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Abstract: Human gene therapy has advanced from twentieth-century conception to twenty-first-
century reality. The recombinant Adeno-Associated Virus (rAAV) is a major gene therapy vector.
Research continues to improve rAAV safety and efficacy using a variety of AAV capsid modification
strategies. Significant factors influencing rAAV transduction efficiency include neutralizing antibod-
ies, attachment factor interactions and receptor binding. Advances in understanding the molecular
interactions during rAAV cell entry combined with improved capsid modulation strategies will help
guide the design and engineering of safer and more efficient rAAV gene therapy vectors.

Keywords: adeno-associated virus; AAV; gene therapy; virus structure; AAV receptor; AAV attach-
ment factor

1. Introduction
1.1. AAV Biotechnology

AAV is the basis of a multi-billion dollar industry and hundreds of clinical trials used
AAV delivery systems [1]. Viral vector biotechnology is a leading choice for gene therapy
platforms and recombinant Adeno-Associated Virus (rAAV) vectors are typically preferred
due to low toxicity [2], dependence upon other viruses for replication [3], broad tropism
and the ability to infect both dividing and non-dividing cells. There are currently two AAV
gene replacement treatments available for autosomal recessive genetic disorders: Luxturna
and Zolgensma. Luxturna rAAV is based on the AAV2 serotype (rAAV2) and delivers a
functional copy of the RPE65 (retinal pigment epithelium-specific 65 kDa protein) gene
to the retinal pigment epithelial cells of patients with retinal dystrophy [4]. Zolgensma
uses rAAV9 to deliver a functional copy of the human SMN1 (survival of motor neuron 1)
gene to spinal muscular atrophy (SMA) patients [5]. SMA is the most common fatal single
gene disease in infants, and it is caused by an autosomal recessive mutation in the survival
motor neuron 1 gene (SMN1). More rAAV therapies are in the pipeline, and dozens of
clinical trials are currently underway [6]. Thus, the range of rAAV treatment options and
efficacy of AAV as a therapeutic vector continues to grow.

rAAV is a successful gene therapy biopharmaceutical, but more efficient rAAV vectors
that can be delivered at lower doses are still needed. For example, high rAAV doses
were implicated in the recent tragic deaths of three AAV gene therapy patients during
X-linked myotubular myopathy Phase I/II clinical trials [7]. The trial administered an
AAV8 serotype containing a wild-type copy of the MTM1 gene at various doses. Immune
toxicity was observed in those with liver disease, obesity or at older age at the highest
dose (3 × 1014 vg/kg; vector genomes/kilogram) [7]. The immunotoxicity of rAAV is
less severe than adenoviral or lentiviral vectors [8,9], but these patient deaths are a grim
reminder of the need for improved AAV vectors that can be delivered at lower doses. rAAV
vectors that avoid antibody neutralization or vectors with improved transduction effi-
ciency would significantly reduce the rAAV gene therapy doses needed to cure previously
incurable diseases.
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rAAV production continues to be updated and evaluated for industrial-scale pro-
duction of next-generation rAAV therapies. Commercial and research rAAV production
typically involves a “triple transfection” approach. Triple transfection components consist
of a plasmid encoding the transgene, a helper plasmid containing Adenovirus type-5 (Ad5)
helper genes (i.e., E1a/b, E2a, E4 and VA RNA) or their equivalents and another plasmid
encoding the rAAV Rep and Cap proteins [10–13]. Variations include combined helper
and rAAV plasmid functions on a single plasmid or stable expression of helper functions,
pre-programmed into mammalian cell lines [14]. Vector production improvement focuses
on particle metrics such as the ratio of empty to non-empty vector particles. Increasing the
number of full particles decreases the number of particles needed for gene therapy and
subsequently improves safety and efficacy [15].

rAAV gene therapy technology is derived from a small (~25 nm diameter) non-
enveloped wild-type AAV (wtAAV) ssDNA virus in the family Parvoviridae. wtAAV
serotypes from diverse primate lineages must navigate common human biological barriers.
Human wtAAV serotypes have been studied extensively, and the most well-understood
primate family members are serotypes AAV1-9. Serological and sequence classifications
indicate unique origins for the most divergent serotypes, AAV4 and AAV5. Other serotypes
can be grouped by clade, with representative serotypes listed parenthetically: A (AAV1/6),
B (AAV2), C (AAV3/13), D (AAV7), E (AAV8/10) and F (AAV9) (Table 1) [16]. Four ad-
ditional serotypes (AAV10-13) [17–19] were isolated after the classification of AAV1-9.
Structural similarities of AAV11 and AAV12 to AAV4 place the three in a potential clade
whereas structural similarities of AAV13 to AAV3 suggest AAV13 is in clade C [20]. These
primate serotypes serve as the primary basis for rAAV biotechnology.

Table 1. Native AAV structures.

Serotype Clade Resolution Year Tropism 1 Tropism 2 Tropism 3 Reference PDBid

AAV1 A X-ray 2.5 Å 2010 Muscle, CNS, heart Skin, lung, kidney,
cervix, bone Kidney, skin Ng et al. [21] 3NG9

AAV2 B X-ray 3.0 Å 2002 Liver, CNS, muscle Skin, lung, kidney,
cervix, liver, bone

Liver, kidney,
cervix, retina,

skin
Xie et al. [22] 1LP3

AAV3 C X-ray 2.6 Å 2010 Muscle, stem cells Skin, lung, kidney,
cervix, liver, bone Skin Lerch et al. [23] 3KIC

AAV4 Unique X-ray 3.2 Å 2006 Eye, CNS Bone Not detected Govindasamy
et al. [24] 2G8G

AAV5 Unique X-ray 3.5 Å 2013 CNS, lung, eye Not detected Not detected Govindasamy
et al. [25] 3NTT

AAV6 A X-ray 3.0 Å 2011 Muscle, CNS, heart,
lung

Skin, lung, kidney,
cervix, bone Skin Xie et al. [26] 4V86

AAV7 D Cryo-EM 3.0 Å 2021 Muscle, CNS Not detected Not detected Mietzsch et al. [20] 7L5Q

AAV8 E X-ray 2.6 Å 2007 Liver, muscle,
pancreas, CNS Not detected Not detected Nam et al. [27] 2QA0

AAV9 F X-ray 2.8 Å 2012 Broad distribution Not detected Not detected Dimattia et al. [28] 3UX1
AAVrh.39

(AAV10-like) Cryo-EM 3.4 Å 2020 Muscle (AAV10) Not tested Not tested Mietzsch et al. [29] 6V1T

AAV11 Cryo-EM 2.9 Å 2021 Unknown Not tested Not tested Mietzsch et al. [20] 7L6F
AAV12 Cryo-EM 2.5 Å 2021 Nasal Not tested Not tested Mietzsch et al. [20] 7L6B
AAV13 Cryo-EM 3.0 Å 2021 Not shown Not tested Not tested Mietzsch et al. [20] 7L6I

AAVDJ Cryo-EM 4.5 Å 2012 Not shown Not tested
Liver, kidney,
cervix, retina,

skin, lung
Lerch et al. [30] 3J1Q

AAVDJ Cryo-EM 1.6 Å 2020 Not shown Not tested
Liver, kidney,
cervix, retina,

skin, lung
Xie et al. [31] 7KFR

1 Li and Samulski 2020 [32], Review; 2 Ellis et al. 2013 [33], Supplementary Table S2; 3 Grimm et al. 2008 [34], Supplementary Table S2.

rAAV capsids face several significant hurdles before uncoating in the nucleus, and
this is an essential area of research for improving vector designs. First, the capsids must
avoid pre-existing antibodies and interact with cellular attachment factors and cell entry
receptors. After cell entry, rAAV vectors are trafficked to the nucleus where rAAV particles
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are uncoated. This review focuses on rAAV vector engineering strategies and known cell
entry interactions affecting rAAV transduction. It will focus on the capsid, recognizing
that, in terms of immune response, the transgene can have varied specific effects, and
that vector DNA or derived RNA could also trigger immune responses, topics that are
garnering increasing attention and have been reviewed recently elsewhere [35].

1.2. AAV Molecular Biology

AAV2 is the canonical AAV serotype (or “type species”) for the AAV family and
provides a valuable reference for studying other AAVs. For example, AAV2 was used to
characterize the first AAV glycan attachment factors and deduce the first high-resolution
AAV structure, and AAV2 served as the basis for the first genome-wide screen to identify
protein entry receptors [22,24,36,37]. More recently, AAV2 was the model serotype for
systematic genotype-phenotype investigation [38].

The AAV2 genome contains ~4.7 kb of ssDNA flanked by inverted terminal repeats
(ITRs) and encodes two primary gene sets; rep and cap (Figure 1a). The 5′ region of the
genome encodes four Rep proteins from a single open reading frame (ORF) (Rep40, Rep52,
Rep68, and Rep78). The Rep proteins are involved in virus replication, packaging and
integration. Rep78/68 possess helicase/endonuclease activity and bind to the ITRs [39],
while Rep52/40 possess 3′-to-5′ helicase activity and are responsible for the packaging of
viral genomes into the capsid [40]. The 3′ genome region encodes the three AAV capsid
proteins VP1, VP2, and VP3 in the same ORF with respective sizes of 87 kDa, 72 kDa, and
62 kDa. The AAV2 VP3 region (533 amino acids (aa)) is common to VP1-3, and structures of
the N-terminal regions unique to VP2 (65 aa) and VP1 (202 aa) remain unsolved (Figure 1b).
The unique region of VP1 (abbreviated VP1u) contains a phospholipase domain important
in AAV trafficking from endosomes to the nucleus [41]. The VP1-3 genomic region encodes
the proteins that form the viral capsid and, in turn, determines both antibody recognition
epitopes and receptor binding sites.

In addition to VP1-3, the ~2.2 kb cap region encodes at least three known alternate
reading frames (i.e., overprinted regions; Figure 1a). The 5′ region of the AAV2 cap coding
region contains the recently discovered 119 amino acid MAAP protein [38] and the AAP
protein (204 aa) [42–47]. The X gene encodes a protein of 172 amino acids at the 3′ end of
the VP1 coding region [38,48–50]. The functions of these overprinted regions continue to
be an active area of research.

The VP1u domain is important for rAAV transduction. The first three of four basic
regions (BR1-4) are involved in nuclear localization [51] and BR1 is specific to VP1u while
BR2-3 are part of VP1/2. The AAV VP1u domain also encodes a calcium-dependent group
XIII phospholipase A2 (PLA2) enzyme [52] and a calcium-binding domain. The enzymatic
activity of PLA2 is vital for AAV endosome escape [41,53]. Multiple structures exist for
other PLA2 enzymes in unbound or inhibitor-complex states, but no structures exist for
parvovirus versions.

The structural properties of the AAV capsid are crucial determinants in rAAV pro-
duction, purification, and cargo delivery. Cap proteins must form a stable 60-mer capsid
containing the desired transgene cargo. The amino acid sequence of the cap region of
rAAV plasmids also encodes capsid regions responsible for tissue tropism, antigenicity
and interactions with cell entry factors [54]. Given the role of the capsid in delivering
therapeutic transgenes into the cell and trafficking to the nucleus, capsid structure will be
a key focus of this review, both as a foundation for understanding and modulating the
underlying molecular interactions and as a foundation for understanding the limits on
modifying the virus in immune evasion.

1.3. The First High-Resolution Dependovirus Structure

Among the first atomic structures for icosahedral capsids were plant viruses with a
conserved β-barrel motif [55]. The motif consists of eight antiparallel β strands [56] and
is also known as a jelly-roll [57]. The β-barrel is not fully continuous but is more aptly
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described as a sandwich of two sheets, each comprised of at least four antiparallel strands
(lettered BIDG and CHEF). As in many other viruses, the jelly-roll β barrel is the foundation
for parvovirus capsid proteins, but some of the loops between strands are several times
longer than in those previously seen [58].Viruses 2021, 13, x FOR PEER REVIEW 4 of 28 
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= Rep; green = Cap). The linear ssDNA wtAAV2 genome is flanked by inverted terminal repeats (ITRs). Four Rep proteins 
are produced in the 5′ coding region (left side = light blue). VP1-3, AAP, MAAP, and X proteins are expressed in the 3′ 
region (right side = green). The dashed line rectangle surrounds the VP3 common region of VP1-3, which produces known 
native AAV structures (Table 1). (b) The VP1/2 region contains basic regions 1-3 (BR1-3), a phospholipase A2 (PLA2) en-
zyme and a calcium binding domain (CBD). 
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Figure 1. The AAV2 genome and VP1/2 region. (a) Rep/Cap plasmids (top of panel) encode multiple
proteins (light blue = Rep; green = Cap). The linear ssDNA wtAAV2 genome is flanked by inverted
terminal repeats (ITRs). Four Rep proteins are produced in the 5′ coding region (left side = light
blue). VP1-3, AAP, MAAP, and X proteins are expressed in the 3′ region (right side = green). The
dashed line rectangle surrounds the VP3 common region of VP1-3, which produces known native
AAV structures (Table 1). (b) The VP1/2 region contains basic regions 1-3 (BR1-3), a phospholipase
A2 (PLA2) enzyme and a calcium binding domain (CBD).

Parvovirus capsids comprise sixty monomers in icosahedral symmetry (T = 1). The
family contains three subfamilies: Parvovirinae, Densovirinae, and Hamaparvovirinae [59].
Parvovirinae infect the dividing cells of vertebrates and Densovirinae infect dividing arthro-
pod cells while the newly classified Hamaparvovirinae (Greek hama = together) subfamily
contains members that infect vertebrate and invertebrate hosts [59]. Four high-resolution
Parvoviridae family structures provided early insights into autonomous vertebrate Par-
vovirinae structures: canine parvovirus (CPV; Tsao et al., 1991 [58]), feline panleukopenia
virus (FPV; Agbandje et al., 1993 [60]), minute virus of mouse (MVM; Agbandje-McKenna
et al., 1998 [61]), and porcine parvovirus (PPV; Simpson et al., 2002 [62]). Key features of
parvovirus structures include a 3-fold proximal spike which varies in prominence, a large
shallow canyon surrounding the 5-fold axis, and a small depression/valley centered on the
2-fold axis between two 3-fold spikes (Figure 2a). An invertebrate parvovirus structure
from the Densovirinae subfamily, the wax moth (Galleria mellonella) densovirus (GmDNV),
indicated significant differences from the vertebrate parvovirus structures [63]. The β

barrel topology is conserved but the long GH loop of vertebrate parvoviruses is mostly
missing [57,64]. The absence of a long GH loop in GmDNV leads to a much flatter surface
topology than for the other parvoviruses that face adaptive immune systems.

The 3 Å X-ray crystallography structure of AAV2 [22] was the first high-resolution
Dependovirus structure and provided structurally-guided insights into virus capsid evolution
(Figure 2a). AAV and autonomous parvovirus VP1 amino acids sequences are not similar



Viruses 2021, 13, 1336 5 of 25

(<24% amino acid identity) [65]. Nevertheless, there is high structural homology with the
mammalian autonomous parvoviruses, sharing the β barrel and the presence of a long GH
loop, if not details of its structure [22,57]. AAV serotype structures have variable regions (VR)
with higher sequence diversity [24]. The majority of VR are found in the GH loop within
regions responsible for antibody evasion and cell entry (Figure 2b,c). Therefore, the AAV2
structure provided a much-needed reference for understanding Dependovirus diversity and a
three-dimensional map for understanding the molecular mechanisms of cellular entry.Viruses 2021, 13, x FOR PEER REVIEW 6 of 28 

 

 

 
Figure 2. The AAV2 structure. (a) AAV2 60-mer colored by radial distance from the center of the 
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schematically the approximate juxtaposition of subunits. (b) AAV2 jelly-roll β barrel strands form 
the inner surface of the capsid subunit and are highlighted in blue. AAV loops constituting more 
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with blue arrows of length proportional to the number of strand residues. Loops vary in size and 
complexity. Structures in panels (a) and (b) were prepared using PyMOL [66]. 

Figure 2. The AAV2 structure. (a) AAV2 60-mer colored by radial distance from the center of the
virion; 2-fold, 3-fold, and 5-fold axes are indicated by arrows and associated variable regions (VR)
are noted. A small icosahedron is provided in the lower right corner showing 2-fold (black oval),
3-fold (red triangle), and 5-fold (blue pentagon) axes along with kite-shaped quadrilaterals to denote
schematically the approximate juxtaposition of subunits. (b) AAV2 jelly-roll β barrel strands form
the inner surface of the capsid subunit and are highlighted in blue. AAV loops constituting more
than half of the structure, colored yellow, are on the outer surface of the capsid. Sequence-variable
regions are highlighted in red. (c) The topology of the β barrel is shown schematically in the center,
with blue arrows of length proportional to the number of strand residues. Loops vary in size and
complexity. Structures in panels (a,b) were prepared using PyMOL [66].
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2. AAV Capsid Modification Strategies
2.1. Natural AAV Genetic Diversity

Naturally occurring AAV capsid amino acid diversity is a useful resource for variation
of functional properties. Over 100 serotypes have been isolated from humans and non-
human primates [16,67]. AAV capsid properties modulate tissue tropism (Table 1) and
capsid diversity may improve immune evasion and tissue tropism properties.

Bats are a rich source of AAV genetic diversity [68,69] and may provide capsids with
improved tropism and immune evasion properties. For example, bat AAV sequences
have low capsid sequence identity (<60%), reduced antibody neutralization profiles, and
increased muscle to liver transduction ratios compared to primate AAVs [70]. Bat AAV10HB
was chosen for additional structural studies, and divergent loop structures were observed
between AAV2, AAV5, and AAV10HB. The β-barrel motifs of AAV2, AAV5, and AAV10HB
are highly similar. The root-mean-square deviation (RMSD) between the Cα atoms of VP3
within the conserved β-barrel strands and α-helical region of AAV2, AAV5, and AAV10HB
is ~0.5 Å. The local RMSD of the VR-II, VR-VIII, VR-IX, and HI loops is less than 2 Å whereas
all other VR loops have a local RMSD greater than 2 Å. Neither A20 (AAV2-specific) or
ADK5b (AAV5-specific) antibodies recognize 10HB [29]. Bat AAV10HB is the first and
only non-primate AAV structure [29]. More comparisons structure–function are needed to
deduce capsid residues responsible for antibody evasion. Bat AAVs can be used to illustrate
potential strategies of improving vector immune evasion: (1) vectors based on capsids
of AAVs from non-human hosts to which humans would be immune-naive; (2) rational
engineering of chimera, replacing surface loops containing known human neutralizing
immunogenic (NIm) sites with corresponding loops from non-human AAVs that are not
cross-neutralized; (3) incorporation of the same non-human AAVs in the pool used for
AAVDJ-like selection of new variant vectors [34]; or site-directed escape mutation of NIm
sites as they are identified within capsid structures. Each of these capsid-modification
strategies is further explored within the section.

wtAAV is constantly evolving and novel variants can be isolated from original cultures
or after virus propagation. For example, AAV3 is closely related to AAV2 and both
serotypes were isolated from humans [71]. A comparison of AAV2 and AAV3 DNA
sequences revealed that they were distinct but closely related serotypes [72]. AAV3 was
re-isolated from the original AAV3 wild-type virus stock and an additional isolate (AAV3B)
was discovered. Sequencing revealed a difference of six amino acids [72,73]. Virus evolution
during laboratory passaging might have been even more consequential for AAV2. Human
AAV2 isolates typically do not attach to HSPG until after adaptation to cell culture [74,75].
More recent studies indicate AAV2 adaptation quickly yields subtypes with reduced liver
tropism and increased glycan attachment or increased liver tropism and reduced glycan
attachment [76]. Finally, advances in high throughput long-read sequencing provide
opportunities to discover AAV capsids (e.g., AAVv66 from AAV2) from human tissues
with unique tropism and antibody evasion properties [77]. Therefore, some natural AAV
capsid diversity is potentially present in wild isolates, and AAV capsid differences can
quickly emerge during laboratory propagation.

Paleovirology and AAV ancestral reconstruction approaches provide another means
to harness natural AAV diversity. Viral genome integration occasionally occurs in animal
germ cells, and these ancient insertion events are ubiquitous in extant animal genomes.
The insertion events are referred to as “EVEs” (EVEs: Endogenous Viral Elements), and
ancient AAV insertions are AAV-EVEs [78]. Comparisons of AAV-EVEs from sequenced
mammalian host genomes provide estimates of divergence times based on the last com-
mon ancestors of EVE hosts. Current estimates suggest AAV integrated into mammalian
genomes 23–77 millions of years ago (MYA) [78].

Capsid differences are observed between extant primate AAVs and ancient mam-
malian AAV-EVEs [78]. Some of the differences are found in the mammalian AAV-EVE
VP1u domain. The AAV-EVE PLA2 domains have similar loss of function mutations
but have intact calcium-binding sites [78]. Mutant PLA2 paired with functional calcium-
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binding sites indicates a potential selective advantage for calcium-dependent functions
with the concurrent absence or reduction of PLA2 activity.

Exploration of intermediates between EVEs and AAVs can be further evaluated using
ancestral sequence reconstruction (ASR) by phylogenetic analysis [79]. AAV ASR uses
known AAV capsids to generate predicted ancestral capsid sequences with potentially
beneficial attributes [80,81]. The primate AAV serotypes 1–3 and 7–9 are the primary focus
of many clinical studies, and ASR identified a recent primate AAV ancestor, Anc80L65, as a
novel vector with potentially valuable properties [80]. A phylogenetic tree was constructed
using 75 primate AAV sequences along with predicted ancestors at each branch node.
Based on its phylogenetic position, the Anc80 ancestor was chosen to create an Anc80
library (Anc80Lib) consisting of 776 clones representing the predicted amino acid variability
at the Anc80 node. One clone, Anc80L65, was chosen for additional studies and showed
increased transduction properties and reduced antibody neutralization. The utility of this
approach is highlighted by the recent use of rAnc80L65 to restore balance and hearing loss
in neonatal and embryonic mouse models [82,83].

Interesting differences are also observed in the capsid residues of ASR AAV tree
nodes. A homology model of the Anc80 node structure was created using the AAV8 crystal
structure (PDB: 2QA0) [80]. The majority of predicted structural differences between AAV2,
AAV8, and Anc80 are located near the 3-fold spikes [80]. Residue differences between
Anc80, predicted AAV2 ancestral nodes, and AAV2 were superimposed on predicted T
cell and antibody epitopes [84,85]. Capsid differences in the lineage leading to AAV2 tend
to aggregate near predicted epitopes [80]. This evidence suggests a virus evolutionary
model in which immune recognition significantly influences the evolutionary trajectory of
primate AAVs.

Beyond sequence–structure variation within capsid subunits, another variable that
can be modulated is the ratio of VP1-3. VP1 is important for cell transduction [86,87].
Wild-type AAV2 has a VP1-3 ratio of 1:1:10 [88,89], equating to about 3–6 VP1 monomers
per capsid [90]. A modest decrease in VP1 levels is detrimental to cell transduction while an
increase in VP1 levels and decrease in VP2 levels (VP1:VP2:VP3 equals 1.9:0.1:8) increases
transduction [91]. Note that while overexpression of VP1 increases transduction, it also
leads to reductions in rAAV yield [91]. The underlying mechanism is unknown, but
reduced rAAV production might be associated with VP1u-associated protease activity
and subsequent self-digestion or insufficient levels of VP2/3 for AAV packaging [91,92].
As for recombinant expression systems, one baculovirus system generates reduced levels
of VP1 [93], but modifications can increase VP1 to wild-type (VP1 equals 10% of VP3)
levels [94]. The published VP1 maximum is a VP1-3 ratio of 1.9:0.1:8 [91]. Optimized levels
of VP1 may further improve rAAV transduction efficiency.

AAV vector “pseudotyping” is a well-established technique in which the genome of
one virus is encased by a different serotype, a different virus or a synthetic virus [95]. AAV
capsid monomers from different plasmid sources can also form “mosaic” rAAV particles
with altered transduction efficiency. Mosaic rAAV are typically avoided for current gene
therapy approaches [96], but researchers continue to identify mosaic AAV capsids with
unique biochemical and transduction properties [97–101].

2.2. AAV Directed Evolution

Another AAV capsid modification strategy uses the power of directed evolution
(Figure 3). Directed evolution uses artificial selection to engineer changed molecular phe-
notypes. RNA was the first target molecule of directed evolution [102] but this process has
since then been applied to proteins [103–105] and protein enzymes [106]. The importance
of directed evolution was recently recognized with the 2018 Nobel Prize in Chemistry [107].

rAAV capsids encode both enzymatic (e.g., VP1u PLA2) and structural properties
vital for cell entry, and these properties can be improved via directed evolution. Directed
evolution of protein sequences typically relies on “DNA shuffling” of the DNA encoding
the protein [108,109]. DNA shuffling utilizes the power of recombination between similar
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DNA sequences (i.e., homologous recombination) and can utilize fragmented DNA and/or
PCR-based reassembly. Homologous recombination occurs naturally in parvovirus [110]
and wtAAV populations [16] and is also observed in laboratory cultures of AAV-infected
cells [111]. Following recombination, clonal isolates of AAV recombinants can be identified
for further characterization [112].

Directed evolution of AAV capsids relies on large diverse AAV capsid DNA libraries to
select candidate AAVs. Libraries are built using homologous recombination-based shuffling
of selected parental AAV DNA. Error-prone PCR, with or without a staggered extension
process, can be used to increase library genetic diversity [113–115]. Recombination can be
further enhanced using capsid DNA sequences from closely related serotypes or codon-
optimized capsids [116]. Optimized directed evolution pipelines generate DNA libraries
with sufficient genetic diversity to select for infectious isolates [117]. Subpopulations can
then be isolated using additional selection steps [117]. Selection schemes can be applied
in vitro and/or in vivo to clone chimeric AAVs with favorable tropism, reduced immune
neutralization, or desirable biochemical properties.
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Figure 3. Capsid modification strategies. The three major approaches to capsid modifications are,
from left to right: natural diversity (left dashed line box), directed evolution (middle), and mutants
(right dashed line box). Natural primate AAV diversity includes the major and unique AAV clades.
Directed evolution begins with parental serotypes, and these are diversified via recombination-based
techniques (see text for details). This creates an AAV library that can be screened with selection of
novel variants. Novel variants can then be amplified for additional rounds of selection or tested
in animal models as a candidate rAAV biopharmaceutical. The mutants box consists of an AAV2
60-mer corresponding to Figure 2a at the top and a mutated yellow AAV2 60-mer at the bottom with
mutations highlighted in red. The dashed-line circle surrounds the 3-fold axis, and a close-up view of
this region is shown in the bottom right dashed box. Solid line circles show the peaks of each axis and
the 3-fold depression is in the center. The three ~3.5 nm diameter red patches are “dead zones” first
identified in Lochrie et al., 2006 [118]. Comparison of the top and middle models shows that the dead
zone is mostly on a plateau between spikes where the PKD2 domain is bound in the AAV2-AAVR
complex [119,120]. A summary of these mutations and others is provided in Supplementary Table S1.
Structures were prepared using PyMOL [66].
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A significant advance in tracking and evaluating large complex AAV capsid DNA
libraries is the use of DNA barcodes (i.e., AAV barcode-Seq) [121]. DNA barcodes can
be used to measure the fitness of mutations over time [122]. The combination of DNA
barcodes and high-throughput sequencing provides additional means to identify vari-
ants from scanning libraries with favorable traits, such as tropism to particular tissues,
in vivo [121,123,124]. Subsequent research has validated the use of barcodes as a standard
approach to managing and tracking a wide range of AAV libraries [38,45,123–129].

Directed evolution approaches have yielded a number of chimeric AAV constructs
that were subsequently developed as rAAV vectors, often with the goal of modulated
tropism [34,130–132]. AAV-DJ is the most fully characterized and is a chimera of AAV2,
AAV8, and AAV9 derived from the DNA shuffling of eight different AAV serotypes tar-
geting human liver [34]. Hybrids of eight parental serotypes (AAV2, 4, 5, 8, 9, avian (bird)
AAV, bovine (cow) AAV, and caprine (goat) AAV) were initially passaged through human
liver cells leading to a more select population of hybrids in which only five serotypes
were represented (2, 4, 5, 8, and 9). Following liver transduction, the population was
further reduced to a single hybrid of three serotypes (2, 8, and 9) by selection for resistance
to pooled neutralizing human antisera (intravenous immunoglobulin or IVIg) [34]. The
AAV-DJ IVIg-escape variant differs from its closest single parent (AAV2) at 60/737 amino
acids (~8.1%) [34]. AAV-DJ was the most efficient serotype for in vitro transduction of
15 cell lines from multiple tissues and species [34]. AAV8 and AAV9 are superior to AAV2
for liver transduction, and AAV-DJ was on par with AAV8/9 in vivo liver expression [34].
Gene therapy may require multiple doses, and an immune response typically neutralizes
reinfusion of the primary vector. Prior use of AAV-DJ did not elicit a neutralizing immune
response that was able to block subsequent transduction with rAAV2, rAAV8, or rAAV9.
The most striking difference between AAV2 and AAV-DJ is observed at VR-I, which corre-
sponds to the epitope of neutralizing mouse monoclonal antibody (mAb) A20 [30,133–135].
Therefore, AAV-DJ is a product of directed evolution with superior transduction and anti-
body evasion properties compared to its closest related ancestor (AAV2). It seems likely
that rigorous selection for IVIg-escape generated change at a known neutralizing epitope,
and this also affected cellular tropism [30].

A possible cautionary tale of the power of selection was the recent development of an
AAV variant that can cross the blood–brain barrier (BBB). AAV9 had early promise as a
treatment for CNS disorders because strong CNS expression was observed in small and
large mammalian models [136–138] and AAV9 can pass through the mouse BBB but to a
limited extent [136]. A novel Cre recombination-based AAV targeted evolution (CREATE)
approach was developed to improve CNS transduction efficiency, and an AAV-PHP.B
variant was identified [139]. CREATE utilizes libraries consisting of heptapeptide inser-
tions into a permissive AAV9 site that corresponds with AAV2 glycan attachment (amino
acids 588/589; Section 3.1). Intravenous administration of AAV-PHP.B showed promising
transduction (~50-fold improvement) in the entire adult mouse CNS and abrogated the
non-CNS expression that would have been expected of AAV9. Thus, the improved trans-
duction efficiency of AAV-PHP.B in the CNS of a mouse model provided a promising lead
for human CNS rAAV gene therapy.

A follow-up study showed, however, that AAV-PHP.B was specific to the C57BL/6J
mice used for in vivo selection [140] and not BALB/cJ mice. This observation quelled
excitement over the potential translational use of AAV-PHP.B but provided the basis for
mapping the LY6A genetic variants responsible for unlocking the C57BL/6J BBB [141].
LY6A is a GPI-anchored protein, and GPI-protein-mediated transport has been suggested
as a determinant of AAV2 and AAV5 transduction [142,143]. Consequently, one could
postulate that LY6A is an attachment factor or receptor that enables transport through the
BBB. Meanwhile, another AAV9 variant (AAV-F) has been identified with superior CNS
transduction properties using the iTransduce version of CREATE in the same permissive
AAV9 site, and AAV-F does not utilize LY6A [144]. One lesson from AAV-PHP.B is that there
is a danger of using (well-characterized) in-bred animal models to select viral vector traits
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that are only compatible with host genotypes not found in human populations. Another
lesson is further encouragement to modulate tropism by selection from a library in which
peptide sequence is randomized locally at a site that is surface accessible in the structure
and available to interact with host factors [139,145].

2.3. AAV Mutants

Early AAV capsid analyses were directed towards mapping epitopes and glycan
attachment sites using peptide scanning (PEPSCAN), peptide competition, and site-directed
mutation of recognizable sequence motifs [134,146–148]. The atomic structure of AAV2 [22]
opened the way for more rational mutation analyses. For example, the AAV2 glycan
attachment site was now clearly visible and, of the basic amino acids with potential
to interact with heparan sulfate [36], five were now seen on the capsid exterior (See
Section 3.1.1). The AAV2 structure provided the necessary details to interpret previous
mutagenic studies and to move forward with structurally-informed screens.

A particularly noteworthy study by Lochrie et al. investigated several phenotypes,
following systematic mutation that screened a wide area of the accessible outer surface of
AAV2 [118]. Of 145 amino acids on the outside surface, 64 of the most exposed (~55% of
surface area) were targeted as potential antibody-binding epitopes. The screen validated
predicted basic amino acid residues responsible for heparin attachment. An additional
circular area composed of eighteen amino acids (7 acidic and 1 basic) was also identified.
Mutations in this ~3.5 nm diameter “dead zone” (Figure 3) decreased in vitro transduction
independent of heparin-binding [118].

Antibody neutralization was also investigated. The mouse A20 antibody is well-
known for AAV2 neutralizing activity, and a cluster was identified with five adjacent
residues and one nearby as sites of neutralization of escape mutants. These mutants did not
affect heparin attachment or transduction activity [118]. Similarly, three potential epitopes
consisting of mutations that evaded three different samples of human sera from factor
IX-deficient hemophiliacs were identified. One of these sites overlapped with the A20
epitope [118]. Finally, Lochrie et al. used human IgG (IVIg), pooled from >1000 individuals,
to scan for additional epitopes. The suite of mutations responsible for AAV2 Nab evasion
provides targets for stealth rAAV gene therapy vectors.

One exciting new addition to the AAV genetic manipulation toolkit utilizes a system-
atic approach to investigating AAV [38]. The entire capsid genome of AAV2 was modified,
barcoded, and subjected to thermostability and transduction assays. The study confirmed
the earlier observation [118] that the 3-fold spike is more tolerant of mutations compared
to the 5-fold axis. Furthermore, by correctly identifying amino acids at the previously
determined binding site of neutralizing antibody A20 [135], proof of principle was achieved
that the approach could be used to map interaction sites.

The ability to monitor large AAV libraries also allows for improvements in rAAV
capsid engineering via the design and implementation of computational models. Machine
learning (ML) methods improve protein modeling and engineering [149], and the ratio-
nal design of AAV capsids also benefits from ML. For example, a ML model was used
to engineer AAV2 variants with superior liver transduction compared to AAV2 variants
selected from randomly mutagenized populations [38]. Viable capsid formation is the first
step of vector production, and ML models of capsid viability provide a useful measure of
fitness. ML-based AAV libraries improved diversity in the 3-fold spike [128] and found
unexpected differences in selection pressure for residues affecting capsid stability [150].
Another study started with electron microscopy imaging of AAV-antibody complexes,
using pseudo-atomic models of multiple anti-AAV8 antibodies to identify important AAV8
epitopes at ~12–25 Å resolution [151]. AAV8 target residues were subjected to satura-
tion mutagenesis, and the library was screened using human liver cells. A variant with
improved transduction profiles and increased immune evasion was isolated, evidencing
the utility of this approach [151]. Large AAV libraries engineered using computational
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models are poised to produce rAAV vectors with improved rAAV capsid properties such
as viability, tropism, thermostabilty, and antibody evasion.

3. AAV Cell Attachment and Entry
3.1. AAV Glycan Attachment Factors
3.1.1. HSPG

Extracellular glycans (e.g., glycoproteins, glycolipids) are common virus attachment
factors and heparan sulfate proteoglycan (HSPG) attachment is used by several AAV
serotypes prior to cell entry [54]. Heparan sulfate (HS) is a glycosaminoglycan that is
covalently attached to protein. HS and heparin are negatively charged linear polysac-
charides with heparin being the more sulfonated of the two forms. The most common
disaccharide in HS (~50%) is glucuronic acid, linked to N-acetylglucosamine. HS and
heparin interact with positively charged amino acids such as arginine and lysine [36,152].
Interactions of HS and heparin with proteins predominantly occur via electrostatic inter-
actions with minor contributions from hydrogen bonds, hydrophobic effects and van der
Waal interactions [153,154].

With the discovery of AAV2 HS-attachment [36], questions remained regarding the
importance of HSPG in AAV infection. The 3.0 Å structure of AAV2 [22] and mutagenic
studies [155,156] revealed the location of the AAV2 HSPG attachment site clustered on
the side of each 3-fold spike (Table 2). The site was narrowed down to five basic amino
acid residues responsible for HSPG-attachment (R484, R487, K532, R585, and R588) with
the most severe loss of HSPG attachment occurring via R585 and R588 mutations in three
major mutagenic studies [118,155,156]. The 8.0 Å cryo-EM structure of AAV2 complexed
with heparin [133] confirmed the predicted HSPG attachment site derived from the AAV2
crystal structure [22]. Some of the positively charged residues responsible for AAV2 HSPG
attachment (R585 and R588) are not conserved in other serotypes [133], which necessitated
additional studies.

Table 2. Structures of AAV with Attachment Factors.

Serotype Resolution Year Reference

AAV2 Cryo-EM 8.3 Å 2009 O’Donnell et al. [133]
AAV3 X-ray 6.5 Å 2012 Lerch et al. [157]
AAV5 X-ray 3.5 Å 2015 Afione et al. [158]
AAV1 X-ray 3.0 Å 2016 Huang et al. [159]

AAVDJ Cryo-EM 3.0 Å 2017 Xie et al. [160]

Follow-up structures of related serotypes indicated that the location of the AAV2
HSPG attachment site is not conserved across serotypes. AAV6 also attaches to HSPG and
the 3.5 Å X-ray crystallography structure of AAV6 revealed a divergent but overlapping
HSPG attachment site confirmed via site-directed mutagenesis [26]. AAV6 is missing the
positively charged AAV2 R585 and R588 residues but compensates with two positively
charged lysines at a different location (K459 and K493). Preliminary evidence suggested
the AAV2 and AAV6 sites were more similar to each other compared to AAV2 and AAV3B
HSPG attachment sites [23]. AAV3B is closely related to AAV2 and both serotypes were
isolated from humans [71]. AAV3B also attaches to HSPG [97,161], but AAV3B lacks the
AAV2 residues with the strongest interactions: R585 and R588. Other AAV3B residues
could be postulated to fulfil an analogous role (R447 and R594). AAV3B was complexed
with the sucrose octasulfate (SOS) heparin analog to generate a 6.5 Å X-ray crystallographic
structure with sufficient resolution to identify the binding site which was on a 3-fold axis,
where three copies of R594 come together [157]. In the cases of AAV2 and AAV3B, it was
shown, through chimeric mutation, that electrostatic potential contributed by different
amino acids was additive in its effects upon heparin-binding, cell binding, and in vitro cell
transduction [157]. Thus, while binding using analogous interactions, the sites on AAV2



Viruses 2021, 13, 1336 12 of 25

and AAV3B do not correspond. Therefore, AAV HSPG attachment sites exhibit convergent
evolution with selection of positively charged residues.

Aware that at some point, conformational changes would be needed for the release
of VP1u and DNA, one question was whether glycan-binding induced the presumed
changes [162]. Such speculation was inspired by other viruses; for example, the attachment
of HIV to heparin sulfate and subsequent conformational changes are critical components
of HIV co-receptor binding [163]. The 8.3 Å cryo-EM structure of a 17 kDa heparin
fragment (~70 monosaccharide units; ~285 Å long) complexed with AAV2 revealed heparin
wound around the shoulders of the 3-fold protrusions, bound by interactions of its sulfate
groups with basic arginines and other polar interactions [133]. However, conformational
adjustments were very modest and local to the binding site—there was no indication of a
capsid-opening conformational change.

Belief in large-scale glycan-induced conformational change persisted due to hints
thereof in an independently determined structure of an AAV2-heparin complex at 18 Å
resolution [162]. At the low resolutions of both studies, there is increased danger of mis-
characterization, so the difference could not be adjudicated immediately. Subsequently,
to be more definitive, AAV-DJ [30,34], which shares an AAV2-like HBD, was used for
cryo-EM of an SOS complex at 4.8 Å resolution [164] and for a complex with a synthetic
pentasaccharide heparin analog, fondaparinux at 2.8 Å resolution [160]. The cryo-EM maps
were much improved, due to chemical homogeneity of the HS analogs and improving
EM technology. It was now seen that the AAV structure could make local adaptations
to different glycan sequences, but that no large-scale changes were induced by binding.
Indeed, evidence was also emerging through competition surface plasmon resonance
(SPR) and glycan arrays that the glycan sequence specificity was quite low and that high
avidity was achieved with longer heparin oligosaccharides that could bridge between
symmetry-related binding sites, combining the affinities thereof [93,165]. The combined
evidence implies AAV HSPG attachment is a product of multiple weak-avidity sites on a
single capsid. The locations of HSPG attachment can vary between serotypes, and HSPG
attachment can be rapidly selected for or against in the laboratory environment.

3.1.2. SIA and GAL

Sialic acid (SIA) was the first virus receptor to be discovered [166,167] and serves as a
receptor or attachment factor for many viruses. SIAs are a diverse group of nine-carbon sug-
ars that attach to the end of O-linked (serine or threonine) or N-linked (asparagine) sugar
chains. Coronavirus, influenza, and other zoonotic viruses use glycan oligosaccharides
terminated in SIA for cellular entry, and SIA may play an important role in crossing species
barriers [168]. In parvoviruses, SIA attachment determines MVM tropism and pathogenic-
ity [169] whereas CPV and FPV SIA attachment is not required for infection [170].

O-linked and N-linked SIA have been reported as receptors for several AAVs, although,
like HS, SIA should now, more properly, be considered an attachment factor (vide infra).
Glycan-conjugated SIA is known to interact with AAV1, AAV4, AAV5, and AAV6 [171,172].
AAV4 attaches to α2,3 SIA on O-linked oligosaccharides whereas AAV5 attaches to α2,3
SIA on N-linked oligosaccharides [171]. On the other hand, AAV1 and AAV6 use both α2,3
and α2,6 SIA on N-linked oligosaccharides for cellular attachment [172]. The 3.5 Å X-ray
crystallographic structure of SIA-bound AAV5 was examined, and two candidate sites (A
and B) were used as a foundation for site-directed mutagenesis [158]. Mutations to residues
in the A site were responsible for N-linked SIA attachment. The X-ray crystallography
structures of AAV1 and AAV6 revealed additional N-linked SIA attachment areas consisting
of six amino acids [159]. Similar to HSPG attachment sites, SIA attachment sites are
not conserved and the mutation of residues identified by X-ray crystallography ablate
glycan attachment.

AAV9 is unique in that it has a preference for glycans ending in a terminal galactose
(GAL) [173]. Mutational studies and computer modeling of docked structures implicate a
patch of residues at the base of the 3-fold axis protrusions [174]. This site is distinct from
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the HS and SIA sites of other AAVs and further emphasized that, among AAVs, divergent
strategies have evolved for the attachment to cell surface glycans.

3.2. AAV Proteinaceous Receptors
3.2.1. AAVR

A variety of possible co-receptors proteins have been reported over the years. For
example, the hepatocyte growth factor receptor (c-MET) and human fibroblast growth fac-
tor receptor-1 (FGFR1) were identified as possible protein co-receptors for AAV2 [175,176].
Platelet-derived growth factor receptor (PDGFR) is a candidate receptor for AAV5 [177]
while epidermal growth factor receptor (EGFR) was identified as a candidate receptor
for AAV6 [178]. A report identifying α5β5 integrin as an AAV2 co-receptor [179] was
contested by another study [180]. Other proposed receptors included integrin α5β1 [181],
LamR for a variety of serotypes [182], and an unidentified 150 kDa glycoprotein [183]. The
candidate ~150 kDa protein could be qualitatively observed using virus overlay assays and
binding was quantified using cell culture binding assays. Cell-binding could be ablated
by trypsinization, with a time-dependent recovery that suggested the involvement of a
protein with an eight-hour turnover [183]. The identity of the 150 kDa protein receptor
responsible for wtAAV2 binding would remain a mystery for two decades.

Convincing evidence of a cellular entry receptor was eventually found using a high-
throughput forward genetic screen to identify conclusively genes involved in AAV trans-
duction [37]. Keys to successful screening were a nearly haploid human cell line (HAP1), a
retrovirus gene-trap used to mutagenize most non-essential genes [184], and, because AAV
is not cytopathic, methods for iteratively selecting viral resistance based on fluorescence-
encoding viral vectors and cell sorting. Then, using an AAV2 vector encoding RFP, repeated
fluorescence-activated cell sorting (FACS) cycles were used to select a cell population en-
riched in AAV-resistant (RFP-negative) mutants. Deep sequencing of cells yielded a list
of 46 genes that were mutated with statistically significant frequencies. These could be
grouped into genes encoding proteins involved in trans-Golgi network trafficking, hep-
aran sulfate synthesis, a handful of “other” hits and three genes encoding transmembrane
proteins. The three transmembrane proteins (KIAA0319L, GPR108, and TM9SF2) were
relatively uncharacterized and had not been previously implicated as viral entry factors.
The gene candidate with the highest significance (570 independent mutations) was a type
I transmembrane protein known as KIAA0319L and was subsequently renamed to AAV
Receptor (AAVR).

CRISPR-Cas9 was used to create knockouts (KO) of AAVR in eight diverse human and
mouse cell lines and TALENs were used to create AAVRKO mice [37]. The AAVRKO cell
lines were resistant to infection with AAV2, even at high doses of 100,000 viral genomes
per cell. Infectivity could be restored in AAVRKO cells by expressing AAVR and overex-
pression of AAVR in cell lines resistant to AAV2 infection rendered the cells permissive to
AAV2 infection [37]. AAV2 infection was inhibited via the introduction of soluble AAVR
ectodomain or antibodies against AAVR, thereby highlighting the potential importance
of access to AAVR on the cell surface. Several other human and simian serotypes (AAV1,
2, 3B, 5, 6, 8 and 9), with preferences for diverse glycan attachment factors, were also
unable to infect AAVRKO cells, but could infect cells rescued with AAVR. Similarly, another
study found overexpression of AAVR in polarized epithelial cells generates preferentially
basolateral localization of AAVR and increased transduction of AAV2 on the basolateral
side [185]. In contrast, CRISPR-Cas9 KO of two of the top previously-implicated AAV2 can-
didate co-receptors (c-MET and FGFR1), in several cell lines, did not decrease transduction
efficiency [37]. These results highlighted the importance of AAVR as a primary cell entry
receptor for AAV2 and suggested other previously identified AAV2 candidate receptors
may play, at most, accessory roles.

The dependence of AAV2 on AAVR for infection warranted further investigations into
the protein domains controlling infection. AAVR is an N-linked and O-linked glycopro-
tein that can be subdivided into three regions: an N-terminal motif with eight cysteines
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(MANEC domain), five immunoglobulin-like polycystic kidney disease (PKD) domains
(PKD1-PKD5) and a C-terminal transmembrane region (Figure 4a). AAVR proved to be
the same as the previously implicated but unidentified ~150 kDa glycoprotein [183,186],
although it became clear that the ~50kDa glycosyl moieties were not required for AAV2
infection [186]. AAVR was found to colocalize with TGN components, as does AAV2
when trafficking from the plasma membrane through endosome compartments to the
Golgi [142,186]. Removal of the AAVR C-terminal domain, which contains endosome
targeting motifs, prevented rescue of AAVRKO cells and impaired endocytic recycling;
resulting in increased AAVR localization to the plasma membrane [186]. The PKD domains
of AAVR have immunoglobulin-like (Ig-like) folds that are common in viral receptors [187].
A soluble ecto-domain construct, containing PKD1-5 domains was able to bind AAV2
particles, and a mini-AAVR construct consisting of PKD1-3 together with the transmem-
brane moiety was sufficient to rescue AAVKO cells [37]. Further analysis with both domain
expression constructs and domain deletion mutants that, for AAV1, AAV2 and AAV8,
there were strong interactions with PKD2, and subsidiary involvement of PKD1 [186]. By
contrast, AAV5 primarily utilizes PKD1, apparently exclusively [186]. The amino acids
responsible for AAV-AAVR interactions were soon revealed in a series of structural studies
(Table 3; Figure 4b,c) [119,120,188,189]. The footprint of AAV2:PKD2 was found to overlap
with a significant fraction (39–56%) of the eighteen residues comprising the previously iden-
tified dead zone [118–120]. The overlapping footprints of AAVR and antibodies provide
additional insights into AAV-antibody neutralizing and cell entry mechanisms.

Table 3. Structures of AAV complexed with AAVR-receptor fragments.

Serotype Resolution Year Reference PDBid

AAV1 Cryo-EM 3.3 Å 2019 Zhang et al. [189] 6JCQ
AAV2 Cryo-EM 2.8 Å 2019 Zhang et al. [120] 6IHB
AAV2 Cryo-EM 2.4 Å 2019 Meyer et al. [118] 6NZO
AAV5 Cryo-EM 3.2 Å 2019 Zhang et al. [189] 6JCS
AAV5 Cryo-EM 2.5 Å 2020 Silveria et al. [188] 7KPN

3.2.2. GPR108 and VP1u

In addition to AAVR-dependent serotypes, at least one primate AAV lineage does
not require AAVR for cell transduction and multiple serotypes still exhibit low levels of
transduction in the absence of AAVR. Anc80 is predicted (in silico) to be ancestral to AAV2
(Section 2.1) and this lineage is typified by PKD2 binding whereas the lineage leading to
AAV5 binds to PKD1. The lineage leading to AAV4 and AAVrh32.33, on the other hand, is
AAVR-independent [190]. Anc80 and its descendants also exhibited low levels of AAVR
independence whereas AAV5 is solely dependent upon AAVR for cell transduction [190].

Two independent screens validated the Pillay et al. screen hit GPR108 (i.e., Lung Seven
Transmembrane Receptor2; LUSTR2) as an important factor for AAV transduction [191,192].
GPR108 is a seven-transmembrane protein with a long N-terminal lumen domain and a
short C-terminal domain essential for AAV transduction [191]. Representative members
of the Anc80 lineage are dependent on both GPR108 and AAVR whereas the AAV4 clade
is mostly dependent just on GPR108 and does not require AAVR for entry [191]. AAV5
does not require GPR108 and the VP1u region of AAV2 can transfer GPR108 dependence
to AAV5 [191]. Furthermore, GPR108 expression overlaps with AAVR expression in the
TGN [191,192]. Of several possible explanations of the observations, one is that attach-
ment of AAV2-like viruses to HSPG is followed by binding to AAVR, and eventual VP1u
extrusion for a GPR108-mediated step in the TGN (Figure 5b) [191].



Viruses 2021, 13, 1336 15 of 25Viruses 2021, 13, x FOR PEER REVIEW 16 of 28 
 

 

 
Figure 4. AAV2 and AAV5 bind to distinct AAVR PKD domains. (a) AAVR domain structure from N-terminus (N) to C-
terminus (C): Signal Peptide (SP), Motif At the N-terminus with Eight Cysteines (MANEC), immunoglobulin-like Poly-
cystic Kidney Disease (PKD) domains 1–5, TransMembrane (TM) helix and Cytoplasmic domain (Cyto). The region con-
taining potential AAV interactions is composed of PKD1-5. (b) Native AAV2 60-mer (left) and the AAV2:PKD2 complex 
(right). Virus models are colored by radial distance from the center of the virion. The PKD2 domain of AAVR is colored 
in gray. (c) Virus model of native AAV5 virion (left) and the AAV5:PKD1 complex (right). Models are colored by radial 
distance from the center of the virion. The PKD1 domain of AAVR is colored in gray. Structures in (b) and (c) were pre-
pared using PyMOL [66]. 
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Figure 4. AAV2 and AAV5 bind to distinct AAVR PKD domains. (a) AAVR domain structure from N-terminus (N) to C-
terminus (C): Signal Peptide (SP), Motif At the N-terminus with Eight Cysteines (MANEC), immunoglobulin-like Polycystic
Kidney Disease (PKD) domains 1–5, TransMembrane (TM) helix and Cytoplasmic domain (Cyto). The region containing
potential AAV interactions is composed of PKD1-5. (b) Native AAV2 60-mer (left) and the AAV2:PKD2 complex (right).
Virus models are colored by radial distance from the center of the virion. The PKD2 domain of AAVR is colored in gray.
(c) Virus model of native AAV5 virion (left) and the AAV5:PKD1 complex (right). Models are colored by radial distance from
the center of the virion. The PKD1 domain of AAVR is colored in gray. Structures in (b,c) were prepared using PyMOL [66].
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dependent/AAVR-independent (blue; AAV4 clade). Virions must evade host neutralizing antibodies (black antibody-
shaped icons). AAV virions (red or blue) come into contact with the cell surface and attach to the glycan moieties of pro-
teoglycans. Red AAV binds to the AAVR receptor and is internalized and transported through the trans-Golgi network 
(TGN). Blue, GPR108-dependent, AAV particles enter through a parallel but possibly distinct pathway. Virions accumu-
late outside of the nucleus before entry and may involve the nuclear pore complex (NPC). AAV gathers in the nucleolus 
prior to being extruded into the nucleoplasm where the ssDNA genome is released. 

Figure 5. AAV entry model. (a) Three known AAV entry classes are shown: AAVR-dependent (green star), GPR108-
dependent (light blue box) and both AAVR and GPR108-dependent (black asterisk). Structures for AAV complexes
with glycan attachment factors (yellow and red circles) and AAV:AAVR complexes (light blue receptor icon) are known.
Appropriate AAV entry class icons are located to the left of AAV serotypes and structural icons are located to the right of
AAV serotypes with structural evidence. (b) AAV cell attachment, entry, and trafficking to the nucleus of a non-polarized
cell. Two AAV classes are shown: AAVR/GPR108-dependent (red; majority of AAVs), represented by AAV2, and GPR108-
dependent/AAVR-independent (blue; AAV4 clade). Virions must evade host neutralizing antibodies (black antibody-shaped
icons). AAV virions (red or blue) come into contact with the cell surface and attach to the glycan moieties of proteoglycans.
Red AAV binds to the AAVR receptor and is internalized and transported through the trans-Golgi network (TGN). Blue,
GPR108-dependent, AAV particles enter through a parallel but possibly distinct pathway. Virions accumulate outside of
the nucleus before entry and may involve the nuclear pore complex (NPC). AAV gathers in the nucleolus prior to being
extruded into the nucleoplasm where the ssDNA genome is released.
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AAV cellular entry screens are offering insights that are likely relevant to release of
VP1u. Both AAVR and GPR108 are predicted transmembrane proteins found in the TGN.
Other hits of the forward genetic screens include genes implicated in glycan biosynthesis
and TGN functions. One TGN gene high on the list of genes identified by Pillay et al. is
ATP2C1. This gene encodes a secretory pathway Ca(2+)-ATPase pump type 1 (SPCA1)
important for sequestering calcium ions into the Golgi compartment from the cytosol and
also for Golgi ribbon maintenance [193]. AAV conformational changes associated with
VP1u extrusion are affected by increased cytosolic calcium levels in ATP2C1 KO cells [194].
The VP1u phospholipase is calcium-dependent [195] and can be induced to extrude by
heating from 37 ◦C to 65 ◦C [196]. VP1u protease activity that targets disordered proteins
has also been detected [197]. Further characterization of genes underlying VP1u-associated
effects may provide a roadmap for future mechanistic studies of AAV cellular entry.

4. Concluding Remarks

The number of rAAV gene therapy options continues to grow. In addition, advances
in structural biology provide easier access to molecular details responsible for cell entry
and escape from neutralizing antibodies. Such details are beginning to help investigators
design increasingly sophisticated capsid modification schemes to improve rAAV vector
properties. Much remains to be learned about the key molecular interactions of capsid
with host factors, and one would anticipate continuing feedback into vector design over
the coming years. There are also areas in which the salient molecular interactions remain
largely uncharacterized, such as cellular immune responses, and so progress in vector
delivery, at the moment, involves empirical mitigation strategies [35,198].

Particularly exciting, is the more detailed picture of rAAV cellular entry mechanisms
that is now emerging. The discovery of AAVR and the resultant AAV-AAVR structures
reveal important capsid surface moieties responsible for cell entry. The AAV4 clade pri-
marily uses AAVR-independent mechanisms for cellular entry, and these insights apply to
multiple serotypes, with the possible exception of the AAV5 clade. Further characterization
of GPR108-mediated cell entry may provide additional tools for rAAV gene therapy im-
provement. It is important to emphasize that identification of the most critical host factors
for entry is recent, their characterization is ongoing, and exploitation of the emerging
understanding for improved vector delivery is only just starting.

That said, our changed perspective on the role of extracellular glycans might be
equally important. Designated as primary receptors, there was naturally much atten-
tion on understanding the molecular basis of interactions and any specificity thereof
that could possibly be exploited for targeting, but we now understand that specificity
is less than exquisite [93,165]. Real glycan-dependent tropisms, in vivo, could have a
variety of non-receptor-mediated explanations, as are now being uncovered. These can
include glycan-dependent sequestration at a target site of interest [199] or rate of blood
clearance [121]. Glycan interactions certainly continue to be important in vector optimiza-
tion [76], but the design considerations may be quite different from modulation of cellular
entry. Our newer perspective does not negate the long history of evidence, from in vitro
assays, that glycans also mediate attachment to infected cells and thereby affect levels of
transduction [36], albeit somewhat less critically than protein receptors [37]. However, now
the process should be imagined, as in Figure 5b, with glycan attachment concentrating
virus at the cell surface with high-valence modest-specificity interactions, common in many
other viral families, improving the efficiency of binding to membrane proteins essential
for entry and trafficking [200,201]. In overlapping but different ways, both glycan and
protein interactions will be important in the development of more efficient and specifically
targeted vectors.

The initial steps leading to AAV cellular entry are clearer, but important details
remain unanswered. For example, questions addressing the tendency of AAV to bind
AAVR more at the surface or in the endosome and the role of candidate co-receptor
interactions with AAV remain unresolved. The subsequent function of AAVR in cellular
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trafficking and potential roles for AAVR or co-receptors in the steps leading to capsid
conformational changes preceding endosomal escape also remain inconclusive. Future
studies may accurately resolve these important open questions, in light of our current
understanding of AAV:AAVR interactions, with an eye on developing more potent rAAV
gene therapy vectors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13071336/s1. Suplementary Table S1: AAV Mutant Transduction Table. Supplementary
Table S2: AAV Tropism Tables.
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