.5–250.2
C18:1 Cer 20.72 * 16.6–23.7 22.36 * 17.7–25.9 24.16 * 20.1–29.5 20.36 * 15.6–26.5
C18:0 Cer 133.01 108.4–160.5 137.56 116.9–154.6 132.87 * 108.8–199.6 168.21 * 138.4–201.0
C20:0 Cer 172.96 130.1–194.2 174.51 136.7–210.6 152.08 123.6–177.9 180.41 146.8–242.8
C22:0 Cer 280.68 243.5–317.7 296.23 248.7–347.2 316.04 256.0–376.7 278.25 237.0–336.5
C24:1 Cer 280.36 237.9–336.5 285.22 234.5–344.5 278.96 * 241.5–320.3 257.62 * 214.8–296.6
C24:0 Cer 2200.14 ◦ 2040.8–2608.7 2612.07 ◦ 2306.4–2936.5 2356.23 2026.8–2917.9 2545.29 2115.7–3077.4

Cer Total 3344.21 3101.9–3682.7 3731.5 3494.8–4298.8 3552.17 3007.1–3923.5 3737.46 3310.1–4454.1

This table shows changes during pregnancy. Data are presented as medians and interquartile range; * p < 0.05;
◦ p < 0.001. Analysis was performed with Wilcoxon test.

Comparison of sphingolipid concentrations measured in the second trimester of
pregnancy showed prominent differences between the GDM and NGT group in terms of
S1P (p = 0.009), C16:0-Cer (p = 0.04), C18:0-Cer (p = 0.0002), and C24:1-Cer (p = 0.03). The
diagnostic value of those sphingolipids was evaluated by ROC analysis. The values of
AUC and optimal cut-off value for S1P were 0.638 (95% confidence interval: 0.541–0.735;
p = 0.005) and 304.15 ng/mL. AUC was 0.606 (95% confidence interval: 0.508–0.705; p = 0.03)
and the cut-off value was 184.67 ng/mL for C16:0-Cer. AUC was 0.696 (95% confidence
interval: 0.6–0.792; p = 0.0001) and the cut-off value was 155.95 ng/mL for C18:0-Cer.
AUC = 0.618 (95% confidence interval: 0.519–0.718; p = 0.02) and the cut-off value was
272.16 ng/mL for C24:1-Cer.

4. Discussion

The data show that the main pathophysiological dysfunction in GDM is the increasing
insulin resistance and insufficient insulin compensation, usually as a result of the β-cell
impairment [1,22]. Sphingolipids, particularly ceramides, are potential factors contributing
to diabetes [23]. Our study was designed to measure and compare the changes in circulat-
ing sphingolipids concentration in pregnancy and in GDM. It is worth mentioning that,
according to O’Sullivan, Carpenter and Coustan [24] and some associations, such as the
Spanish Group of Diabetes and Pregnancy (GEDE) [25], OGTT should be taken with 100 g
of glucose and measured in a fasting state, 60, 120, and 180 min after overload. However,
Cabrera-Fernandez et al. [26] revealed that using the GEDE criteria measurement at 180 min
could be omitted. In our work, we applied criteria recommended by the International
Association of Diabetes and Pregnancy Study Group (IADPSG) [24] and the International
Diabetes Federation (IDF) [27], where 75 g of glucose is used, and the test lasts 120 min.

This study showed that the total concentration of circulating ceramides measured
in the first trimester of pregnancy was significantly higher in pregnant patients versus
healthy, non-pregnant women. The pregnant women group showed a significant increase
in C16:0-Cer, C 18:1-Cer, C22:0-Cer, C24:1-Cer, and C24:0-Cer. It is known that ceramide
biosynthesis is enhanced by insulin in skeletal muscles [28]. During pregnancy, insulin
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resistance increases, and the same insulin concentration is higher. This might explain the
increasing ceramide levels.

Elevated C16:0-Cer concentrations have been found in overweight patients and those
with type 2 diabetes [29,30]. Here, we excluded the possibility of obesity influencing the
results. The groups were selected so that they did not present differences in the BMI.
However, we show significantly increased C16:0-Cer levels between the first trimester
and the second trimester in patients who developed GDM. Raichur et al. [30] reported
that the inhibition of synthesis of C16:0-Cer improved insulin resistance and decreased
hyperglycemia. They also reported that C16:0-Cer is an important factor in diabetes
development, and our study confirmed this theory.

Available data report an association between an increased risk of diabetes development
and higher C18:0-Cer levels in plasma [31]. Similarly, in our experiment, in the GDM group
this parameter increased during pregnancy and, in the second trimester, was revealed to be
significantly higher than in the NGT group where it stayed at a constant level.

Other authors reported increased C18:0, C18:1, C20:0, C22:0, and C24:0-Cer in subjects
with a glucose tolerance impairment phenotype [10,32]. They also reported a positive asso-
ciation between circulating ceramide levels and insulin-resistance parameters including
disruption of β-cell function and inflammation [32]. During pregnancy, even physiological
pregnancy, there is an increase in insulin resistance and a prothrombotic state. This showed
pro-inflammatory features [33]. We confirmed a positive correlation between C22:0-Cer
and insulin levels and HOMA-IR, as well as between C18:1, C24:0, and C24:1 with insulin
concentrations and HOMA β across the entire study population. Considering the sub-
groups, we noted that the GDM converters group’s C24:1 positively correlated with insulin
concentration and HOMA β.

Khan et al. [9] recently employed artificial intelligence and demonstrated the predic-
tive value of reduced ceramide levels in the pathophysiology of transition from GDM to
type 2 diabetes. Suppression of ceramide synthesis in pancreatic islets impairs glucose-
stimulated insulin secretion. This discovery suggests that any imbalance may contribute to
insulin resistance. Further research into the role of ceramides and mechanisms underlying
GDM and diabetes development—especially in the pathophysiology of β-cells dysfunction
and insulin resistance—is required.

Early in pregnancy, fat accumulation occurs due to an increased lipid synthesis and
hyperphagia; in the last trimester of pregnancy, fat accumulation halts due to decreased
adipose tissue lipoprotein lipase activity [5]. Adipose tissue is an endocrine organ, and its
adipocytes synthesize i.a. adiponectin. This adipokine was found to elicit broad spectrum
antidiabetic action by activating ceramidase to degrade ceramides [34]. Adiponectin recep-
tors have a homology with ceramidase enzymes. They can activate or deplete adiponectin
receptors to markedly alter cellular ceramidase activity [35]. It is known that decreased
levels of adiponectin during pregnancy indicates an increased risk of GDM [36].

The pregnant women in our study had lower SPA and S1P levels compared to healthy,
non-pregnant women. It is known that S1P is a powerful bioactive lipid that can act
intracellularly and extracellularly, and its receptors are widely expressed in the human
body [37]. S1P is carried on apolipoprotein M (apoM) [8], a minor apolipoprotein on
HDL [9]; it has been proposed to be responsible for many of the pleiotropic qualities of
HDL, i.e., having antiapoptotic [10], anti-inflammatory [38], and vasoprotective effects [39].

Recent studies demonstrated the crucial role of S1P in insulin sensitivity and glucose
homeostasis. Kurano et al. [40] provided evidence that at least a part of HDL’s antidiabetic
action involves apolipoprotein M (apoM) and its lipid ligand sphingosine-1-phosphate
(S1P); these are two quantitatively minor components of HDL. They demonstrated that
apoM/S1P protects against the development of insulin resistance in the liver, adipose tissue,
and skeletal muscles by activating AKT and AMPK signaling, which are the main signaling
pathways and act via S1P1 and/or S1P3 by enhancing mitochondrial functions, perhaps
through the upregulation of the SIRT1 protein levels.
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A prior study with an animal model showed that increased glycemia resulted in
activation of sphingosine kinase isoform 2 (Sphk2) in pancreatic β-cells and prominently
increased S1P. Knockdown of Sphk2 led to the abolition of insulin secretion in response to
glucose [41]. Liu et al. [42] proved that S1P prevents β-cell apoptosis—thus, the authors
suggested inhibition of the voltage-dependent potassium channel in pancreatic β-cells,
which also induces Ca2+ inflow into the cell to stimulate insulin secretion.

The literature suggests elevated levels of SPA in type 2 diabetes patients versus
healthy control subjects [43]. Moreover, SPA was shown to negatively correlate with insulin
sensitivity [44]. In contrast to those reports, we present, here, decreased levels of SPA in
the GDM group versus the control group. This may be due to the use of SPA for ceramide
synthesis—it is a major precursor in the de novo synthesis pathway [45].

Interestingly, our study demonstrated that the C18:1-Cer level was significantly higher
in GDM converters than in the NGT group in the first trimester. It is worth emphasizing
that this was the only difference between those groups considering measured sphingolipids,
as well as clinical/biochemical parameters. Thus, we suspect that C18:1-Cer may be a
potential GDM biomarker. It can manifest a predisposition for disease development before
glycemic changes occur. Our results demonstrate that ceramide levels are elevated in
pregnancy and changes in the ceramide profile are not independent of BMI. We are aware
of only one report about circulating ceramides in early pregnancy. Liu et al. [46] selected
the studied groups (n = 486) from a large cohort of Chinese women (n = 22302). The
differences in concentration of ceramides in early pregnancy are significant. Scientists
noted that three ceramides were significantly associated with GDM development in later
pregnancy. The GDM group showed an increased level of C18:0-Cer and C18:1-Cer and a
decreased level of C24:0-Cer. Our results partially confirm this data. We proved only an
increase of C18:1-Cer—the remining ceramides showed no significant differences in our
groups. Further analysis of ceramides in the second trimester demonstrated that C18:1-Cer
concentrations decreased in the GDM serum, but this increased in the NGT group. In
contrast to Liu et al., we studied smaller but BMI-matched groups of varying ethnicities.

In summary, our results show differences in the metabolic signature between GDM
and control pregnant group in the second trimester of pregnancy. The results emphasize
the potential of C 18:1-Cer in the first trimester of pregnancy as a lipidomic biomarker
of GDM development. The main limitation of this research was the low number of pa-
tients. Furthermore, we did not control for patient diet, which can impact circulating
ceramides [47]. Further studies are required to validate our data and to clarify and improve
the understanding of GDM pathophysiology.
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