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Abstract

In a sample of 3,187 twins and 3,294 of their parents, we sought to investigate association of both individual variants and a
genotype-based height score involving 176 of the 180 common genetic variants with adult height identified recently by the
GIANT consortium. First, longitudinal observations on height spanning pre-adolescence through adulthood in the twin
sample allowed us to investigate the separate effects of the previously identified SNPs on pre-pubertal height and pubertal
growth spurt. We show that the effect of SNPs identified by the GIANT consortium is primarily on prepubertal height. Only
one SNP, rs7759938 in LIN28B, approached a significant association with pubertal growth. Second, we show how using the
twin data to control statistically for environmental variance can provide insight into the ultimate magnitude of SNP effects
and consequently the genetic architecture of a phenotype. Specifically, we computed a genetic score by weighting SNPs
according to their effects as assessed via meta-analysis. This weighted score accounted for 9.2% of the phenotypic variance
in height, but 14.3% of the corresponding genetic variance. Longitudinal samples will be needed to understand the
developmental context of common genetic variants identified through GWAS, while genetically informative designs will be
helpful in accurately characterizing the extent to which these variants account for genetic, and not just phenotypic,
variance.
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Introduction

Adult height is a model multigenic phenotype for genetic

association studies. Twin and adoption studies suggest that height

is highly heritable (,80%) [1,2,3], but the identification of

individual genetic variants that contribute large effects to normal-

range adult height (as with most complex traits) has proven to be

very difficult [4,5]. Despite this, it does appear possible that

common SNPs with individually small effects can account for a

large proportion of phenotypic variance in adult height (,45%)

[6] and may be identified with appropriately large sample sizes. To

that end, the GIANT consortium has identified 180 SNPs that

collectively account for 10.5% of variance in adult height in a

sample of 183,727 individuals [7].

For any person adult height reflects roughly two decades of

growth. Change in height is relatively rapid throughout infancy,

slows down in early childhood, and increases again during puberty

when a notable growth spurt occurs [8,9]. The heritability of

growth during any particular developmental period appears to be

high, and it has been shown that some genetic variants affect a

substantial proportion of height’s phenotypic variance throughout

development. For example, a longitudinal study of Swedish male

twins found a genetic correlation of 0.73 between height at age 2

and at age 18, suggesting that 53% of the genetic variance in

height at these ages is shared [10]. In contrast to this genetic

consistency, the same study found that height measured during the

pubertal growth spurt (ages 11 to 17) to be most influenced by new

genetic variation. This differential effect of individual genetic

variants on different stages of growth remains largely to be

investigated, and the present study is a step in that direction. To

accomplish this, we evaluated the relative effect of the SNP

variants identified by [7] as part of the GIANT consortium efforts

on both prepubertal height and growth during puberty.

Materials and Methods

The sample (N = 6481) was drawn from Caucasian participants

in the Minnesota Twin Family Study (MTFS). The MTFS a 20-

year, longitudinal, community-representative study conducted at

the University of Minnesota and approved by the University of

Minnesota Institutional Review Board continuously since incep-

tion. The study has been extensively described previously [11].

The sample is composed of two cohorts of families. Twins in the

younger cohort (N = 2046) were born between 1977 and 1994.
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They were initially evaluated at approximately age 11 (the

youngest any individual was evaluated was at age 10.75). Twins

in the older cohort (N = 1141) were born between the years 1972

and 1979 and were initially evaluated at approximately age 17.

Both cohorts were followed-up at approximately three- to five-year

intervals, with assessments thus targeting ages 11, 14, 17, 21, 24,

and 29 years of age. Height was measured in a laboratory setting

during visits to the University of Minnesota. Means and standard

deviations for each twin’s height and age of assessment at each

wave are given in Table 1. Change in height is most rapid from

age 11 to 14, with girls tapering off before boys, consistent with an

earlier pubertal onset for girls [12]. Parents of the twins were also

evaluated. There were 1332 fathers born between 1926 and 1976

with a mean height of 178.11 cm (SD = 6.51 cm). There were

1962 mothers born between 1934 and 1976 with a mean height of

165.03 cm (SD = 5.94 cm).

The twin sample was used to develop a genetically mediated,

longitudinal growth model for height. There are many approach-

es to analysis of longitudinal designs, and choosing the best

approach often requires assumptions about, or explicit knowledge

of, the (unknown) true growth trajectories generating the data

[13]. Choosing a model for our sample was greatly facilitated by

our ability to simultaneously leverage longitudinal measurements

and twin zygosity information. We chose to model longitudinal

height variability via a mixed model [14], because it could

accommodate an intuitive variance-component decomposition to

model growth through random intercept and random slope terms

(i.e., the random effects). Covariates and SNPs were included in

the model as fixed effects. We also accounted for twin zygosity by

partitioning the random intercept and slope into additive genetic,

shared environment, and unshared environmental effects using

standard biometric twin methods [15]. Throughout the remain-

der of this paper we refer to this model simply as a ‘growth

model.’

The growth model was constructed on the twins to evaluate

SNP effects on age-11 height and pubertal growth after age 11. In

the growth model, age-11 height corresponds to the intercept and

pubertal growth corresponds to the slope. A diagram of the model

is depicted in Figure 1. The full phenotypic diagram is portrayed.

An extension to twins is included in the box inset.

In the path diagram of the phenotypic model (Figure 1) the

observed measurements of height are represented by squares, one

square for each height measurement taken (age 11, 14, 17, etc.).

These measures are assumed to be a function of three random

effects: one capturing variation in the intercept, one capturing

variation in the slope, and one capturing variation in a residual

effect. The intercept and slope variances were freely estimated.

Covariate effects were treated as fixed effects. All height measures

were centered at 10.75, the youngest age at which any participant

was assessed (the mean age of the first assessment was 11.85). The

intercept loads equally onto all height measurements, and is

interpretable as height at (roughly) age 11. The slope reflects an

individual’s change in height from age 11 to adulthood. Loadings

on the slope factor were fixed at each individual’s actual age at

assessment and so took into account the variation in age that

existed at each assessment.

An important caveat with the proposed growth model as

described in Figure 1 is its linear form. Growth in height is known

to be nonlinear—growth velocity tapers during late adolescence

and subsequently asymptotes. To account for this, without

introducing a quadratic term, we used a piecewise linear

approach. Consistent with previous literature [9], males were

assumed to stop growing at any appreciable rate at age 18.

Females were assumed to cease growing at age 16. These

constraints were implemented by fixing all ages of assessment

Table 1. Descriptive Statistics.

Males Females

N
MZ
Pairs

DZ
Pairs

Age
(Mean SD)

Height in cm
(Mean SD) N

MZ
Pairs

DZ
Pairs

Age
(Mean SD)

Height in cm
(Mean SD)

Age 11 1016 327 168 11.78 (.40) 150.09 (7.80) 1012 315 179 11.76 (.45) 151.64 (7.68)

Age 14 880 281 146 14.85 (.48) 170.90 (8.19) 892 273 159 14.82 (.54) 163.79 (6.22)

Age 17 1170 371 196 17.71 (.51) 177.78 (6.74) 1320 425 218 17.75 (.59) 164.97 (6.32)

Age 20 916 287 142 21.31 (.86) 178.88 (6.65) 1126 348 195 20.76 (.56) 165.50 (6.35)

Age 24 817 242 130 24.72 (.96) 178.95 (6.61) 509 154 90 25.05 (.60) 166.42 (6.46)

Age 29 728 210 116 29.45 (.54) 179.17 (6.58) 566 178 85 29.49 (.51) 165.51 (6.17)

MZ is monozygotic twin; DZ is dizygotic.
doi:10.1371/journal.pgen.1002413.t001

Author Summary

We evaluated the developmental specificity of 176 SNPs
known to affect adult height based on meta-analysis from
the GIANT consortium. First, longitudinal observations on
height spanning pre-adolescence through adulthood in a
twin sample allowed us to investigate the individual
effects of the previously identified SNPs on both pre-
pubertal height and pubertal growth spurt. We show that
the effect of the SNPs identified by the GIANT consortium
is primarily on prepubertal height. Only one SNP,
rs7759938 in LIN28B, approached a significant association
with pubertal growth. Second, using standard twin
heritability models, we investigated the extent to which
the collective effect of these SNPs explained genetic
variance in height—as opposed to phenotypic variance, as
other studies have done. We computed a genetic score by
weighting SNPs according to their effects as assessed via
meta-analysis. We show that, while the score accounts for
,9% of the phenotypic variance in height (i.e., the overall
variance), it accounts for ,14% of the corresponding
genetic variance. Longitudinal samples are necessary to
understand the developmental context of common
genetic variants identified through GWAS, while twin
samples will be helpful in accurately characterizing the
extent to which these variants account for genetic, and not
just phenotypic, variance.

Developmental Approach to SNP Effects on Height
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greater than 18 to be 18 in males, and constraining ages of

assessment greater than 16 to be 16 in females.

As portrayed in Figure 1, the model allows one to test the effect

of a SNP directly on the intercept (age 11 height) and slope

(pubertal growth). This technique avoids multiple testing on each

individual age of assessment (the square boxes) and carries all the

advantages that come with the mixed model/variance compo-

nents approach (e.g., full-information maximum likelihood

estimation, increased precision in estimating the intercept and

slope, etc. [14]).

Analogous to the phenotypic growth model is the twin growth

model, partially displayed in the box inset in Figure 1. Here we see

that the intercept and growth random effects can, with the use of

twins, be further partitioned into three sources of variance:

additive genetic variance (A), shared environmental variance (C),

and unshared environmental variance (E). The SNP effect can

Figure 1. Diagram of the Piecewise Linear Growth Model. Measurements of height were taken at approximately ages 11, 14, 17, 20, 24, and
29. The measurements are adjusted for covariates, and then modeled as a function of a random intercept, representing age-11 height, and a random
slope, representing growth in height from age 11 to adulthood, and a residual, which for convenience of presentation is not depicted in the figure.
The intercept and the slope are allowed to correlate (this is represented as the double-headed arrow connecting them). The loadings of the slope
onto height (denoted a11–a29) are the ages of participants during each of the assessments. The slope is piecewise linear in age, with the maximum
age constrained to be 18 in males and 16 in males (see text for details). The effect of a SNP on the intercept and slope (denoted bi and bs,
respectively) can be estimated directly. The growth model extension to twins is portrayed in the inset box. By taking advantage of twin zygosity, the
variance in the intercept and slope are partitioned into additive genetic (A), shared environmental (C), and unshared environmental (E) components.
The correlation between the intercept and slope can also be decomposed in this way (e.g., rg would be the genetic correlation, rc would be the
shared environmental correlation, etc.). Using twins in this way, one can model the effect of a SNP onto the additive genetic variance in the intercept
and slope, instead of merely the overall phenotypic variance. These effects are denoted as big and bsg, respectively.
doi:10.1371/journal.pgen.1002413.g001

Developmental Approach to SNP Effects on Height
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then be constrained to affect only the genetic variance, effectively

controlling for environmental noise in the phenotype.

With the proposed growth model, we could estimate the effect

of SNPs on the intercept (i.e., height at age 10.75, the earliest age

at which any participant was assessed) and slope (i.e., pubertal

growth). Using twins, we could further estimate the influence of

SNP effects on genetic variance—as opposed to overall phenotypic

variance—thus providing a direct estimate of the genetic variance

accounted for by the SNPs. Studies on height heretofore have been

unable to accomplish this, and have been restricted to comparing

estimates of the percent of variance accounted for by SNPs in their

sample to estimates of heritability obtained in separate studies of

twins (e.g., as in refs [6,7,16]).

There is considerable variation in age of pubertal onset. To

obtain a more accurate measure of pubertal age (versus

chronological age) we used the Pubertal Development Scale [17]

for the age-11 and age-14 assessments. These measures were self-

report items written to reflect Tanner stages, such as pubic hair

and voice changes (in males), breast development, menarche, and

skin changes (in girls). Each item is measured on a four-point scale

and reliability/validity has been found to be acceptable [17]. For

each sex, items were averaged to form overall puberty scores for

each individual. These scores, and their correlations with height

and age at the age-11 and age-14 assessments, are reported in

Table 2. According to the mean differences and correlation

patterns, the females are further along in pubertal self-ratings than

boys at the age-11 assessment. The girl’s puberty score is also more

highly correlated with height during the age-11 assessment than

the age-14 assessment, indicating an early pubertal growth spurt in

girls. The reverse is true for males, their puberty score has a low

correlation with height at age 11 and a higher correlation at age

14, indicating a later pubertal growth spurt. At the age-11

assessment 15% of females had experienced menarche, versus

93% by the age-14 assessment. Average age of menarche was 12.8

years (SD = 1.0)

We incorporated pubertal status into the growth model in the

following way. For each age of assessment we regressed height on

age and puberty score and, for females, an indicator variable

measuring whether menarche had occurred by that assessment.

For males both age and puberty score were highly significant in

predicting height at age 11 (r2 = .17, p,2e216) and 14 (r2 = .23,

p,2e216). In females at age 11 age, puberty score, and menarche

significantly predicted height (r2 = .32, p,2e216). At age 14 only

the puberty score was a significant predictor (r2 = .04, p = 8.4e29).

We computed the sum of age and puberty score (and menarche for

females) weighted by their corresponding regression weight and

scaled the result to have the mean and variance of the original

chronological age at 11 and 14. This gives an estimate of each

subject’s pubertal age—as opposed to chronological age—as it

relates to growth in height. In supplementary analyses these

pubertal ages were used in place of chronological age for the age-

11 and age-14 assessments in the growth model, in an attempt to

more precisely gauge the developmental specificity of each SNP.

All statistical analysis was conducted in the R Environment

[18]; growth models were fit via maximum likelihood with the

OpenMx package [19]. R scripts that implement the models used

in this paper are available upon request.

Genotyping and Imputation
SNPs were genotyped on an Illumina 660quad array using

DNA derived from whole blood for approximately 90% of the

sample and from saliva samples for the remainder. For quality

control purposes, each 96-well plate included DNA from two

members of a single CEPH family (rotated across plates) and one

duplicate sample. Markers were excluded if (see ref [20] for

additional details): 1) they had been identified as a poorly

genotyped marker by Illumina; 2) had more than one mismatch

in duplicated QC samples; 3) had a call rate ,99%; 4) had a MAF

,1%; 5) had more than 2 Mendelian inconsistencies across

families; 6) significantly deviated from Hardy-Weinberg equilib-

rium at p,1e-7; 7) was an autosomal marker but associated with

sex at p,1e-7; 8) had a significant batch effect at p,1e-7; or 8)

there were more than 2 heterozygous X chromosome calls for

males or mitochondrial calls for anyone. In total, 32,153 (5.7%) of

the 559,982 SNP markers were eliminated by these screens, with

the majority (3.6%) being eliminated because of low MAF.

Samples were eliminated if: 1) they had .5000 no-calls; 2) had a

low GenCall score; 3) had extreme heterozygosity or homozygos-

ity; or 4) represented a sample mix-up or we could not confirm

known genetic relationships. In total, 160 (2.2%) of the total

genotyped sample of 7438 failed one or more of these criteria, with

the majority (1.7%) failing because of low call rate.

Of the 180 SNPs described by the GIANT consortium as

associated with height, 52 existed on the Illumina 660quad. The

remaining were imputed with best-guess genotypes using MaCH

[21,22] and haplotypes from the 1000 Genomes 2010-06 reference

dataset. Of the 128 imputed SNPs, three had poor imputation

quality (rs17511102, rs11144688, rs473902; r2 = .08, .46, and .20).

One SNP (rs5017948) was not contained in the 1000 Genomes

2010-06 or 2010-08 reference datasets and so was discarded. The

average r2 of the remaining 124 imputed SNPs was .96 (SD = .07,

range = [.55, 1.0]). In total, 176 of the 180 SNPs from the GIANT

Consortium meta-analysis [7] were available in the current

dataset. A genetic score was created by summing these 176 SNPs,

weighted by their individual meta-analytic regression coefficient

reported in the GIANT Consortium report [7]. All analyses

Table 2. Measures of Pubertal Status.

Age of Assessment Mean Median SD Correlation with age at that assessment Correlation with height at that assessment

Males

Age-11 Puberty 1.3 1.3 0.49 0.21 0.28

Age-14 Puberty 2.7 2.8 0.58 0.35 0.47

Females

Age-11 Puberty 2.2 2.3 0.64 0.28 0.51

Age-14 Puberty 3.3 3.3 0.44 0.28 0.21

Pubertal stage as measured by a self-report questionnaire inquiring about Tanner stages of pubic and body hair growth, voice changes in boys, and breast development
and menarche in girls. Responses (except for menarche) are recorded on a four-point scale (1–4).
doi:10.1371/journal.pgen.1002413.t002

Developmental Approach to SNP Effects on Height
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accounted for the following covariates: sex, year of birth, cohort

status (younger versus older), and the 10 first principal components

from Eigenstrat [23] based on a subsample of 10,000 SNPs from

sample founders (i.e., unrelated subjects).

Results

First, we ran association tests for each of the 176 SNPs on adult

height in the full sample. A subset of twins (N = 775) had not yet

reached adult height and were excluded from this analysis (i.e.,

were male and under 18 at the time of their last assessment, or

were female and under 16). To account statistically for within-

family clustering a generalized least squares method was used [24].

One-tailed test results are displayed in Figure 2. A few trends are

clear. First, there was insufficient power in the present sample

(N = 5706) to detect a genome-wide significant association for

many SNPs. This was not surprising because 185,000 subjects

were required in the GIANT Consortium [7] to reliably identify

these SNPs. Six SNPs were significant at the Bonferroni correction

for 176 tests at alpha of .05. Ninety-eight of the 170 SNPs were

nominally statistically significant at .05. Despite a lack of genome-

wide or Bonferroni significance, it was clear from the QQ plot that

the vast majority of SNPs had lower p-values than expected by

chance. This was clearly true for the genetic score based on the

176 SNPs, which was highly significant (p = 4e2102) and accounted

for 9.2% (95% confidence interval = [8.2%, 11.1%]) of the

phenotypic variance in adult height (in the full sample

N = 5706). This result is not significantly different from the r2 of

10.5% found by the GIANT Consortium in [7]. As described in

detail later, this same SNP score accounted for 14.3% (95%

Figure 2. SNP and Genetic Score Effects for Adult Height. On the left panel are the univariate associations for each of the 176 SNPs (of the 180
SNPs from the Allen et al. [7] meta-analysis) ordered by chromosomal location along the x-axis. On the right is the same information portrayed in a
QQ plot. . Note the discontinuous y-axis. Filled circles represent SNPs with direction of effect equal to that reported in the meta-analysis. ‘‘+’’ symbols
represent SNPs with effects opposite to that reported in the meta-analysis. The filled triangle represents the genetic score. All p-values are also
reported in Table S1. SNPs in Figure 2 and Figure 3 are colored to faciliatate cross-referencing between panels and between figures.
doi:10.1371/journal.pgen.1002413.g002

Developmental Approach to SNP Effects on Height
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c.i. = [.3%, 26%]) of the additive genetic variance in adult height,

as estimated in the twin sample alone.

Fitting the growth model, we found the intercept was 86%

heritable (95% c.i. = [69%, 100%]) and the slope 84% heritable

(65%, 100%). Shared environmental effects accounted for 9%

(0%, 27%) and 11% (0%, 31%) of the variance in the intercept

and slope, respectively. Unshared environment accounted for 5%

(4%, 6%) in the intercept and 5% (4%, 7%) in the slope. Clearly,

both age-11 height and pubertal growth (here, the intercept and

slope) were highly heritable, consistent with previous reports [2].

The total phenotypic correlation between age-11 height and

pubertal growth of 2.62 indicates that taller individuals at age 11

experienced less growth after age 11. The genetic correlation

between age-11 height and pubertal growth was 2.56 (2.70,

2.41), indicating that only 31% of genetic effects on age-11 height

and pubertal growth are shared. Shared and non-shared

environmental correlations were negligible (2.03 and 2.03,

respectively, both non-significant).

Individual SNP and genetic score effects on the intercept and

slope were computed simultaneously. Log-transformed p-values

are displayed in Figure 3. Several trends are clear. First, only one

p-value was significant based on a Bonferroni correction for 176

tests for the intercept (age-11 height). Only one SNP (rs7759938)

approached significance for the slope. This extends previous

findings for the relationship between rs7759938 and pubertal

growth [25,26]. Second, 49 (28%) SNP effects on the intercept and

77 (44%) SNP effects on the slope were in the opposite direction as

reported in the meta-analysis. A binomial test of whether the

proportion of SNPs in the opposite direction was smaller than that

expected by chance for the intercept (p = 2e29), but was chance-

level for the slope (p = .06). The QQ plot for age-11 height clearly

showed higher 2log10(p) values than expected by chance, and the

genetic score was highly significant (t = 7.58, df = 1652, p,1e213).

Alternatively, the QQ plot for pubertal growth consistently

showed chance-level effects. The genetic score effect here was

nominally significant (t = 2.42, df = 1652, p,.004).

All regression coefficients, standard errors, and p-values for the

SNP effects on the growth model intercept, the growth model

slope, and adult height are listed in Table S1. Table S2 contains

the correlation matrix of regression coefficients from the meta-

analysis [7], the SNP effect on the growth model’s intercept and

slope, and coefficients from the analysis of adult height presented

earlier. The correlations of these regression coefficients were

statistically significant, indicating that the general trend of SNP

effects was similar across all height phenotypes. Coefficients from

the adult height analysis were correlated most strongly with the

meta-analytic coefficients (.81), followed by the SNP effects on the

intercept (.46) and slope (.17). Figure S1 is a scatterplot matrix of

these regression coefficients, illustrating the general trends of

covariance among them.

To summarize findings from the growth model, we computed

the variance in height accounted for by the genetic risk score’s

effect on the intercept and slope. A linear growth model is linear in

the mean function but quadratic in the variance. In the present

model, phenotypic height (h) is a quadratic function of the

intercept (i), slope (s), and age (a),

Var(h)~Var(i)za2Var(s)z2aCov(i,s):

This parabola was computed for the base model, with no

genetic score effect, and used to compute r2 with the genetic score.

We plotted phenotypic r2 in Figure 4 in green for three models: 1)

a model with a genetic score effect on the slope only, 2) a model

with a score effect on the intercept only, and 3) the full model with

a score effect simultaneously on intercept and slope. Taken

together, differences between these models allowed estimation of

the independent contribution of the genetic score on age-11 height

versus pubertal growth. Apparent in Figure 4 was that the score is

accounting for variance in height (all models including the score

result in positive and significant r2). The model with a genetic

score effect only on the slope did account for variance in height at

all ages, but not as much as the model with a score effect only on

the intercept. More to the point, the model with score effect

simultaneously on the slope and intercept negligibly improved over

the model with score effect only on the intercept. This indicated

that the score has only a slight relationship with the unique SNP

variance in pubertal growth. However, because the score reduces

variance in height even when it was only allowed to load onto the

slope, it did appear that the score is related to genetic variance

overlapping between the intercept and slope (recall the intercept

and slope are genetically correlated at 2.56, and we expected

some genetic variants to affect both).

Using the twins, we also computed the genetic r2, or the

genetic variance in height accounted for by the genetic score.

This is plotted in red in Figure 4 for the same three models

described in the previous paragraph. As expected, the genetic r2

was greater than the phenotypic r2 for the entire age range under

investigation. Comparing the maximum phenotypic r2 to the

maximum genetic r2 for the model with a score effect on both the

intercept and slope, one notices a jump from 9.2% (95%

c.i. = [3.0%, 15.1%]) to 14.3% (95% c.i. = [0.3%, 26%]; each

measured at the respective function’s apex). That is, by using the

twins to partition environmental variance, we were able to

increase the magnitude of the SNP effect and consequently the

sensitivity of the analysis.

Sex-Specific Analysis
Growth models were also fit separately to the male and female

subsamples. After scaling male heights for each age of assessment

to have the female’s mean and variance, the growth model

variance component parameters were different between the sexes

(x2 = 78.04, df = 9, p = 4e213). While heritability of the intercept

was similar (.84 for males versus .82 for females) the heritability of

the slope was different (.93 versus .64, respectively). Females had a

larger shared environmental contribution to their slope variance

(.01 for males and .31 for females). Males and females had similar

phenotypic correlations between the intercept and slope (2.66 for

males and 2.64 for females). The genetic and environmental

contributions to this correlation were different between the sexes.

The genetic correlation between intercept and slope was 2.60 for

males and 2.47 for females. The shared environment correlation

was 2.04 for males and 2.14 for females. The unshared

environmental correlation was 2.02 in males and 2.03 in females.

The overall SNP association trends were similar in both sexes

(i.e. larger effects on the intercept and smaller effects on the slope).

All SNP and score statistics are included in Table S1. Notable

differences included the following. The effect of rs7759938 on

pubertal growth is only significant for females (see Table S1). This

sex difference has been noted previously [26]. Second, as can be

seen in Figure S2, the overall genetic and phenotypic variance

accounted for in height by the score is larger for males than for

females.

Incorporating Measures of Puberty into the Growth
Model

Growth model parameters did not change dramatically after

correcting chronological ages at 11 and 14 for pubertal status. The

Developmental Approach to SNP Effects on Height
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negative correlation between the intercept and slope was

unchanged (2.62) with a larger genetic contribution (2.58) and

smaller contributions by shared environment (2.02) and unshared

environment (2.03). The intercept was 88% heritable with

contributions of 7% and 5% from shared and unshared

environment, respectively. The slope was 84% heritable with

contributions of 10% and 6% from shared and unshared

environment, respectively.

SNP associations also remained largely unchanged after

correcting for pubertal status. Figure S3 gives association plots

for the puberty-corrected associations. The correlation between

regression weights from corrected versus uncorrected models was

very high, for associations with the intercept (r = .99) and the slope

(r = .99). The mean regression weight onto the intercept in the

uncorrected model was .06 (SD = .43) versus .05 (SD = .43). The

mean weight onto the slope in the uncorrected model was 2.005

Figure 3. SNP and Score Effects on the Growth Model Intercept and Slope. Univariate plot (a) and QQ plot (b) of SNP effects on intercept.
Univariate plot (c) and QQ plot (d) of SNP effects on the slope. All symbols are described in the caption for Figure 2. The SNP effects are relatively
stronger for age-11 height (i.e., the intercept; panels (a) and (b)) than for pubertal growth (i.e., the slope; panels (c) and (d)). The genetic score is
highly significant for age-11 height but not pubertal growth. The single Bonferroni-significant effect for the slope (highest blue dot in panels (c) and
(d)) is the only SNP, of all 180 identified in the Allen et al. [7] meta-analysis, that has been linked to pubertal growth in height [26]. All p-values are also
listed in Table S1. Each mark is colored to allow easy cross-referencing between panels, and also between Figure 2 and Figure 3.
doi:10.1371/journal.pgen.1002413.g003
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(SD = .06) versus 2.003 (SD = .06). Correlations between standard

errors and p-values were equally similar between the corrected and

uncorrected models.

Discussion

The first wave of GWAS research has been successful in

identifying numerous common variants associated with various

adult disorders and traits [27]. Yet virtually all disorders and traits

are a consequence of a sequence of developmental processes, and

we know very little about how these genetic variants play out

across development. Research on FTO, where the minor allele of

rs9939609 is a well established risk-factor for adult obesity,

illustrates the importance of a developmental perspective.

Specifically, the minor allele of rs9939609 is negatively associated

with body mass index (BMI) until the age of 2.5, but, because it is

associated with an earlier onset of the adiposity rebound that

occurs in childhood, positively associated with BMI after age 5.5

years [28]. Research placing genetic association results in a

developmental context will be necessary to understand how

genetic variants contribute to a phenotype and, in the context of

disease phenotypes and personalized medicine, to determine when

and how intervention and/or prevention is possible.

The present study extended genetic analysis of developmental

phenotypes by implementing a growth model to partition observed

measures into two biologically meaningful constructs: pre-pubertal

height and pubertal growth. We focused here on an established

literature of SNP effects on height. This is necessary because

individual genetic effects are too small to be detected at genome-

wide levels by most individual studies, and combining longitudinal

studies with commensurate phenotypes can be prohibitively

difficult (longitudinal data is expensive and rare, investigators

gathering different data on individuals from different populations

at different ages and developmental levels). It may be that

consortia of cross-sectional data will largely be necessary to

discover replicable genetic variants while smaller, methodologi-

cally-unique individual studies will be left to understand those

effects within a developmental context.

The vast majority of SNPs identified by Allen et al. [7] appear

to be more strongly related to pre-pubertal height than to the

pubertal growth spurt. The sample size precludes definite

conclusions without replication or meta-analysis, however. In

addition, age is only a fallible proxy for developmental stage or

pubertal status. While many boys are expected to be pre-pubertal

at age 10.75, this is less certain for females. In the present study

15% of females had already experienced menarche by the time

Figure 4. Phenotypic and Genetic Variance in Height Accounted for by Three Models (i.e., r2). Green indicates the r2 of the score effect on
phenotypic variance in height (using the growth model represented in Figure 1). Red indicates the r2 of the score effect on genetic variance in height
(using the growth model extension to twins displayed in the inset box of Figure 1). Clearly, focusing the score effect onto the twin model’s additive
genetic variance, and thereby controlling for environmental noise, allows larger estimates of r2. Irrespective of phenotypic or genetic variance,
allowing the score to affect only the growth model slope resulted in the lowest r2 for both conditions. Allowing the score to affect only the growth
model intercept resulted in considerable gain in r2. Most interestingly, allowing the score to simultaneously influence the slope and intercept resulted
in negligible gain over allowing the score to influence the intercept only (i.e., the effect of score onto slope fixed at zero). This indicates that the score
is only negligibly related to genetic variation specific to pubertal growth (slope), but rather is relevant to genetic variation that affects growth
occurring up to age 11 (intercept). In addition, it provides evidence that some genetic variation indexed by the score is relevant for growth both
before age 11 and from age 11 to adulthood.
doi:10.1371/journal.pgen.1002413.g004
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they were first assessed. When we adjusted the ages for pubertal

status, however, the results were highly similar to those using

uncorrected ages. Nonetheless, future work evaluating genetic

effects on growth would clearly benefit from including younger

ages of assessment and more frequent follow up.

While most SNPs were unrelated to pubertal growth, one was.

rs7759938 in LIN28B has previously been identified as relevant for

adult height [7] and timing of pubertal onset [26,29,30]. Transgenic

mice in ortholog Lin28a were found to have accelerated growth

during the first 60 weeks of life in addition to later onset of puberty

[25]. Our analysis also found accelerated growth related to the G

allele of rs7759938. However, the effect was not significant for males

and was confounded with pubertal onset for females, as about 15%

of our 11-year-old females had already entered puberty by their age-

11 assessment [31]. The effect remained in females even after

adjustment for pubertal status, suggesting the variant is associated

with rate of growth during these ages. The effect remained non-

significant for males even when later growth periods were used as an

attempt to better measure pubertal onset (i.e., investigating growth

from age 14 to adulthood or age 17 to adulthood). The lack of an

effect for males appears to be a sex-moderated effect (ref [26,30] also

reported small effects for males).

We also evaluated the effect of a genetic score on zygosity-

derived genetic variance, as opposed to phenotypic variance, using

a sample of twins. The score accounted for 14.3% of genetic

variance in adult height, but only 9.2% of phenotypic variance,

illustrating the possible advantages of using a twin sample. The use

of twins provides concrete advantages over analyses that estimate

the fraction of heritable variance attributable to multiple loci

indirectly either based on previously reported heritability estimates

or genome-wide markers in unrelated individuals. Admittedly, the

advantage may not be extremely powerful in the present context,

given height’s high heritability, where the genetic variance is 80%

or more of the total phenotypic variance. However, for less-

heritable phenotypes, or where heritability is less well known, the

approach will provide improved information about the magnitude

of a SNP’s (or gene’s, or pathway’s) relationship to the phenotype.

A growth model is not necessary to evaluate genetic r2, but so-

called ‘‘genetically informative’’ samples such as twins or adoptive

families are. An array of statistical techniques have been developed

for such samples [15], and incorporating genetic variants like

SNPs is always possible and in many cases straightforward.

In summary, genomic findings from consortia may be fruitfully

characterized within a developmental framework. Many analytic

approaches exist, and the best may depend on the data structure at

hand. Genetically informative samples such as twins remain

important and viable tools in investigating genomic variation, even

as genotyping or sequencing becomes routine.

Supporting Information

Figure S1 Scatterplot Matrix of Regression Coefficients. ‘‘Meta-

Analysis’’ refers to the SNPs reported in Allen et al. [7]. ‘‘Age-11’’

Height refers to the intercept in the growth model reported in text.

‘‘Pubertal Growth’’ refers to the slope of that growth model. ‘‘Adult

Height’’ refers to regression coefficients from the adult height analysis.

(TIF)

Figure S2 (a) Refers to males; (b) to females. All other aspects

are described in the caption to Figure 4 in the main text.

(TIF)

Figure S3 SNP and Score Effects on the Puberty-Corrected

Growth Model Intercept and Slope. Univariate plot (a) and QQ plot

(b) of SNP effects on intercept. Univariate plot (c) and QQ plot (d) of

SNP effects on the slope. All symbols are described in the caption for

Figure 2. The SNP effects are relatively stronger for age-11 height

(panels (a) and (b)) than for pubertal growth (panels (c) and (d)). The

genetic score is highly significant for age-11 height but not pubertal

growth. The single Bonferroni-significant effect for the slope

(highest blue dot in panels (c) and (d)) is the only SNP, of all 180

identified in the Allen et al. [7] meta-analysis, that has been linked to

pubertal growth in height [26]. All p-values are also listed in Table

S1. Each mark is colored to allow easy cross-referencing between

panels, and also between Figure 2 and Figure 3.

(TIF)

Table S1 Gene/allele information, regression coefficients,

standard errors, and p-values for all tests in the growth model

and the adult height analysis.

(XLS)

Table S2 Regression Correlation Coefficient Matrix. These are

Spearman rank order correlations between all 176 regression

coefficients computed for each height phenotype under study.

Confidence intervals were computed by bootstrap with 2000

pseudo-replications. ‘‘Meta-Analysis’’ refers to sex-combined

regression coefficients from the GIANT Consortium meta-analysis

[7]. ‘‘Age-11 Height’’ and ‘‘Pubertal Growth’’ are the SNP effects

on the growth model intercept and slope, respectively. ‘‘Adult

Height’’ is the full adult height analysis described in the present

report. All values are statistically significant, indicating a general

trend for the SNP effects regardless of height phenotype analyzed.

The full scatterplot matrix is given in Figure S1.

(DOC)

Author Contributions

Conceived and designed the experiments: SIV MM MBM NJS WGI.

Performed the experiments: SIV MM MBM. Analyzed the data: SIV MM

MBM. Contributed reagents/materials/analysis tools: SIV MM MBM

LNL WGI. Wrote the paper: SIV MM MBM NJS WGI.

References

1. Macgregor S, Cornes BK, Martin NG, Visscher PM (2006) Bias, precision and

heritability of self-reported and clinically measured height in Australian twins.

Hum Genet 120: 571–580.

2. Silventoinen K, Sammalisto S, Perola M, Boomsma DI, Cornes BK, et al. (2003)

Heritability of adult body height: A comparative study of twin cohorts in eight

countries. Twin Res 6: 399–408.

3. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era -

concepts and misconceptions. Nat Rev Genet 9: 255–266.

4. Maher B (2008) Personal genomes: The case of the missing heritability. Nature

456: 18–21.

5. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. (2009)

Finding the missing heritability of complex diseases. Nature 461: 747–753.

6. Yang JA, Benyamin B, McEvoy BP, Gordon S, Henders AK, et al. (2010)

Common SNPs explain a large proportion of the heritability for human height.

Nature Genetics 42: 565-U131.

7. Allen HL, Estrada K, Lettre G, Berndt SI, Weedon MN, et al. (2010) Hundreds

of variants clustered in genomic loci and biological pathways affect human

height. Nature 467: 832–838.

8. Okasha M, Gunnell D, Holly J, Smith GD (2002) Childhood growth and adult

cancer. Best Pract Res Cl En 16: 225–241.

9. Tanner JM, Whitehouse RH, Takaishi M (1966) Standards from Birth to

Maturity for Height, Weight, Height Velocity, and Weight Velocity: British

Children, 1965. Part II. Archives of Disease in Childhood 41: 613–635.

10. Silventoinen K, Pietilainen KH, Tynelius P, Sorensen TIA, Kaprio J, et al.

(2008) Genetic regulation of growth from birth to 18 years of age: The Swedish

young male twins study. Am J Hum Biol 20: 292–298.

11. Iacono WG, McGue M (2002) Minnesota Twin Family Study. Twin Res 5:

482–487.

12. Palmert MR, Boepple PA (2001) Variation in the timing of puberty: Clinical

spectrum and genetic investigation. J Clin Endocr Metab 86: 2364–2368.

Developmental Approach to SNP Effects on Height

PLoS Genetics | www.plosgenetics.org 9 December 2011 | Volume 7 | Issue 12 | e1002413



13. Salem RM, O’Connor DT, Schork NJ (2010) Curve-based multivariate distance

matrix regression analysis: application to genetic association analyses involving

repeated measures. Physiol Genomics 42: 236–247.

14. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. New

York: Springer. pp xvi528.

15. Neale MC, Cardon LR (1992) Methodology for genetic studies of twins and

families. Dortrecht, The Netherlands: Kluwer Academic.

16. Visscher PM, Yang JA, Goddard ME (2010) A Commentary on ‘Common SNPs

Explain a Large Proportion of the Heritability for Human Height’ by Yang et al.

(2010). Twin Research and Human Genetics 13: 517–524.

17. Petersen AC, Crockett L, Richards M, Boxer A (1988) A self-report measure of

pubertal status: reliability, validity, and initial norms. Journal of Youth and

Adolescence 17: 117–133.

18. R Development Core Team (2011) R: A language and environment for

statistical computing. Vienna: R Foundation for Statistical Computing.

19. Boker S, Neale M, Maes H, Wilde M, Spiegel M, et al. (2011) OpenMx: An

Open Source Extended Structural Equation Modeling Framework. Psychome-

trika 76: 306–317. doi:10.1007/S11336-010-9200-6.

20. Miller MB, Basu S, Cunningham J, Oetting W, Schork NJ, et al. (submitted) The

Minnesota Center for Twin and Family Research Genome-Wide Association

Study. .

21. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) MaCH: Using Sequence

and Genotype Data to Estimate Haplotypes and Unobserved Genotypes. Genet

Epidemiol 34: 816–834.

22. Li Y, Willer C, Sanna S, Abecasis G (2009) Genotype Imputation. Annu Rev

Genom Hum G 10: 387–406.

23. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. (2006)

Principal components analysis corrects for stratification in genome-wide
association studies. Nature Genetics 38: 904–909.

24. Li X, Basu S, Miller MB, Iacono WG, McGue M (2011) A Rapid Generalized

Least Squares Model for a Genome-Wide Quantitative Trait Association
Analysis in Families. Hum Hered 71: 67–82.

25. Zhu H, Shah S, Shyh-Chang N, Shinoda G, Einhorn WS, et al. (2010) Lin28a
transgenic mice manifest size and puberty phenotypes identified in human

genetic association studies. Nature Genetics 42: 626-U106.

26. Widen E, Ripatti S, Cousminer DL, Surakka I, Lappalainen T, et al. (2010)
Distinct Variants at LIN28B Influence Growth in Height from Birth to

Adulthood. Am J Hum Genet 86: 773–782.
27. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, et al. (2009)

Potential etiologic and functional implications of genome-wide association loci
for human diseases and traits. P Natl Acad Sci USA 106: 9362–9367.

28. Sovio U, Mook-Kanamori DO, Warrington NM, Lawrence R, Briollais L, et al.

(2011) Association between Common Variation at the FTO Locus and Changes
in Body Mass Index from Infancy to Late Childhood: The Complex Nature of

Genetic Association through Growth and Development. PLoS Genet 7:
e1001307. doi:10.1371/journal.pgen.1001307.

29. Uitterlinden AG, Perry JRB, Stolk L, Franceschini N, Lunetta KL, et al. (2009)

Meta-analysis of genome-wide association data identifies two loci influencing age
at menarche. Nature Genetics 41: 648–650.

30. Ong KK, Elks CE, Li SX, Zhao JH, Luan J, et al. (2009) Genetic variation in
LIN28B is associated with the timing of puberty. Nature Genetics 41: 729–733.

31. Burt SA, McGue M, Demarte JA, Krueger RF, Iacono WG (2006) Timing of
menarche and the origins of conduct disorder. Arch Gen Psychiat 63: 890–896.

Developmental Approach to SNP Effects on Height

PLoS Genetics | www.plosgenetics.org 10 December 2011 | Volume 7 | Issue 12 | e1002413


