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The Foreign body response (FBR) is a major unresolved challenge that compromises
medical implant integration and function by inflammation and fibrotic encapsulation. Mice
implanted with polymeric scaffolds coupled to intravital non-linear multiphoton microscopy
acquisition enable multiparametric, longitudinal investigation of the FBR evolution and
interference strategies. However, follow-up analyses based on visual localization and
manual segmentation are extremely time-consuming, subject to human error, and do not
allow for automated parameter extraction. We developed an integrated computational
pipeline based on an innovative and versatile variant of the U-Net neural network to
segment and quantify cellular and extracellular structures of interest, which is maintained
across different objectives without impairing accuracy. This software for automatically
detecting the elements of the FBR shows promise to unravel the complexity of this
pathophysiological process.
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1 INTRODUCTION

The penetration of a foreign material inside a host organism activates a cascade of events, defined as
foreign body response (FBR), aimed to minimize its negative impact (Sheikh et al., 2015; Veiseh and
Vegas, 2019). This stepwise process initiates with vascular damage and absorption of plasma proteins to
the object, followed by an acute inflammation led by neutrophils and a chronic phase sustained by
macrophages and foreign body giant cells (Anderson et al., 2008; Dondossola et al., 2016; Witherel
et al., 2018; Veiseh and Vegas, 2019; Gurevich et al., 2020; Dondossola and Friedl, 2022). In parallel,
resident stromal cells, such as fibroblasts, are recruited and activated, leading to the formation of a
fibrotic capsule that shields the host from thematerial (Veiseh and Vegas, 2019). Designed by nature to
protect healthy tissues from foreign assault, the FBR has more recently emerged as a clinical problem
for the functionality of implanted medical devices because inflammation and fibrosis can cause their
degradation and create a physical barrier that compromises performance. As a result, sensors,
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pacemakers, prostheses, and scaffolds used in tissue engineering
and regenerative medicine can experience malfunction and failure
(Prakasam et al., 2017). Given the impact of the FBR on implanted
medical devices, several strategies have been proposed to reduce the
resulting inflammatory and fibrotic response, including
modification of material-intrinsic properties (e.g., size, shape,
texture, and functionalization) (Zhang et al., 2013; Veiseh et al.,
2015; Vegas et al., 2016; Shayan et al., 2018; Zhang et al., 2021) and
pharmacological interference (Galeska et al., 2005; Klueh et al.,
2005; Morais et al., 2010; Kastellorizios et al., 2015; Moore
et al., 2016; Morris et al., 2017). Despite improving outcome,
none of these approaches have resulted in complete and long-
lasting control of FBR (Veiseh and Vegas, 2019). In order to
better understand the mechanisms underlying the FBR and
further identify strategies that effectively reduce this
phenomenon, relevant preclinical models need to be
developed and outcome properly monitored, analyzed, and
quantified.

Experimental approaches probing the FBR in small animals are
mostly based on ex vivo endpoint analysis (e.g.,
immunohistochemistry). Although informative, this strategy
lacks sensitivity and time resolution to characterize dynamic
disease progression. Intravital multiphoton microscopy recently
emerged as a powerful tool to complement ex vivo analyses by
providing mechanistic, three-dimensional (3D), and time-resolved
multiparametric insights about implant integration and failure
(Dondossola and Friedl, 2021). This application generates high-
content biological images, which are mostly analyzed manually,
including individual cell counting by eye inspection, manual
measurement of distances, and qualitative identification of
cellular subtypes, which imply several disadvantages. Such
manual procedures, indeed, are extremely time-consuming (up
to several days or weeks for specific analysis), display low
accuracy when performed serially for a huge number of images,
and are operator-dependent (non-univocal), leading to a lack of
standardization. For these reasons, the need for an automated
approach is evident. Since the missing step in the workflow
implies to emulate choices of human experts, who had learned
how to distinguish structures by seeing examples and not following

detailed low-level rules, deep learning was identified as a solution to
perform semantic segmentation.

Deep learning has been widely adopted for semantic
segmentation in the biomedical domain. U-Net is a fully
convolutional model used in microscopy imaging
(Ronneberger et al., 2015), which requires a relatively limited
amount of training samples and allows reconstructing high-
resolution segmentation masks from low-resolution encoded
representations. This architecture experienced widespread
adoption for biomedical semantic segmentation tasks, usually
with small deviation from the original design (Al-Kofahi et al.,
2018; He et al., 2021; Kose et al., 2021). As an example, ex vivo
cellular nucleus segmentation has been performed by combining
three U-Net–like branches with custom layer blocks (Zhao et al.,
2020). Similarly, dense layer blocks and dense concatenation were
employed to increase the architecture depth and combine features
for fine detail reconstruction and localization in in vivo
multiphoton microscopy images (Cai et al., 2020).

In this study, we develop an integrated computational pipeline
for automated segmentation and analysis of the cellular and
extracellular components of the FBR based on an innovative
and versatile variant of the U-Net neural network. Our work
implements automated tools that allow members of the research
community (e.g., biologists, materials scientists, biomedical
engineers, and implant pathologists) to investigate and
quantify the progression of the FBR more efficiently than
manual analysis. We also demonstrate how versatile a variant
of the base U-Net architecture is across different objectives, with
no hyperparameter tuning and in data-critical (30–50 samples)
microscopy image segmentation tasks, addressing recent
concerns in the literature. Finally, we define novel
convolutional kernels and multiclass Dice loss.

2 MATERIALS AND METHODS

2.1 Mouse Model Generation
Animal studies were approved by the Institutional Animal Care
and Use Committee of the University of Texas, MD Anderson
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Cancer Center, which is accredited by the Association for
Assessment and Accreditation of Laboratory Animal Care.
Mice older than 8 weeks male or female were housed with a
maximum of five animals per cage in a state-of-the-art, air-
conditioned, and specific pathogen–free animal facility and all
procedures were performed in accordance with the NIH Policy
on Humane Care and Use of Laboratory Animals. C57BL/6-Tg
(UBC-GFP) 30Scha/J mice, which ubiquitously express green
fluorescent protein (GFP), were from Jackson Lab. C57BL/6-
Tg(Acta2-DsRed)1Rkl/J mice, which express DsRed red
fluorescent protein (RFP) under the alpha smooth muscle
actin, αSMA, promoter, were a gift from Dr. Raghu Kalluri,
The University of Texas MD Anderson Cancer Center (LeBleu
et al., 2013). To establish a mouse model that displays GFP
immune cells and RFP-activated myofibroblasts, bone marrow
transplantation was performed, as previously described
(Dondossola et al., 2013). Briefly, lethally irradiated (5.5 Gy,
twice, with 3 h of recovery time in between) αSMA-RFP mice
were infused with bone marrow cells derived from GFP donors
(the content of 1 tibia + 1 femur/lethally irradiated mouse),
generating an αSMA-RFP/GFP model. Bone marrow
engraftment was monitored 1 month posttransplant by ex
vivo MPM analysis. Mouse tibiae were fixed in PFA 4% for
1 day, decalcified in EDTA 0.5 M, pH 7.5, for 4 days, and sliced
(300 µm thick) using a vibratome. Circulating levels of white
and red blood cells, platelets, hematocrit, and hemoglobin in
both bone-transplanted and non-transplanted control mice
were analyzed. Prior to blood collection, the mice were
anesthetized using 3–4% isoflurane. When the mice were
completely unconscious, a heparinized capillary tube was
inserted into the medial canthus of the eye to puncture the
tissue and enter in the sinus. Once the required volume of blood
was collected (∼100 μL in a tube with 10 μL EDTA), the
capillary tube was removed, and bleeding was stopped by
applying gentle pressure with a gauze sponge. The blood
collected was then diluted 1:10 in PBS and analyzed for

leukocyte counts and blood parameters on an ABX Micros
60 hematology analyzer.

2.2 Material Generation and Implantation
To fabricate scaffolds, polycaprolactone (PCL; 43 kDa,
Polysciences; Warrington, PA) was melted at 85°C and printed
at a collector velocity of 40 mm s−1, 5.0 kV, 1.0 bar, at a distance
of 10 mm using a 3DDiscovery Evolution printer, RegenHU,
Switzerland, located in a laminar flow hood. Scaffolds, designed
using computer-aided design software BioCAD (Regenhu,
Switzerland), had a filament width of 35 μm and 90% porosity.
They were stored in 70% ethanol until their application.

The scaffolds were implanted in parallel to the deep dermis/
subcutis interface in mice within a dorsal skinfold chamber
system, an optical imaging window that allows for in vivo
inspection in real time (Figure 1B), as previously described
(Dondossola et al., 2016). Longitudinal monitoring of the
scaffolds started 4 days postimplantation and proceeded up to
day 14.

For clodronate treatment experiments, mice implanted with
the scaffold in the dorsal skinfold chamber received clodronate
liposomes (1 mg/mouse, 200 μL, intravenously, following the
manufacturers’ instructions, Liposoma) every two to three
days, starting three days before scaffold implantation to
deplete macrophages by the day of implantation, as reported
(Dondossola et al., 2016).

2.3 Image Acquisition, Manual Analysis, and
Comparison of Outcome to Other Image
Analysis Platforms
Non-linear multiphoton microscopy was used to dissect the
three-dimensional spatial organization and fate of scaffold
integration. A custom-made multiphoton microscope with
three different titanium–sapphire lasers and two optical
parametric oscillators (yielding a tunable range of excitation

FIGURE1 | U-Net variant, network architecture. The same number of layer blocks is employed for the encoder and the decoder (in the example, 4) and the number
of filters in each convolutional layer, but the last one maintains the same ratio with respect to the one of the first layer (16, in the example). Spatial dimensions of feature
maps and numbers of filters are reported, respectively, diagonally and horizontally.
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wavelengths between 800 and 1300 nm) was employed.
Multispectral detection of 3D stacks was performed using up
to five photomultipliers and three excitation wavelengths in
consecutive scans, to separate the following excitation and
emission channels: GFP (920 nm; 525/50 nm), RFP (1090 nm;
595/40 nm), second harmonic generation (SHG; 1090 nm; 525/
50 nm), and third harmonic generation (THG; 1180 nm; 387/
15 nm) (Dondossola et al., 2016).

The volumes acquired were characterized by the same
constant in-plane physical spatial resolutions of 360 × 360 μm,
1064 × 1064 px, while the depth physical resolution, in between
slices, was 5 μm, for a maximum depth of 250–300 µm.

Scaffold-associated and interstitial cells were manually
segmented as follows:

1) Scaffold-associated cells: This subset consists of a discrete
layer of cells characterized by close contact with the scaffold
(which extends as a unique body up to 20–40 µm distant from
the fiber), showing a relatively higher brightness;

2) Interstitial cells: These are the immune cells that do not
present any direct association with the scaffold fiber. We
did not distinguish specific immune infiltrating cells (e.g.,
monocytes, macrophages, lymphocytes, and granulocytes).

Each cell subset was outlined, and the area occupied was
calculated by ImageJ (Schindelin et al., 2012; Schneider et al.,
2012). The number of fibroblasts was manually counted.

Comparison of the outcome to that of other image analysis
platforms was performed as follows: 5 images with three
different cell density settings were analyzed by U-Net, Icy
(de Chaumont et al., 2012) and arivis Vision4D 3.5 (arivis
AG) and compared to a manually defined ground truth. For
fibroblasts, the analysis was performed as follows: 1) Icy: HK-
Means, five intensity classes, min. object size 2000 px, max.
object size 6000 for low–cell density images; min. object size
200px, max. object size 100000 for medium– and high–cell
density images. 2) arivis Vision4D 3.5: the machine learning
algorithm was trained with examples of fibroblasts (Class 1, 200
cells) and background (200 examples). For immune-infiltrating
cells, the analysis was performed as follows: 1) Icy: HK-Means,
five intensity classes, min. object size 100px, max. object size
30,000. 2) arivis Vision4D 3.5: this machine learning algorithm
was trained with examples of scaffold-associated cells (Class 1,
45 images), interstitial cells (Class 2, 45 images), and
background (45 images). The total area occupied by
scaffold-associated and the interstitial cells was determined,
and the percentage of area occupied by each population was
then calculated.

2.4 U-Net Variant Customization
We employed a customized U-Net variant (Ronneberger et al.,
2015), the structure of which is shown in Figure 1. Batch
normalization (Ioffe and Szegedy, 2015) was carried out
between any convolutional layer and its subsequent ReLU
activation function. Learnable transposed convolution layers
(Dumoulin and Visin, 2016) were employed as upsampling
layers. We used the same variant across all tasks, adopting 16

filters in the first convolutional layer and five encoding/decoding
layer blocks. The neural network was trained for 300 epochs with
8-sized mini-batches to guarantee training stability,
generalization of performance, and a contained RAM
requirement for training (Masters and Luschi, 2018)
yet allowing for a meaningful sample size for batch
normalization.

2.5 Segmentation of Immune Infiltrating
Cells
Our U-Net variant was trained to accomplish multiclass
segmentation to differentiate within the input images the
scaffold-associated cells and interstitial cells (as described in
Section 2.3) and the background (the acellular content,
including both scaffold framework and the non-visible
substrate; Supplementary Figure S1).

To train the network, we selected 36 non-consecutive GFP
images from our 3D images dataset ensuring sample variability
and independence. We resized the images from 1064 × 1064 to
512 × 512 pixels resolution via bicubic interpolation to reduce the
computational burden and to capture large enough spatial
patterns in the last encoding layer, allowing for more global
structure observation. Since training images were acquired from
different volumes, they presented different intensity ranges and
exposures. To cope with this issue, we normalized the original
images by linearly remapping the intensity values in the [0; 1]
range to obtain the same distribution for each one. Images were
labeled to generate the target masks using Amira software under
the supervision of an expert biologist. Images and labels were
randomly split between training (25 samples) and validation sets
(11 samples). We used data augmentation on both datasets to
create a transformed version of source images to increase the
number of samples and labels by a factor of 8. The augmentation
was performed after training vs. validation splitting to ensure the
independence of the two datasets. We used a combination of
mirroring and rotation with π/2 step in the [0; 2π] range to
increase the training dataset from 25 to 200 and the validation
dataset from 11 to 88. We did not employ any elastic deformation
or resizing to augment images nor to invalidate shape and scale of
the structures, respectively, as both represent relevant factors that
the algorithm should not become invariant to. We did not add
arbitrary noise distributions to image pixels when augmenting
images as a low signal-to-noise ratio had never been encountered
during acquisitions and was unexpected at inference time.
Accordingly, we assumed any kind of unexpected image
artifact to be possibly informative and not distinguishable
from acquisition noise.

The neural network was trained as described to minimize an
objective on the training set, finally evaluating IoU metrics on the
validation set.

We defined the loss function as the sum of a multiclass
extension of the standard Dice Loss (LM-DICE) and a
regularization term to reach a trade-off between minimizing
LM-DICE, which reflects the adherence to segmentation labels
and constraining the weights that prevents overfitting. The
loss function is given as follows:
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L � LM−DICE + λ

2
‖ω‖22,

where λ � 0.01 gives the regularization term a 1% relative
importance with respect to correctly accomplishing a satisfying
segmentation of the training dataset.

Similar to published work (Novikov et al., 2018; Shen, 2018;
Abraham and Khan, 2019), (LM-DICE) can be written as follows:

LM−DICE � 1
NS

∑
S

⎛⎝1 −∑
C

αC
⎛⎝ 2∑x ∈ SyC(x)ŷC(x)∑x ∈ SyC(x) +∑x ∈ SŷC(x)

⎞⎠⎞⎠.

The standard Dice Loss was computed for each class (C) by
considering all remaining classes as background and
evaluating the associated pixel-wise predicted (ŷc) and
expected (yc) probabilities. The resulting term was
weighted by a dedicated class balance coefficient (αc) to
avoid classes richer in pixels to be favored in the overall
loss. These coefficients were computed by measuring the
occurrences of all pixels of respective classes in the training
set and normalized to sum to 1. The loss was finally
generalized to a multiclass case by subtracting 1 the sum of
weighted terms of each class. The resulting value
for each image was averaged over all Ns mini-batch
samples (S).

The presented loss function was minimized by Adam
optimization algorithm (Kingma and Ba, 2014) by employing
a sigmoid-like base learning rate (lr(E)), defined as a function of
the epochs (E) to bound the extreme values. lr(E) ranged from an
initial value lr0 � 0.001 at the beginning of training (first epoch,
E0 � 0) to a final value lr∞ � 0.0001 reached toward the end of
training (E∞ � 200) in correspondence of which saturation was
reached. Accordingly, the trend writes as follows:

lr(E) � (lr0 − lr∞) p 1
1 + es(E)

+ lr∞

with

s(E) � E − (E∞−E0
2 )

E∞−E0
10

and it is shown in Supplementary Figure S2.
Once the network was trained, any arbitrary image in our

dataset could be normalized and resized as before to feed it and
obtain the predicted masks. After nearest neighbor mask
upsampling, we measured the area of each class of interest to
quantify the cellular species content within the image. The
network was implemented in Python through TensorFlow
library (https://www.tensorflow.org).

2.6 Fibroblast Segmentation and
Quantification of Parameters
To train the network, we selected 36 RFP fibroblast-rich images
from our 3D dataset. We performed a 3-step image preprocessing
including 1) normalization, 2) gamma-correction, and 3)
histogram-stretching.

Normalization was performed as in task 1. Gamma-correction
remapped the intensities by expanding the lower values and
compressing the higher ones to highlight the underexposed
structures by increasing their contrast. The gamma value was
empirically set to 0.5. Histogram stretching was independently
performed for each image to make its intensity distributed over
the entire normalized range. The lowest and the highest levels
associated with histogram counts above a 50-pixel threshold
were, respectively, remapped to 0 and 1, and the remaining
levels followed the linear stretching imposed by these
extremes. Additionally, levels mapped outside the [0; 1] range
were saturated to the extremities.

Labels were manually created and, along with respective
samples, they were resized, augmented, and split between
training (264 images) and validation (120) as done in task 1.

Based on Ronneberger et al. (2015), an optimal separation of
close or adjacent fibroblasts was achieved by using a loss function
devoted to emphasize cell separation. Each label was associated
with a map assigning a weight to each pixel based on its
importance to achieve a correct segmentation of adjacent cells.
Pixels belonging to fibroblasts were set to have zero weight, while
background pixels were assigned a value depending on their
distance from the two nearest cells, where cells were extracted as 8
connected clusters from labels. In this way, the lower the distance,
the higher the weight, the more relevant the pixel is. The value
was computed as a Gaussian of the sum of the two distances of
interest to constrain weight magnitudes. Accordingly, each pixel
position (x) was assigned a boundary weight (wB(x)) that is
written as follows:

wB(x) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if x ∉ background

ae−
(d1(x)+d2(x))2

2σ2 , if x ∈ background

,

where d1(x) and d2(x) are the Euclidean distances between x
and the two nearest cells; the amplitude (a) of the Gaussian was
empirically set to 100, while the standard deviation (σ) was set to
five pixels according to Ronneberger et al. (2015).

To tackle class imbalance, the weight map presented with (4)
was corrected by adding a different class importance coefficient
depending on the category each pixel belonged to. A background
importance (iB) and a foreground importance (iF) were defined as
the mean value of (wB(x) + 1) associated with background and
foreground pixels, respectively, over the entire training set. Thus,
iB � 1, yielding unitary final weights for all foreground pixels, that
is, a neutral weighting. The resulting class boundary weight map
(wC−B(x)) is written as follows:

wC−B �
⎧⎪⎨⎪⎩

wB(x) + iF � 1, if x ∉ background

wB(x) + iB, if x ∈ background
.

A pixel-weighted version of the traditional binary cross-
entropy (BCE) was chosen as loss function to allow all pixels
to be weighted by their respective class boundary relevance, as
follows:
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Lw−BCE � 1
NS

∑
s

∑x∈SwC−B(x)LBCE(x)∑x∈SwC−B(x) ,

where LBCE is the traditional BCE loss multiplied by the respective
weight (wC−B) and averaged on all pixels (x) of all Ns samples (S)
in the mini-batch.

Since the maximum amplitude of weights was arbitrarily set,
discretionary importance was attributed to segmenting borders of
adjacent fibroblasts, rather than their overall structure. As IoU
metric represents only the latter, a custom metric was introduced
as a weighted average of pixel-wise probability likelihoods based
on the same class boundary weights:

M � 1
NS

∑
S

∑x∈SwC−B(x)(yŷ + (1 − y)(1 − ŷ))∑x∈SwC−B(x) .

Symbolism is maintained as in (6), with the metric reflecting
an inverted version of the employed loss bounded to the [0;
1] range.

Training was performed by minimizing the L2-regularized
LBCE by Adam optimizer as described for task 1. The network was
employed for inference upon satisfying metric evaluation on the
validation set.

After output mask upsampling via nearest neighbor,
fibroblasts were separated by connecting together foreground
pixels assigned to the same entity. Two pixels were classified as
linked if they were 8-connected, that is, they exhibited adjacent
edges or corners. Finally, clusters of pixels with an area lower than
200 were discarded. The number of fibroblasts, their mask, area,
centroid coordinates, and inter-fibroblast distance were extracted.

2.7 Quantification of Collagen Orientation
2.7.1 Scaffold Segmentation
To train the network, 47 images were used that included two
channels (SHG and THG, for collagen and scaffold, respectively).
The selected samples were resized, preprocessed, manually labeled
under expert biologist supervision, split, and augmented via the
same rationale used for fibroblast segmentation, obtaining 256
training and 120 validation samples. The standard Dice loss was
regularized andminimized relying on the same optimizer as in task
1, and IoUwas evaluated on the validation set at the end of training
before deployment.

2.7.2 Collagen/Scaffold Orientation Detection
We detected the orientation of the structures of interest with an
angular resolution of 1° by extending compass mask technique
(Robinson, 1977) to any arbitrary angular resolution.
Accordingly, we created 360 custom kernels for edge detection
convolutional filtering. Each kernel was defined to yield the
highest convolutional output for boundaries oriented as the
respective linear edge represented by its coefficients. The
chosen kernel size was 33 × 33 pixels, corresponding to an
11.2 × 11.2 μm physical neighbor, coherently with Bancelin
et al. (2014). Kernel coefficients were assigned the respective
pixel distance between their position and the line through the
kernel center with desired orientation (Supplementary Figure
S3A). Next, the coefficients were remapped so that values

between 0 and 1 were unvaried; values between 1 and 2 were
linearly remapped between 1 and 0, respectively; and values above
2 were set to 0 (Supplementary Figure S3B). The coefficients on
the clockwise side of the respective central line were multiplied by
-1 (Supplementary Figure S3C). Only the coefficients within a 15
pixel radius were maintained by setting the others to 0
(Supplementary Figure S3D). Finally, to prevent inter-kernel
bias and ensure that the coefficients in each kernel sum up to 0, all
positive and negative coefficients in each kernel were normalized
to sum up, respectively, to 1 and -1 (Supplementary Figure S3E).

The THG scaffold image was resized and preprocessed to feed
the trained network and obtain the predicted mask. The latter was
upsampled via nearest neighbor interpolation to restore the
original size. Next, a single iteration of binary opening with a
20 × 20 pixel elliptical structuring element was applied to remove
spurious objects in the mask. Twenty iterations of binary dilation
with a 3 × 3 elliptical element were applied to smooth the jagged
scaffold boundaries and ensure the mask entirely covers the
scaffold boundaries. Finally, the mask was skeletonized
following Lee’s algorithm (Zhang and Suen, 1984) and three
iterations of binary dilation with a 2 × 2 elliptical element were
applied to ensure robustness of the scaffold borders’
directionality.

The resulting mask was convolved with the kernels, yielding
360 feature maps. Each pixel orientation was equal to the one of
the kernel with maximum output if the latter was higher than a
threshold empirically set to 0.5 or considered as not oriented
otherwise.

Pixels on the width-4 borders were considered not oriented to
avoid artifacts. Orientations differing 180° were not discerned
because they represent opposite intensity gradients across the
same edge orientation. Finally, the orientation with the highest
number of pixels was chosen to be the preferential one.

To detect collagen orientation, each slice channel was
preprocessed analogously to scaffolds, and the same
convolutional filtering was applied. Pixel orientations were
defined with a 0.06 threshold on the feature map magnitude.
Orientations of pixels falling outside the non-skeletonized dilated
scaffold mask were discarded to avoid scaffold artifacts, for
example, collagen fibril edges. Additionally, pixels with a
variance over the top 36 orientation magnitudes lower than
0.35*10−3 were discarded to exclude weak orientations that
produced similar maximum outputs across several kernels.

Pixel clusters with an 8-connectivity area lower than 15 pixels
were considered noisy and discarded. The absolute and scaffold-
relative collagen orientations will be presented using dedicated
histograms. The histogram trends were filtered via a 7-length
window moving averaging to smooth noisy spikes without
external padding, given the periodicity of angles.

2.8 Statistical Analysis
Statistical analysis was performed using GraphPad Prism 7.0
(GraphPad Software, San Diego, CA). Normal distribution was
confirmed by using the Shapiro–Wilk test. An unpaired two-
sided Student t-test was applied to analyze two populations, while
one-way ANOVA, followed by Tukey’s honestly significant
difference (HSD) post hoc test, was performed to compare
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more than two populations. Pearson correlation coefficients were
calculated in correlation analyses. All statistical tests were two-
sided, and the statistical significance was considered for a p value
of less than 0.05. Data are shown as mean ± SD.

3 RESULTS

3.1 Preclinical Modeling of the FBR and
Image Acquisition
To monitor the evolution of the FBR over time by intravital
microscopy, we established a dual color C57BL/6 mouse model

that displays green fluorescent immune cells (GFP) and activated
myofibroblasts expressing the red fluorescent protein (RFP)
under the promoter of alpha smooth muscle actin (αSMA). To
this purpose, the bone marrow of lethally irradiated αSMA-RFP
mice was reconstituted with GFP bone-derived cells, generating
an αSMA-RFP/GFP mouse (Figure 2A). Engraftment of GFP
bone marrow cells was confirmed by ex vivo MPM analysis of
bones 1 month posttransplantion. Hematological parameters
(white and red blood cells, platelets, hematocrit, and
hemoglobin) showed no significant differences compared to
non-transplanted mice, excluding potential functional issues
and confirming full reconstitution (Supplementary Figure S4).

FIGURE 2 |Generation of an in vivomodel to study the FBR and acquisition of images by longitudinal intravital multiphoton microscopy. Schematic representation
of the model showing (A) the bone marrow transplant in lethally irradiated αSMA-RFP mice reconstituted with GFP bone-derived cells to generate an αSMA-RFP/GFP
mouse and (B) scaffold implantation inside the DSFC within the subcutaneous tissue, on top of the dermal layers (xy and xz projections of the implantation site are
shown). Right panels show a scheme and the histology (H&E staining) of the mouse skin at the implantation site. (C) Longitudinal intravital imaging of the FBR
elicited by the PCL scaffold. Single channels and merged pictures at days 4, 7, 11, and 14 post-implantation are shown. THG (gray); GFP-positive cells (cyan); RFP-
positive cells (red), and SHG (green). Scale bar, 100 μm.
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The foreign body, consisting of a polycaprolactone (PCL)
scaffold, was implanted parallel to the dermis/subcutis
interface within a dorsal skinfold chamber system, an optical
imaging window implanted on the back of the mouse to allow for
in vivo inspection in real time (Figure 2B). The progression of the
FBR was monitored by 3Dmulti-position acquisition in the living
mouse by non-linear multiphoton microscopy for up to 2 weeks
to visualize immune cells (GFP), activated fibroblasts (RFP),
scaffold fibers (second and third harmonic generation; SHG
and THG), and collagen deposition (SHG). SHG and THG are
two label-free, non-linear functions of light captured by the
MPM. SHG results from frequency doubling of photons when
interacting with non-centrosymmetric molecules and materials,
including coiled-coil or polymeric proteins (such as fibrillar
collagen) and synthetic polymers (such as PCL). THG
originates from frequency tripling of photons when interacting

with interfaces that display a mismatch of the refractive index,
such as aqueous/lipid rich structures (e.g., lipid droplets and
adipocytes) or polymers, including PCL, and water or air
(Dondossola et al., 2016; Dondossola and Friedl, 2021).
Although autofluorescence emitted from NAD(P) H, flavins,
aromatic amino acids, and lysosomes can partially overlap
with the emission of GFP, this limited background signal was
not detected due to the relatively high levels of GPF expression,
which required minimal laser power for excitation and
consequent detection. No endogenous tissue autofluorescence
that overlap with the detection of other fluorochromes or
second and third harmonic generation was identified.

The scaffold became gradually infiltrated by both GFP- and
RFP-positive cells, followed by deposition of fibrillar collagen
(Figure 2C). In order to segment and quantify these 3D
multiparametric images, we developed a versatile U-Net neural

FIGURE 3 | Automatic quantification of scaffold-associated and interstitial cells. (A) Segmentation of scaffold-associated cells (red), interstitial cells (blue), and
background (black). Left panel, preprocessed input image; central panel, target manual label; right panel, predicted output mask. Insets show single binary masks for
interstitial and scaffold-associated (sc-assoc) cells. Pearson correlation between the area of interstitial and scaffold-associated cells in both manual and predicted
outputs (obtained from 7 independent images) is shown. (B) Automatic quantification of sc-associated and interstitial cells 4, 7, 11, and 14 days post-implantation.
Representative images of the GFP-positive cells at the implantation site at all the time points (input), together with their predicted output masks (output) are shown.
Histograms quantify the area of sc-associated and interstitial cells at each time point. (n � 4 mice, 3 images/mouse). *p < 0.05, **p < 0.01 (unpaired two-tailed Student
t-test). Scale bar, 100 μm. (C) Automatic quantification of sc-associated and interstitial cells in untreated and clodronate liposome–treatedmice at day 14. The treatment
and imaging schedule is shown. Input representative images and their output masks of FBR in control and clodronate-treated mice are shown. Histograms represent
area quantification for sc-associated and interstitial cells in control and treated mice. (n � 4 mice/group, 3 images/mouse). *p < 0.05, **p < 0.01 (unpaired two-tailed
Student t-test). Scale bar, 100 μm.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 7975558

Sarti et al. Deep Learning for Automated Image Analysis

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


variant as extensively described in the Materials and Methods
section. Briefly, images of 360 × 360 μm (1064 × 1064 px)
acquired every 5 μm for a maximum total depth of

250–300 µm were converted to 512 × 512 px resolution
(Figure 1) and cellular and extracellular parameters
segmented, as described in the next sections.

FIGURE 4 | Fibroblast segmentation and extraction of parameters. Segmentation of fibroblasts in a low- (A) and a high-density (B) setting. Input images in gray,
target manual labels with yellow outlines, and predicted segmentation masks in green. Magnifications of fibroblasts manually segmented, and their relative predicted
output are shown (each different fibroblast is numbered in white). Pearson correlation between the number of fibroblasts in low- and high-density settings according to
the manual and the predicted outputs (obtained from 7 independent images) is shown. (C) Automatic quantification of the number of fibroblasts at days 4, 7, 11,
and 14 post-implantation. Representative input images for each time point (gray) with relative predicted outputs (rainbow color map). Right panel shows a magnification
(inset, day 7) of the predicted output (each fibroblast is numbered in white). Right graph shows the quantification of the number of fibroblasts at each time point obtained
by automatic count (n � 4 mice, three images/mouse). *p < 0.05, **p < 0.01, ***p < 0.001 (unpaired two-tailed Student’s t-test). Scale bar, 100 μm. (D) Extraction of
mutual distances between centroids. Left panel shows a representation of the distance (white dashed lines) between the centroid of the yellow-colored fibroblast and all
the other fibroblasts. Graphs show the distribution of the mutual distances between centroids at days 4, 7, 11, and 14 post-implantation (n � 5 regions in 3 mice).
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3.2 Automatic Quantification of
Scaffold-Associated and Interstitial Cells
To automatically quantify the recruitment of immune-infiltrating
GFP cells over time, U-Net was trained to perform a multiclass
segmentation that differentiates elements in input images. This
included 1) scaffold-associated cells—a discrete layer of cells in
close contact with the scaffold fiber extending as a unique body up
to 20–40 µm of distance, showing a relatively higher brightness;
2) interstitial cells—representative of infiltrating leukocytes
which do not present any direct association with the scaffold
fiber; and 3) the remaining acellular background. The
segmentation network maximized intersection over union
(IoU) values [a metric to measure the accuracy of an object
detector (Rezatofighi, 2019)] over the validation set to 0.533,
0.580, and 0.902 for scaffold-associated cells, interstitial cells, and
background, respectively, showing good prediction ability. To
biologically validate the performance of our trained automatic
segmentation tool, we compared the area of scaffold-associated
and interstitial cells in 7 manually labeled images spanning
different cellular densities and correlated the outcome with
predictions. The area occupied by both cell subsets in
manually labeled images or predicted semantic segmentation
strongly correlated (R > 0.9), confirming the accuracy of this
analysis (Figure 3A). To further validate our segmentation
approach on immune-infiltrating GPF cells at low, medium, or
high density spanning days 4–14 post-implantation, we
compared the outcome deriving from manual quantification,
our trained U-Net, arivis Vision4D 3.5 (arivis AG) and Icy (de
Chaumont et al., 2012)—two popular image analysis platforms.
Manual segmentation, U-Net, and arivis4D 3.5 achieved similar
results, further confirming that the criteria identified to segment
interstitial and scaffold-associated cells define two distinct
populations, and U-Net can accurately distinguish between
them. Icy was not able to distinguish any specific subset;
alternatively, when comparing the total area occupied by
immune-infiltrating GPF cells, Icy performed similarly to the
manual quantification and U-Net for cells at low density but
showed poor results at medium and high cellularity
(Supplementary Figure S5). Semantic segmentation was then
applied to analyze GFP-immune cell recruitment to the scaffold at
different time points of FBR formation (n � 4 mice, 3 images/
mouse), showing progressive and significant increase in both
infiltrating interstitial cells and scaffold-associated cells, in
line with published data (Dondossola et al., 2016)
(Figure 3B). Then, to further evaluate the effectiveness of
our U-Net variant, semantic segmentation was applied to
quantify the area of scaffold-associated and interstitial cells
in scaffolds implanted in mice pharmacologically treated with
liposomal encapsulated clodronate (dichloromethylene
diphosphonate). This agent depletes all the immune cells
derived from the monocytic/macrophage lineage and is
expected to reduce the overall number of GFP cells
recruited by PCL implantation (Dondossola et al., 2016;
Van Rooijen and Sanders, 1994). Clodronate significantly
decreased the formation of scaffold-associated cells, as
compared to control-treated mice (n � 4 mice, 3 image/

mouse; Figure 3C), suggesting their monocyte/
macrophage-derived origin. Interestingly, the amount of
interstitial cells decreased as well, confirming that
monocytes/macrophages represent a major population of
the interstitial cell compartment (Dondossola et al., 2016).

3.3 Automatic Quantification of Fibroblasts
Fibroblast is a non-immune key cell type involved in the FRB
that contributes to the formation of the fibrotic capsule.
Fibroblasts are characterized by complex shapes and
different dimensions, and even for binary segmentation,
neither simple thresholding nor more advanced rule-based
techniques as morphological operators are able to perform
their reliable segmentation. In such data domain, indeed,
fibroblasts do not exhibit similar coherent intensities or
simple geometry. Furthermore, no other automatic tool is
available to detect and quantify these cells. In order to
monitor fibroblast recruitment, including number and
reciprocal spatial distribution, we trained the U-Net variant
with RFP+ images and extracted these parameters. The
automatic segmentation network accuracy was evaluated on
the validation set upon training completion, reporting an
average value of our custom metric of 0.982. Notably, the
addition of batch normalization avoided early saturation of
loss during training, regardless of the chosen objective,
compared to the original U-Net architecture, as shown in
Supplementary Figure S6. To validate the network
performance, we manually quantified the number of
fibroblasts in 7 images at low or high fibroblast density and
correlated the outcome with predictions. The manual and
predicted results showed a strong correlation (R � 0.702
and 0.950, respectively; Figures 4A,B). This segmentation
approach was further validated by comparing the outcome
derived from analysis with arivis Vision4D 3.5 and Icy. U-Net
quantified the number of fibroblasts more accurately than both
arivis Vision4D 3.5 and Icy, mostly at medium and high
density (Supplementary Figure S7). While Icy and arivis
Vision4D 3.5 could not distinguish between adjacent
fibroblasts, U-Net, instead, was implemented with a loss
function which emphasized cell separation (Ronneberger
et al., 2015), as described in the Methods section.
Geometrical parameters were then extracted for all the four
different time points after scaffold implantation (n � 4 mice, 3
images/mouse). For each time point, fibroblasts were counted
(Figure 4C) and their reciprocal distance calculated based on
the centroid coordinates (Figure 4D), showing that the
number of fibroblasts increased over time and their distance
progressively decreased.

3.4 Automatic Quantification of Collagen
Orientation
Activated fibroblasts secrete collagen to form a relatively thick
fibrotic capsule around the implanted biomaterial, which is
usually well oriented and has low vascular density (de Vos
et al., 2006). Achieving a thinner capsule with randomly
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oriented collagen fibers by modifying material properties or
through pharmacological inhibition would help minimize the
FBR (de Vos et al., 2006). Thus, collagen orientation
represents a key parameter to measure (Akilbekova and
Bratlie, 2015). Fibrillar collagen is visualized through SHG
detection (Figure 2C). This signal detects both polymeric
proteins (e.g., fibrillar collagen) and PCL. (Dondossola et al.,
2016). For these reasons, determining the orientation of
biomaterial-induced collagen deposition with available

tools (Rezakhaniha et al., 2012) was challenging, due to the
confounding presence of scaffold fibers in the same input
image. Thus, we adapted our U-Net variant to quantify
collagen orientation and surrounding biological
environment (Barad et al., 1997). Processing was performed
as described in the Section 2.

Information extraction was implemented relative to the
main orientation of the scaffold framework, identified
through THG signal. Briefly, the input image consisted of a

FIGURE 5 | Extraction of collagen orientations relatively to the scaffold. (A)Workflow for extraction of collagen orientations relative to scaffold for a given case test.
Top to bottom: raw input collagen and scaffold image (SHG and THG channels); THG channel extraction and skeletonization; SHG channel extraction and colormap of
orientations of collagen boundaries in the whole image and in the subregion of interest where collagen directionalities are quantified; resulting histogram and frequency
distribution relative to the predominant scaffold orientation. (B) Extraction of collagen orientations in the same region at days 4, 7, 11, and 14 post-implantation. For
each time point, a raw input collagen image (gray), a color map of orientations of two subregions, and the relative histograms are shown. (C) Extraction of collagen
orientations in regions with different patterns of collagen bundles. For each pattern, the raw input collagen image (gray), the output colormap, and the histogram of
frequency are shown.
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binary SHG image displaying both scaffold and collagen, and
a binary THG image displaying the scaffold only. THG images
were skeletonized to identify the main orientation of the
scaffold, then the THG signal was removed from SHG
images, and the collagen orientation was determined. The
resulting output was a spatial map and a histogram of pixel
counts with tilting angle of attributed structures (Figure 5A).
The scaffold segmentation network reported an IoU value of
0.796 over the validation set upon training completion,
showing good detection accuracy. The tool was then tested
to analyze the orientation of the collagen secreted in the same
area overtime (Figure 5B). Interestingly, areas closer to PCL
fibers showed an earlier normalization of collagen spatial
distribution, with a prevalently parallel orientation, while
areas at a greater distance from the scaffold assumed more
random orientations. Then, as further validation purpose, our
U-Net variant was applied to analyze three distinct patterns of
orientation of the collagen bundles, defined as crossed,
chaotic, or parallel (Figure 5C), which were correctly
identified.

4 CONCLUSION

Three different applications were developed to endow
scientists with automated software tools for performing
multiparametric evaluation of the cellular and extracellular
components of the FBR. All applications relied on deep
learning, in particular on a U-Net variant, to accomplish
semantic segmentation of structures of interest in
respective input images with data-driven approaches, and
parameters were extracted from predicted masks. So far, no
applications were available to perform differential
segmentation of immune subsets within the same image
based on their topological distribution, for example,
scaffold-associated cells vs. interstitial one, or to support
segmentation of single fibroblasts and retrieval of
parameters of interest.

The first application differentiated two cellular macro-
populations (i.e., cells associated to the scaffold and interstitial
cells) from acellular background within the same input image to
quantify each subset, allowing for monitoring their recruitment
over time and the consequences of therapeutic treatment. The
second application quantified fibroblasts, including the number
and reciprocal distribution. The third application allowed
quantifying collagen orientation relatively to the segmented
scaffold framework, thanks to implemented directional filtering
based on customized kernels. For each application, images used to
train and to validate the segmentation networks were preprocessed
and manually labeled with expected results under biologists’
supervision. The limited datasets required by such models
allowed for quick labeling, thanks to the extensive use of data
augmentation, and fast training. The developed applications
automated the workflow of scientists, yielding at the same time
substantial time saving and reproducibility of results.

Concomitantly, the implemented applications proved our model
versatility among different tasks. The employed network variant

resembles the original U-Net architecture. The addition of
normalization layers, and in particular of batch normalization
(Ioffe and Szegedy, 2015), proved as determinant to avoid early
loss saturation during training, regardless of the objective, as
exemplified for fibroblast detection in Supplementary Figure S6.
Results were not constrained by the employment of the same
architecture and training hyperparameters across tasks.
Conversely, validation metrics in all applications suggest
compelling achievements considering the peculiar nature of the
input images. IoU values are indeed highly dependent on the
dataset and on the task difficulty, and values around 0.5–0.6 are
considered a good measure of accuracy (Rezatofighi, 2019; Ulku and
Akagunduz, 2019; Isensee et al., 2021). Application 1 (Section 3.2)
metrics show similar values for both the scaffold-associated and the
interstitial classes and report that the acellular background is rarely
confused with cellular content. For application 2 (Section 3.3), the
custom metric adopted to take into account both segmentation
accuracy and enforcement of adjacent cell separation reflects the fact
that the objective is alsominimized on the validation set. Application
3 (Section 3.4) reports effective scaffold segmentation as well.
Notably, segmentation results on the validation set strongly
correlated with human labels for all tasks, suggesting reliable
performances of this fully automated pipeline and boosting the
hypothesis that the architecture can be versatile enough across
different objectives. We did not need to tune any
hyperparameter, that is, architecture and training setup, or
the pre- or post-processing steps, obtaining considerable
results across the three different and quite exhaustive
common training objectives in semantic segmentation: the
Dice loss, a pixel-weighted cross-entropy loss, and a new
multiclass Dice extension. Interestingly, results confirm the
trend of U-Net–like applications that very limited training
sets guarantee reasonable performances, as usually required
in the biomedical domain.

For collagen directionality quantification, several approaches
have been developed which allow overall measurement of
structures’ orientation (Rezakhaniha et al., 2012; Liu et al.,
2020198; Liu et al., 2017). However, the presence of scaffolds
and collagen fibers, together within the same channel, confounds
the quantification and requires image preprocessing to either
manually eliminate scaffold framework or cut out smaller areas of
interest. Furthermore, several general filtering techniques were
available with different configurable parameters each (e.g., a set of
kernel kinds and kernel sizes for convolutional filtering), making
it difficult to find an optimal setup for our images. As an
improvement, by relying on the proposed U-Net variant for
scaffold segmentation, our system automatically extracts
information on collagen orientation only via dedicated
filtering and reports it relatively to scaffold positioning.
Besides monitoring the orientation of the collagen deposited
within the scaffold fibers, this approach could be further used
to determine the orientation of the external fibrotic capsule. Our
convolutional filtering methodology allows defining linear edge
detectors at the desired angular resolution and kernel size, to
calibrate the gradient magnitude thresholds on the outputs and to
apply variance filtering on such magnitudes, tuning the filtering
to best suit collagen edges.
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Blood vessel formation contributes to the FBR development
(Dondossola et al., 2016; Gurevich et al., 2020). We did not
address this aspect due to the great availability of tools that allow
their segmentation and quantification (Yao et al., 2016; Fan et al.,
2020; Mihelic et al., 2021).

While our U-Net resembles the original widely validated
network, possible improvements include tuning architecture or
training hyperparameters, such as the number of filters and layer
blocks or mini-batch size and training epochs. To that end, cross-
validation could be introduced without the need for an additional
test set.

Our strategy is based on intravital acquisition of fluorescent
reporter mice using a multiphoton microscope, an approach that is
not easily available in research laboratories. However, we expect
deep learning intrinsic adaptability to further allow applying our
segmentation model to different data domains, with the possibility
to extend analysis to 1) images acquired with different microscopes,
for example, confocal or epifluorescence microscopes; 2) ex vivo 2D
or 3D samples, including reconstructions of entire scaffolds or
thinner slices; 3) antibody-based detection of specific markers,
including immune cell subpopulations.

In this and a previous work (Dondossola et al., 2016), we did
not identify significant differences based on mouse age or sex
when comparing the FBR elicited by scaffolds implanted within
the subcutaneous tissue. The progression of this process was
consistent with other published work (Veiseh et al., 2015) which
described implantation of biomaterials in different sites
(intraperitoneal space) or in other species (non-human
primates), although the extent and kinetics of cell recruitment
over timemight differ. As an advantage, the training of U-Net was
performed with images that recapitulate the longitudinal
development of the FBR, spanning both the initial stages
(when cells are fewer) and later time points (when the cell
density is higher), showing high efficiency by our U-Net
variant in recognizing structures of interest during the
validation process, as compared to manual analysis. For these
reasons, we expect U-Net to be easily generalized; however,
further validations could be performed after application of
other biomaterials with compositions and geometries different
from the regular grid of the PCL scaffolds in other implantation
sites. In addition, the second and third applications could be
extended to monitoring desmoplasia in other model systems,
such as wound healing and other fibrotic processes, for example,
pulmonary or tumor-induced fibrosis, including monitoring of
fibroblast recruitment and collagen deposition, upgrading the
recognition in the absence of a scaffold. We feel that our model
application can be easily tailored to any future task of interest that

requires different training objectives in similar scenarios. Overall,
our promising automated software tool for the detection of
cellular and extracellular structures and associated features will
allow investigating FBR progression and aid to identify strategies
that improve the performance of biomedical implants.
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