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a b s t r a c t   

Background: As the therapeutic regimens against the COVID-19 remain scarce, the microRNAs (miRNAs) can be 
exploited to generate efficient therapeutic targets. The miRNAs have been found to play pivotal roles in the several 
regulatory functions influencing the prognosis of viral infection. The miRNAs have a prospective role in the up and 
down regulation of the ACE2 receptors. This review examines the clinical applications, as well as the possible 
threats associated with the use of miRNAs to combat the deleterious consequences of SARS-CoV-2 infection. 
Methodology: This article was compiled to evaluate how the miRNAs are involved in the SARS-CoV-2 patho-
genesis and infection, and their potential functions which could help in the development of therapeutic targets 
against the COVID-19. The sources of the collected information include the several journals, databases and 
scientific search engines such as the Google scholar, Pubmed, Science direct, official website of WHO, among the 
other sites. The investigations on the online platform were conducted using the keywords miRNA biogenesis, 
miRNA and ACE2 interaction, therapeutic role of miRNAs against SARS-CoV-2 and miRNA therapy side effects. 
Results: This review has highlighted that the miRNAs can be exploited to generate potential therapeutic targets 
against the COVID-19. Changes in the miRNA levels following viral replication are an essential component of the 
host response to infection. The collection and modification of miRNA modulates may help to minimize the 
deleterious consequences of SARS-CoV-2 infection, such as by controlling or inhibiting the generation of cy-
tokines and chemokines. The degradation of viral RNA by the cellular miRNAs, along with the reduced ex-
pression of ACE2 receptors, can substantially reduce the viral load. Specific miRNAs have been found to have an 
antiviral influence, allowing the immune system to combat the infection or forcing the virus into a latency stage. 
Conclusion: This review summarizes several studies revealing the involvement of miRNAs in diverse and complex 
processes during the infection process of SARS-CoV-2. The miRNAs can substantially reduce the viral load by de-
gradation of viral RNA and reduced expression of ACE2 receptors, besides mitigating the deleterious consequences 
of the exaggerated secretion of cytokines. Extensive investigations need to be done by the scientific community to 
utilize the miRNA based strategies for the development of effective therapeutic targets against the COVID-19. 
© 2022 The Author(s). Published by Elsevier Ltd on behalf of King Saud Bin Abdulaziz University for Health Sciences. 
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Introduction 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 
2) causes the new coronavirus disease 2019 (COVID-19), which be-
longs to the group of beta coronaviruses in the Coronaviridae family  
[1], which has the closest relationship and likelihood with the pre-
viously emerged SARS-CoV in 2003 that was known by SARS out-
break [2,3]. Human coronaviruses (HCoVs) infections usually target 
upper and lower respiratory tract infections. Some of the human 
coronaviruses like a human coronavirus NL63 (HCoV-NL63), human 
coronavirus OC43 (HCoV-OC43), and human coronavirus HKU1 
(HCoV-HKU1), comes as minor infection and lead to common colds  
[2]. Moreover, during the last two decades, a group of highly in-
fectious coronaviruses with a severe infection in the human popu-
lation have been characterized, comprising severe acute respiratory 
syndrome coronavirus (SARS-CoV), that resulted in an outbreak in 
the year 2003 and infected more than 8000 people globally with a 
mortality rate of around 10 %. Middle East respiratory syndrome 
coronavirus (MERS-CoV) appeared in the year 2012 and infected 
around 2500 people with a fatality rate of around 37 % [4]. Several 
studies have revealed that such a highly pathogenic coronavirus 
resulted in severe and acute respiratory distress syndrome (ARDS), 
resulting in diffused inflammation in the respiratory system, diffi-
culty in breathing, and even death. In contrast, SARS-CoV-2 has a 
tendency to spread more rapidly than SARS-CoV-1 and MERS; 
however, the fatality rate tends to be lower than 2–3 % in compar-
ison [5,6]. 

The COVID-19 pandemic has resulted in 516 million cases with a 
fatality of 6.2 million people worldwide, as well as posing significant 
problems to healthcare facilities and medical infrastructure [7,8]. 
This situation has sparked widespread alarm, as well as threats and 
financial losses all around the world [7]. Furthermore, because 
COVID-19 is a unique virus, the US Food and Drug Administration 
(FDA) has not approved any specific treatments for it, necessitating 
an urgent search for effective and safe therapeutic agents [8–10]. The 
immune response is vital for controlling and resolving SARS-CoV-2 
infections, but it can also cause cellular damage, which is linked to 
an aggravated immunological response [11,12]. MicroRNAs (miRNAs) 
were discovered to play a key part in the intricate network of in-
teractions between the etiological agent and infected host cells  
[11–13]. A cytokine storm-generated during viral infection, particu-
larly in the case of SARS-CoV-2, has been found to result in an 
overactive immunological response that is significantly harmful to 
host cells [12–14]. Recent data has suggested that the collection of 
miRNAs modulates each of these stages, and these miRNAs can be 
exploited to generate therapeutic targets for the reliable and effi-
cient treatment of patients with COVID-19 [15]. As a result, 

manipulating miRNAs may help to minimize COVID-19's pathogenic 
effects and reduce the deleterious consequences of SARS-CoV-2 in-
fection [9], such as by controlling or inhibiting the generation of 
cytokines and the chemokines. Among several nucleic acid-based 
therapeutic approaches, miRNAs have been postulated as one of the 
promising therapeutic strategies to combat COVID-19 [15,16]. 

MicroRNAs (miRNA) are non-coding RNAs, small molecules with 
nucleotides length of around 17–25 [17]. miRNAs at most are pro-
duced by transcription from DNA template to produce primary 
miRNAs and subsequently go under process to produce precursor 
miRNAs, and mature miRNAs produce precursor miRNAs and mature 
miRNAs. Mainly, miRNAs anneal to the 3′ UTR of target messenger 
RNAs (mRNA) [18] and are significant regulators of the gene ex-
pression process at the post-transcriptional level. miRNAs play a 
decisive function in different biological phenomena, including cell 
propagation, differentiation, growth, and apoptosis [19]. Never-
theless, it has been revealed that miRNAs anneal to additional po-
sitions on the mRNA, comprising the 5′ UTR, gene promoters, and 
coding sequence [20]. Additionally, miRNAs have been reported to 
trigger gene expression in some circumstances [21]. Recently re-
searchers have proposed that miRNAs play a crucial role in con-
trolling the transcription and translation rate through moving 
between various subcellular compartments [22]. Lee and his col-
leagues in 1993, discovered miRNAs for the first time. They have 
found that they have a role in the down-regulation of an essential 
protein called LIN-14, responsible for developing the Caenorhabditis 
elegans nematode larvae from the L1 stage to the L2 stage [23]. The 
miRNA biogenesis is an active process that consists of many steps 
that lastly lead to the production of mature miRNAs [24]. Due to the 
complexity of the miRNA’s transcription, maturation, and func-
tioning, any disruption in these processes can interrupt the miRNA 
synthesis pathway and biological activities, which may severely 
decrease or increase miRNA production in a particular tissue. The 
perturbations in the miRNA’s synthetic pathway and their biological 
activities can lead to a poor prognosis of the diseases, especially in 
the case of SARS-CoV-2 infection [25,26]. 

Numerous studies have found that miRNAs play a significant role 
in the interaction of viruses and host cells. Despite the fact that the 
role of host miRNAs in SARS-CoV-2 infection has been predicted, 
experimental data are still lacking [26]. Furthermore, clinical trials 
have yet to demonstrate that antiviral miRNAs can be used to 
modulate the host immune response to SARS-CoV-2 infection. The 
genomic difference that, as a result, controls the host miRNA target 
sites and viral miRNAs might explain the difference between SARS- 
CoV and various isolated SARS-CoV-2 in terms of pathogenesis and 
infectivity [27]. Therefore, seeking new biological strategies for 
treating viral diseases is highly recommended. It is essential to 
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notice that the previous along with recent shreds of the data imply 
that miRNAs can play important functions in modulating the im-
mune system toward respiratory viruses, such as Human cor-
onaviruses (HCoVs) that includes SARS-CoV-1, MERS, SARS-CoV-2, 
and other types of HCoVs, human metapneumovirus (hMPV), human 
rhinovirus (hRV), IV, and RSV. Also, changes in the expression of 
miRNAs in epithelial cells may participate in the pathogenesis of 
both severe and chronic respiratory infections [9,28]. Although un-
derappreciated, miRNAs expressed in human lung cells may also be 
an important factor in determining COVID-19's severity [29]. Hence, 
modulation of miRNAs might mitigate COVID-19 pathological ne-
gative effects and decrease host damage. 

In addition, the role of miRNAs in the infectivity of coronaviruses 
has not been examined in-vivo studies [30]. Furthermore, it has been 
demonstrated that high-dose single miRNA administration is re-
quired to obtain the best therapeutic efficiency and reliability, but 
the administration of the high dose of single-miRNA can have ne-
gative consequences. As a result, a cocktail of miRNAs may have 
fewer off-target effects and be more effective than monotherapy  
[31,32]. The production of miRNAs and their significance in the 
control of the host immune response are the subjects of this review. 
The clinical application of miRNAs, as well as the possible threats 
connected with their use, is also highlighted in this review. 

Genomic architecture of SARS-CoV-2 

SARS-CoV-2 is an enveloped, positive-sense, single-stranded RNA  
[33], and its genetic material is the largest of all RNA viruses [34]. 
SARS-CoV-2 genome size is around 30 kb and is translated into a 
total of 29 proteins of functional and viral structural proteins. Over 
two-thirds of the genome of SARS-CoV-2 is composed of orf1ab at 
the 5' end of the sequence, which encodes orf1ab polyproteins. In 
contrast, the rest of the genome contains the structural protein en-
coded genes which are spike protein (S), an envelope protein (E), 
membrane protein (M), and nucleocapsid protein (N) at the down-
stream of the viral RNA genome. Furthermore, the genome of SARS- 
CoV-2 has six more genes that include "ORF3a, ORF6, ORF7a, ORF7b, 
and ORF8 genes" that code for six additional proteins [35,36]. The 
structural and genomic organization of SARS-CoV-2 has been de-
monstrated in Fig. 1. 

Biogenesis of miRNAs 

MicroRNAs (miRNAs) are highly conserved, small (about 22 bp 
long), non-coding single-stranded ribonucleic acids (RNAs) that 
control the expression of complementary messenger RNAs (mRNAs). 
They repress the translation of target mRNA by binding to the 3' ends 
in the untranslated regions (UTRs) or to a specific region in open 
reading frames (ORFs) of mRNA transcription [34]. In humans and 
other eukaryotic species, miRNA biogenesis occurs in two stages, 
with nuclear and cytoplasmic cleavage events [38,39]. 

Transcription of miRNA in the nucleus 

The biogenesis mechanism of miRNA starts in the nucleus 
through the transcription from genes encoding for miRNA through 
RNA polymerase II, or RNA polymerase III, leading to the formation 
of a primary transcript that encodes miRNA called pri-miRNAs of a 
hairpin structure of about 1000 nucleotides (nt) long [37]. This stage 
is negatively or positively controlled through RNA polymerase II- 
associated transcription factors, including ZEB1, ZEB2, MYC, and p53, 
as well as epigenetic modulators like the DNA methylation and 
modification of histones [40]. RNA pol II is considered to be ac-
countable for most of miRNA’s transcription between two RNA pol 
enzymes, RNA pol II and RNA pol III (Fig. 2). The size of pri-miRNA, 
which is usually more than 1 kb lengthy than the pol III transcripts, 

demonstrates the priority for RNA pol II. In addition, pri- miRNA 
contains uridine residue sequences that stop pol III transcriptions  
[39]. These snippets of information bolster the idea that RNA pol II is 
involved in the transcription of most of the pri-miRNAs. Never-
theless, it is important to note that RNA pol III is involved in the 
transcription of certain miRNAs, such as miR-142 [41]. In addition to 
the aforementioned characteristics, transcriptional start locations 
are positioned far from the genes, and promoters comprise RNA pol 
II-specific features [39–42]. The transcriptional control of miRNAs 
can sometimes be described as a feedback loop in which positive or 
negative regulations of miRNA can decrease or amplify their own 
transcription [39–43]. Around half of the recognized miRNAs are 
intragenic and commonly transcribed from introns (non-protein 
coding genes). In contrast, transcription from exons (protein-coding 
genes) is moderately limited. These transcription processes are in-
dependent of their host genes and are controlled through their own 
specific promoters [44]. Sometimes, miRNAs transcription comes as 
a single extended sequence known as miRNAs clusters. This can have 
a related target position; hence they are considered as family 
miRNAs [45]. 

Genesis of pre-miRNA in the nucleus 

Following the miRNA transcription genes through RNA poly-
merase II in the nucleus, the primary miRNA undergoes several 
maturation cycles. The first-ever step of primary miRNA processing 
occurs in the nucleus, and the Ribonuclease III (RNase III) Drosha, 
alongside the help of DGCR8 (DiGeorge syndrome critical region 
gene 8) co-factor, produces the Microprocessor complex that cleaves 
the primary miRNA loop end, resulting in the formation of precursor 
miRNA, named pre-miRNAs that has a hairpin structure of about 70 
nucleotides (nt) long [46] (Fig. 2). Furthermore, pri-miRNA trans-
forms into an operational miRNA with a flexible terminal loop of 
approximately ten bp and 5′ phosphate, as well as two nt (nucleo-
tide) 3′ ssRNA (single-stranded RNA) overhangs. Drosha, an RNase III 
endonuclease, and the dsRNA (double-stranded RNA)-binding pro-
tein DGCR8, also known as pasha, are involved [38–47]. The pre- 
miRNA features a staggered cut with a 5′ phosphate and 3′ overhang 
of 2 nt [47]. 

Maturation of pri-miRNAs into the mature miRNAs in the cytoplasm 

The produced precursor miRNAs are transported into the cyto-
plasm through Exportin-5 to go through the subsequent stages of 
maturation [48]. Here, precursor miRNAs are cleaved again by an 
enzyme called Dicer, a cytoplasmic RNase endonuclease, to form 
mature duplex miRNAs of around 22 nt long [49,50]. Furthermore, 
the produced miRNAs duplex, along with the protein named argo-
naute (AGO), further produces the miRNA-induced silencing com-
plex (miRISC) [50]. The miRNA biosynthesis reveals the processes 
that control the expression of its target gene shown in Fig. 2 (Fig. 2). 
Regulation of genes and intercellular signaling is the main significant 
function played by miRNAs [18]. In terms of gene regulations, the 
formed miRISC can function through two pathways called canonical 
and non-canonical pathways [51]. In the canonical pathway, miRISC 
anneals to the 3' UTR of the targeted mRNA, resulting in the trans-
lation termination process when both strands are exactly com-
plementary to each other, or leading to a reduction in both strands 
are exactly complementary to each other or reducing translation 
during limited complementarity between two strands [52]. In con-
trast, complete complementarity is not required by the non-cano-
nical pathway [53]. One miRNA may regulate many mRNAs, but also, 
one mRNA may be regulated by several miRNAs [54]. 

Recent studies have shown miRNAs play pivotal roles in several 
regulatory functions which decide the prognosis of the infection, 
especially in viral infections. Generally, its known that viruses are 
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obligate intracellular pathogens whereby only count on the targeted 
cell for replication and infection [13]. Viruses are known to have the 
capability to upregulate or downregulate key miRNAs of the host to 
gain the ability to evade the host's immune response [55]. Con-
versely, specific miRNAs were discovered to have an antiviral influ-
ence, allowing the immune system to combat the infection or forcing 
the virus into a latency status [56]. Keeping all the above points in 
mind, we summarise how miRNAs are involved in SARS-CoV-2 pa-
thogenesis and infection processes, and the potential functions they 
provide might help find and develop an antiviral therapeutic agent 
for many viral infections that do not have a complete cure in the 
meantime. 

Therapeutic potential of miRNAs against SARS-CoV-2 

Viruses replicate their genetic material by using the host's cel-
lular machinery. During this process, interactions can occur between 
host miRNAs and the viral genome. These interactions can occur via 
three pathways: mRNA blocking, mRNA destabilization, and mRNA 
degradation via protein complexes [57]. In addition to the host 
miRNAs, some viruses can generate their miRNAs [58]. The miRNAs 
of the virus take part in the replication cycle in the infected host cell 
and might result in some alterations in the infected cell [59] (Fig. 3). 
Concerning the role, the host miRNAs are categorized as proviral or 
antiviral depending on the actions during a certain viral infection. 
The interaction between the host and viral miRNAs might allow the 

virus to replicate in the host cell and extend the infection to other 
cells, consequently bringing about proviral roles [60]. Additionally, 
proviral miRNAs can allow a viral infection through antiviral factors 
suppression like interferons (IFNs), letting the virus do an immune 
evasion of the host immune system [61]. 

There are different ways against the SARS-CoV-2 infection: in-
hibiting the viral replication, blocking cellular receptors, and ob-
structing the function of viral proteins [62]. The cellular miRNA 
expression has an important impact on the regulation of viral re-
plication by T lymphocyte involvement and response of defense 
mechanism to viral infections [63]. miRNAs can inhibit the viral 
translation after the attachment of miRNAs to 3' -UTR of the viral 
genome or target the receptors, structural or non-structural proteins 
of SARS-CoV-2 without affecting the expression of human genes  
[64]. Balmeh et al. downloaded the nucleotide sequences of 1872 
miRNAs from the miRBase database. Forty-two miRNAs had the 
highest score, which mitigates the pathogenesis of COVID-19 disease 
via binding to the SARS-CoV-2 genome and inhibiting its post- 
transcriptional expression [65]. Chan et al. reported that mutations 
in SARS-CoV-2 3’-UTR lead to virus escape from the host immune 
system [66]. 

In the case of infection, the non-coding SARS-CoV-2 miRNA may 
interfere with normal cellular homeostasis by upregulating certain 
host mRNA levels generally controlled by the host miRNAs. 
Consequently, by down-regulating specific host miRNAs, the virus 
enhances its replication cycle and attenuates the host's immune 

Fig. 1. Structural organization of SARS-CoV-2 genome and viral induced miRNA.  
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responses [67]. Bioinformatics analysis of the SARS-CoV-2 genome 
reveals potential miRNAs' binding sites in various genome regions, 
e.g., in the critical 5' UTR regions of ACE-2 (angiotensin-converting 
enzyme-2) or TMPRSS2 (transmembrane protease serine 2) [68]. On 
the other hand, viral miRNAs can also affect the expression of host 
mRNAs. They are involved in cell proliferation and survival, stress 
responses, and antiviral responses such as Toll-like receptors (TLRs) 
or cytokines such as type I IFN. 

Upon entry into the host cell, SARS-CoV-2 releases its genomic 
RNA. Consequently, the host antiviral immune responses are atte-
nuated. Alternatively, viral miRNAs can reduce virus replication in 
infected cells, allowing the host cells to survive, go into a latency 
state, and increase viral spread to other people in the population  
[69]. Some viral miRNAs target specific host mRNAs and miRNAs, 

thereby altering gene expression and modulating the pathways as-
sociated with the immune system. At the same time, host cells may 
change their own miRNA expression profile to defend themselves 
against the disease [70]. Therefore, miRNA will provide a practical 
concept to elucidate the infectivity and replication process of the 
current SARS-CoV-2 pandemic. Whereas SARS-CoV closely re-
sembles SARS-CoV-2, many interactions have been established in 
their sign appearances presented by them. However, there are 
marked differences between diseases caused by both viruses [71]. An 
overview of the role of the SARS-CoV-2-miRNA on the host immune 
system activity that has been explored is shown in Table 1. 

A study conducted by Mallick et al. in 2009 assessed the miRNA 
landscape in human bronchoalveolar stem cells (BASCs) was as-
sessed at the time of infection with SARS-CoV, displaying the up- 

Fig. 2. miRNA biogenesis and post-transcriptional regulation of genes.  

Fig. 3. Diagrammatic representation of the role of both cellular and viral miRNAs.  
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regulation of miR-17, miR-214, and miR-574–5p, that results in viral 
replication inhibition, and consequently, evasion of immune re-
sponse before the virus has been successfully transmitted, in addi-
tion to the down-regulation of miR-98 and miR-223 to control the 
BASCs differentiation, proinflammatory cytokine activation and 
suppression of ACE2. It was also observed that S and N proteins in 
BASC down-regulate both miR-98 and miR-223 to influence many 
stages of the maturation process in these cells and enable in-
flammation-related cytokines to reduce the function of the ACE2 
enzyme. Such a mechanism essentially forms the productive trans-
mission and replication of viruses inside BASC, resulting in con-
tinuous degradation of cells of the respiratory tract and 
consequently damaging the repairing ability [72]. In general, this 
study revealed the various ways in which a virus utilizes cellular 
miRNA instruments to its advantage. Hosseini et al. have recently 
identified seven targets for miRNA in the SARS-CoV-2 genomic RNA. 
There were initially ten goals, but three of them were lost because of 
mutations that had been retained. "MiR-574–5p, miR-214, miR-17, 
miR-98, miR-223, and miR-148a" are those host miRNAs that are 
capable of annealing to encoding transcripts of the SARS-CoV-2; 
consequently, resulting in immune system mediation [73]. 

In addition, an in-silico study conducted by Fulzele et al. has 
identified around 873 miRNAs in the host targeting the SARS-CoV-2 
strain, of which around 558 also target genomic genes in the SARS- 
CoV. Further illustrating that the miRNAs that have the top score of 
targeting the sequence are thus commonly expected to have definite 
target positions on the SARS-CoV-2 genomic RNA were "miR-15a-5p, 
miR-15b-5p, miR-30b-5p, miR-409–3p, miR-505–3p, and miR-548d- 
3p", according to their report [74]. These cellular miRNAs indicate 
potential antiviral activity on both SARS-CoV and SARS-CoV-2 
viruses. Therefore, testing these miRNA in-vitro and in-vivo animal 
models would be essential for possible usage as a target as a therapy. 
Importantly, a recent study found that the number of circulating 
miRNAs from several tissues, including numerous established car-
diometabolic indicators, increases with COVID-19 severity. MyomiR 
miR-133a and liver-derived miR-122 have been linked to 28-day 
mortality. MiR-133a is associated with inflammation-induced 

myocyte damage, whereas miR-122 is associated with the hepatic 
acute phase response. It has been suggested that future research is 
needed to determine whether miR-133a or miR-122 measurements 
have the potential to help in prognosis estimation by assessing organ 
damage and inflammation resolution, which might affect treatment 
decisions. As a result, it is intriguing to examine whether miRNA 
analysis during SARS-CoV-2 infection might be used as a diagnostic 
biomarker to predict illness severity. This can be used to offer the 
host with tailored therapy [75]. 

In coronavirus infection, cocktails of several miRNAs mimicking 
via the intranasal route would be beneficial. These human miRNAs 
efficacy against coronaviruses may help prevent any potential out-
breaks. In an earlier analysis, cellular miRNAs-181 of the host bind to 
the ORF-4 region of the porcine reproductive and respiratory syn-
drome virus (PRRSV) viral genome to prevent replication of the 
virus. Furthermore, Guo et al. administered miR-181 mimics through 
intranasal inhalation to inhibit replication of the PRRSV in an ex-
perimental porcine model [76]. One more study used miR-130 mimic 
administration through intranasal inoculation to reduce the lethal 
effect of PRRSV on piglets [77]. Likewise, the intranasal inoculation 
of five miRNA mimics is chemically modified to protect against 
H1N1 replication in mice [78]. The role of cellular miRNA has been 
described in Table 2. 

The binding position for miRNA predicted through the 
Computational approaches should be considered cautiously, as 
findings frequently were unsuccessful for experimental verifications. 
Such an increased false-positive number of the predicted site for the 
miRNA target has often been mentioned. However, specific methods, 
like multi-targeting, incorporation of current experimental data, or 
the usage of algorithms considered for refining the effects of miRNA 
target hunts [79], may be used to narrow it down. Conditions unique 
to the research question may also be helpful to consider ("e.g., ex-
cluding potential targets of all miRNAs that are not expressed in cells 
prone to SARS-CoV-2 infection". 

Based on the Hosseini et al. studies [73] and Fulzele et al., such 
steps have been taken to refine the findings. Nevertheless, their re-
sults remain encouraging and must be considered for additional 

Table 1 
An overview of the role of the SARS-CoV-2-miRNA on the host immune system activity that has been explored.      

SARS-CoV-2-miRNA Related process  Reference  

miR147–3p enhanced the expression of TMPRSS2 5’ UTR [81] 
MR385–3p 

MD2–5p, 
MR147–3p 

Regulate T-cell activation and survival 
reducing the host cell apoptotic, evasion immune system 

5' UTR 
5’ UTR 
5’ UTR 

[9] 

MD241–3 P 
MD3 − 3 P 

Pulmonary vasculature 
Antiviral innate immunity, an inducer of apoptosis pathway during viral 
infection 

5' UTR 
5' UTR 

[82] 

mir-D8–5p, 
mir-R1–5p, 
miR-D6–3p, 
miR-D10–5p, 
miR-D5–3p, 
miR-D11–5p, 
miR-D14–3p, 
miR-D2–3p, 
miR-R3–3p, 
miR-R5–5p, 
miR-R6, 
miR-R4, 
miR-R2, 
miR-D13, 
miR-D12, 
miR-D9, 
miR-D7, 
miR-D4, 
miR-D3, 
miR-D1 

enhance viral replication, host cell survival and host immune evasion 
Evasion immune system 

ORF1ab- nsp6, 
ORF1ab- nsp3 
ORF1ab-nsp4 
ORF1ab- endoRNase 
ORF1ab- nsp3 
ORF1ab-ribose methyltransferase 
ORF7a + ORF7b 
ORF1ab- nsp2 
ORF1ab-RdRP 
gene M+ ORF6 
gene N (structural nucleocapsid phosphoprotein)  
+ ORF10 
ORF3a 
ORF1ab- nsp3 
gene M (structural membrane glycoprotein) 
gene M (structural membrane glycoprotein) 
ORF1ab- exonuclease 
ORF1ab- nsp6 
ORF1ab- nsp3 
ORF1ab- nsp3 
ORF1ab- nsp2 

[83] 
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Table 2 
An overview of the role of the cellular-miRNA on the SARS-CoV-2 activity has been explored.     

Cellular-miRNA Related process Reference  

miR-17, 
miR-214, 
miR-574–5p 

Viral replication inhibition, evasion of immune response [72] 

miR-98, 
miR-223 

bronchoalveolar stem cells differentiation, proinflammatory cytokine activation, suppression of ACE2, immune system mediation  

miR-98, 
miR-223 
miR-148a 

bronchoalveolar stem cells differentiation, proinflammatory cytokine activation, suppression of ACE2, immune system mediation 
immune system mediation 

[73] 

miR-15a-5p, 
miR-15b-5p, 
miR-30b-5p, 
miR-409–3p, 
miR-505–3p, 
miR-548d-3p 

antiviral activity [74] 

miR-181 inhibit replication [76] 
miR-130 reduce the lethal effect of PRRSV [77] 
miR-200, 

miR- 429, 
miR-200b, 
miR-200c 

suppression in ACE2 expression, lowering the ACE2-facilitated infection [84] 

miR-155, 
miR-9 

evasion of immune response [85] 

miR-6864–5p, 
miR-5197–3p, 
miR-4778–3p 
miR-530b-5p 
miR-32 

antiviral activity 
Inhibit viral entry 

[86] 

miRNA-3154, 
miRNA-7114–5p, 
miRNA-5197–3p, 
miR-5197–3p, 
miR-17–5p, 
miR-20b-5p 
miR-21–3p, 
miR-195–5p, 
miR-16–5p, 
miR-3065–5p, 
miR-424–5p, 
miR-421, 
miR-1307–3p 
miR-124–3p 
miR-29b-3p, 
miR-29b-3p, 
miR-338–3p, 
miR-4661–3p, 
miR-4761–5p 
miR-4793–5p, 
miR-8066 
miR-190a-5p 

mitigate the pathogenesis, inhibit its post-transcriptional expression 
Viral replication inhibition 
block the assembly and production of viral particles 
evasion of immune response 

[87] 

miR-18 suppression in ACE2 expression [88] 
miR-146a Regulate Toll-like receptors (TLRs) downstream signalling, regulate innate immune response [89] 
miR-4288, 

miR-6838–5p, 
miR-497–5p, 
miR-510–3p, 
miR-624–5p, 

block viral RNA replication [90] 

miR-31–5p, 
miR-423–5p, 
miR-23a-3p 

Viral replication inhibition [91] 

miR-26a-5p, 
miR-29b-3p, 
miR-34a-5p 

antiviral activity [92] 

miR-6501–5p, 
miR-618, 
miR-183–5p, 
miR-627–5p, 
miR-144–3p 

regulate the immune responses, Viral replication inhibition [93] 

miR-1–3p, 
miR-199a-3p, 
miR-20a-5p 

T-cell differentiation and activation, Viral replication inhibition, evasion of the immune system [94] 

miR-4661–3p antiviral activity [81,87] 
miR126–3p regulating inflammation [95] 
miR-198, 

miR-622 
Antiviral activity inhibit viral replication [27] 
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studies on pathogenesis and possible miRNA therapy for Covid-19  
[74]. Host and viral miRNA's biosynthesis and the role of miRNA in 
the host during COVID-19 infection has been illustrated (Fig. 3). 

The suppressive of the SARS-CoV-2-encode miRNAs on these 
genes suggested that the possible role of the SARS-CoV-2-encode 
miRNAs on these genes suggested their potential role in reducing the 
host cell apoptotic to subvert host defense. Therefore, we also 
searched the targets of SARS-CoV-2 encoded miRNA on the 5′ UTR of 
human genes. The 11 virus miRNAs were identified to bind to the 5'- 
UTR of 13 target genes, including the binding between MR385–3p 
and TGFBR3 (Transforming Growth Factor Beta Receptor 3), a widely 
recognized gene expressed in cells of both the innate and adaptive 
immune system. It is reported to play a role in promoting Th1 dif-
ferentiation and regulation of regulatory T-cell activation and sur-
vival. MR147–3p targets the enhancer of TMPRSS2 in the gut. Several 
studies have implicated the gastrointestinal infection of SARS-CoV-2  
[9]. Fig. 4. 

Furthermore, in recent research, the plasma miRNAs and cyto-
kines profiles of COVID-19 and other community-acquired pneu-
monia (CAP) were compared. A preliminary screening and 
subsequent validation tests in a separate cohort of patients identi-
fied a pattern of 15 dysfunctional or dysregulated miRNAs in COVID- 
19 and CAP patients. Furthermore, multivariate analysis revealed 
that the conjunction of four miRNAs, namely, miR-106b-5p, miR- 
221–3p, miR-25–3p, and miR-30a-5p, substantially differentiated 
between the two disorders. The search for miRNA targets, along with 
plasma protein measurements, revealed a distinct cytokine sig-
nature between COVID-19 and CAP, which comprised EGFR, CXCL12, 
and IL-10. There were also significant changes in plasma levels of 
CXCL12, IL-17, TIMP-2, and IL-21R between mild and severe COVID- 
19 individuals. These findings shed light on the etiopathological 
pathways that characterize COVID-19. It is worth noting that the 
differential expression of suggestive miRNAs, in conjunction with 

specific cytokines, can determine the severity of COVID-19 illness  
[80]. As a result, miRNAs can not only be utilized as therapeutic 
regimens but also the used as reliable diagnostic indicators. 

miRNAs and ACE2 receptor expression in SARS-CoV-2 infection 

ACE2 is known to aid in maintaining blood pressure and the 
balance of electrolytes in the body. Similarly, it also lowers the 
amount of circulating Angiotensin II through suppression of the 
renin-angiotensin-aldosterone system with the activity of anti-hy-
pertension. Lately, ACE2 has been identified as a target receptor for 
the spike protein of SARS-CoV-2 and shows essential roles 
throughout the COVID-19 infection [96]. Notably, many other med-
ical conditions, like cardiovascular system diseases, diabetes, and 
asthma, also tend to affect COVID-19 patients with severe symptoms  
[84]. It is important to remember that ACE2 is expressed in cardio-
myocytes, and the expression level is increased in hosts suffering 
from heart illnesses. Therefore, the level of SARS-CoV-2 infection 
may become the level of SARS-CoV-2 infection may become further 
prominent through ACE2 in patients with comorbidities, which se-
quentially might lead to further myocardial harm. Some studies have 
stated that miRNAs might potentially control ACE2 expression in 
many types of cells and under disease circumstances. However, there 
is still a scarcity of clinical trials to provide a vivid image of miRNAs’ 
potential to develop effective and reliable therapeutic regimens 
against COVID-19 [26–97]. ACE2-associated miRNAs, in particular, 
should be carefully explored since ACE2 is the essential factor that 
requires more focus owing to its association with the viral agent, 
which can be SARS-CoV or SARS-CoV-2 [98,99]. As a result, it has 
been suggested that the clinical manifestations of certain ACE2-as-
sociated miRNAs, such as miR-18, miR-29, and miR-125b, be thor-
oughly investigated in order to find novel miRNA-based therapies for 
COVID-19; specifically, it is presumed that the use of anti-miR-18 

Fig. 4. The host and viral miRNA's biosynthesis and the role of miRNA in the host due to COVID-19 infection.  
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and anti-miR-125b may be beneficial in treating COVID-19-related 
nephropathy [88,100]. 

The miR-200 is considered a family of several miRNAs that also 
include miR- 429, miR-200b, and miR-200c. These are well-re-
cognized miRNA families that are highly studied in anti-cancer re-
search [30]. Likewise, it has been revealed that the miR- 200c level is 
up-regulated in cardiovascular diseases [100]. In a study performed 
by Lu et al. to investigate the miR- 200c Role in SARS-CoV-2, it was 
found that increased expression of miR- 200c induced suppression 
in ACE2 expression in both human and rat's cardiomyocytes. 
Moreover, has suggested more investigation to study the possible 
miR-200c role in lowering the ACE2-facilitated infection of human- 
induced pluripotent stem cell-derived cardiomyocytes by SARS-CoV- 
2 or SARS-CoV-2 spike pseudotype viruses are acceptable. Never-
theless, bearing in mind that the association of miR-200c and car-
diovascular diseases, together with the up-regulation of miR-200c, 
must be cautiously examined [30]. 

In a recent study, researchers looked at the blood levels of soluble 
ACE2 (sACE2) and four microRNAs (miR-421, miR-3909, miR-212–5p, 
and miR-4677–3p) in COVID-19 patients and compared them to 
clinical and pathological variables [101]. Irrespective of gender, 
diabetes condition, or obesity, sACE2 levels were elevated in COVID- 
19 individuals. Additionally, the four miRNAs studied were elevated 
in COVID-19 patients and were found to be positively associated. 
Likewise, sACE2 was strongly related to miR-421, miR-3909, and 
miR-4677–3p, indicating a significant relationship between these 
markers. MiR-212–5p was shown to be increased exclusively in 
moderately infected patients. Additionally, it has been found as 
unique in the case of male and non-obese COVID-19 patients. MiR- 
212–5p was shown to be connected with D-dimer, which has an 
important prognostic marker in severely infected COVID-19 patients. 
Whereas sACE2 was found to be positively correlated with coagu-
lation tests such as aPTT and platelets, showing their usefulness as 
coagulopathy indicators in patients with COVID-19. In diabetic 
COVID-19 patients, there was also a significant connection between 
sACE2 and C-reactive protein (CRP), suggesting that this marker may 
have a role in their inflammatory condition. Interestingly, laboratory 
tests of COVID-19 patients revealed that sACE2 and its regulatory 
miRNAs were elevated and associated, demonstrating their clinical 
significance as biomarkers in COVID-19 disease [101]. 

Furthermore, Sodagar et al. showed that different kinds of 
miRNAs could affect the progression of various lung illnesses by 
targeting distinct pathways and genes. Increased levels of miR-200c 
are expected to contribute to reduced ACE2 production, which might 
increase the risk of infection, inflammation, and coronavirus illness 
sequelae [102]. 

Besides ACE2 receptors, SARS-CoV-1 entry necessitates cellular 
proteases to bind viral Spike protein, which leads to cleavage of 
Spike protein at the S1/S2 position, and the S2' position permits 
fusion of both viral and cellular membranes; this is process is mo-
tivated by the cleaved S2 subunit of the spike protein. The Spike 
protein of SARS-CoV binds to ACE2 as the entry receptor and hires 
the transmembrane protease serine 2 (TMPRSS2) for S protein 
priming [103]. Similarly, SARS-CoV-2 employs the TMPRSS2 for 
Spike protein priming and virus-host cell membrane fusion followed 
by cell entry. This is suggested as another target for antiviral de-
velopment therapeutics [104]. Matarese et al. researched TMPRSS2; 
they found that the expression of TMPRSS2 in human endothelial 
cells is regulated and lowered through miR-98 by attaching to 5UTR 
TMPRSS2 mRNA [105]. 

Furthermore, because TMPRSS2 is another critical element of 
SARS-CoV-2 viral entry, inhibiting it could help to alleviate COVID-19  
[96]. In human endothelial cells separated from the lung and the 
umbilical vein, miR-98–5p controls the expression of TMPRSS2, in-
dicating that it might be used in miRNA-based COVID-19 therapies  
[105]. Some other report predicts that hsa-miR-32, hsa-miR-98, and 

hsa-miR-214 can suppress the synthesis of TMPRSS2, which might 
open the way for further research into the potential therapeutic 
effects of hsa-miR-32, hsa-miR-98, and hsa-miR-214 against SARS- 
CoV-2 [106]. Interestingly, hsa-miR-32 has been found study; hsa- 
mir-32 was shown to strongly suppress the expression of TMPRSS2 
in Caco-2 cells, indicating that future studies must concentrate on 
hsa-miR-32 [106,107]. 

However, it would be worthwhile to investigate if miRNAs may 
limit the synthesis of structural and non-structural proteins involved 
in critical phases of the SARS-CoV-2 life cycle, including spike pro-
tein and non-structural proteins such as Nsp1, Nsp4, and Nsp12, and 
envelope (E) proteins [108]. Earlier studies on the SARS-CoV found 
that several miRNAs such as miR-17 * , miR-574–5p, and miR-214 
may target various proteins of the viral machinery, including S, E, 
and membrane (M) proteins. Additionally, ORF1a has been found to 
be associated with these miRNAs [72]. Interestingly as we are all 
aware that SARS-CoV and SARS-CoV-2 have a significant genetic si-
milarity [109]; hence antiviral effects of such miRNAs, including 
miR-574–5p and miR-214, can be exploited to alleviate the COVID-19 
symptoms [99]. 

Potential risks and side effects 

Anti-inflammatory and antiviral miRNAs may be more effective 
when used together than when used alone. Meanwhile, targeting the 
viral genome, critical proteins, or miRNAs as an antiviral method for 
developing effective therapeutics against COVID-19 could be a pro-
mising alternative [9,110]. However, a single miRNA can affect many 
target mRNAs; excessive doses of a single miRNA can have sub-
stantial off-target consequences under in vivo conditions. As a result, 
employing a system biology approach for combinatorial therapeutics 
may involve a smaller dose of a cocktail of therapeutically critical 
microRNAs to eliminate SARS-CoV-2 without any side effects [9]. 

The key problems of miRNA-based therapy are targeted delivery, 
instability, and toxicity [9,111] ; hence adequate carrier vehicles are 
required for successful and effective delivery of miRNAs to the sites 
of infection. In this context, investigations have demonstrated that 
mesenchymal stem cells (MSCs) have a preference for lesion or in-
flamed areas [9,112,113], suggesting that they could be employed to 
reduce the cytokine storm [9] and hence may reduce the in-
flammation in the lungs caused by SARS-CoV-2. Cytokine storm is an 
important aspect of the SARS-CoV-2 infection and has been sug-
gested as a leading cause of death in patients with COVID-19. So, 
mitigating the deleterious consequences of exaggerated secretion of 
cytokines by miRNA therapeutics while bypassing the side effects of 
this approach can be a significantly efficient therapeutic regimen to 
treat COVID-19. 

Conclusions and future prospective 

Several cellular processes, including infection with RNA viruses, 
are regulated by miRNAs. In order to create a proviral environment 
that improves replication of the virus and propagation inside the 
host cell, RNA viruses could control the level of certain miRNAs in-
side the cell. Furthermore, changes in miRNA levels following viral 
replication are an essential component of the host response to in-
fection, sculpting both the activation stages and the antiviral re-
sponse resolution processes. 

Many studies have revealed that miRNAs are involved in diverse 
and complex processes during the infection process of SARS-CoV-2. 
The virus modifies the infected host's cellular miRNAs during in-
fection, which leads to increased viral replication and enhanced 
assembly of viral particles. On the other hand, cellular Non-coding 
RNAs, including miRNAs, act as an essential antiviral immunity 
component by controlling the expression of ACE2 receptors, hence 
reducing the viral entry into the host cell. In addition, the interaction 
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of cellular miRNAs with RISC proteins can cut down and silence the 
viral RNA. The degradation of viral RNA, along with reducing the 
expression of ACE2 receptors, can substantially reduce the viral load. 
Genetic alterations in the miRNA binding sites of the viral genome 
can increase pathogenicity by allowing the virus to avoid RNA de-
gradation and silencing by cellular miRNAs. One of the hopeful 
methods of treating the SARS-CoV-2 infected host using non-coding 
RNAs (ncRNAs) is the induction of small interfering RNA (siRNA) 
-mediated through passing synthetic complementary siRNAs to viral 
RNA sequences into infected host cells. 

Further refinement of this principle requires elaborative studies, 
which can help in the generation of potential siRNA from ncRNAs 
that can target the viral genomic RNA. Likewise, antiviral therapies 
that use miRNAs, such as vectors in vaccinations or gene therapy, 
have been proposed. Furthermore, the miRNAs involved in the reg-
ulation of ACE2 receptors require more attention and extensive in-
vestigations as this strategy can be employed as an effective 
therapeutic regimen against COVID-19. 
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