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INTRODUCTION

A gamut of  transition factors and epigenetic events act 
in coordination with autocrine, paracrine, and endocrine 
network of  hormones and growth factors leading to 
maternal–placental–fetal interactions and evolution of  fetal 
endocrine system. Hypothalamus and pituitary provide the 
baseline controlling framework.

Anterior pituitary develops from Rathke’s pouch by 
5th week.[1] By 7th week hypothalamus, pituitary stalk, 
and posterior pituitary develop.[1] Hypothalamic pituitary 
portal vessels formation starts by 12th-17th week, which 
matures till 30th-35th weeks of  gestation. Hypothalamic cells 
develop by 15th-18th weeks. Dopamine, thyrotropin releasing 
hormone (TRH), gonadotropin releasing hormone (GnRH), 
and somatostatin are present in hypothalamic tissue by 

10th-14th weeks of  gestation. Lactotropes, somatotropes, 
corticotropes, thyrotropes, and gonadotropes are discernible 
by 7th-16th weeks. Growth hormone (GH), prolactin (PRL), 
thyroid-stimulating hormone (TSH), luteinizing 
hormone (LH), follicle-stimulating hormone (FSH), and 
adrenocorticotropic hormone (ACTH) are detectable 
between 10 and 17 weeks. The current article focuses fetal 
endocrine axes maturation and adaptation to extrauterine 
life. We have referred to development in animals, mostly 
in sheep and in rat.

HYPOTHALAMIC–PITUITARY GONADAL AXIS

GnRH stimulates LH and FSH release from 
gonadotropes. In sheep fetus, LH, FSH, and GnRH 
are present at mid-gestation or before. Prior to the 
maturation of  the fetal pituitary, chorionic gonadotropin 
(CG) from the placenta stimulates fetal gonadal growth, 
differentiation, and secretory activity. CGs levels are 
greater in female fetuses and show pulsatile secretion 
during fetal period. Hypothalamus–pituitary–gonadal 
(HPG) axis activity peaks at 30-40% gestation in the 
sheep fetus, decreasing until birth.[2] In the rat fetus 
tissue concentrations of  GnRH, LH, and FSH increase 
continuously until birth.
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In the sheep fetus, gonadal testosterone and hypothalamic 
CG secretion peaks at about same time, approximately 
30-40% gestation [Figure 1]. The mid-gestational peak 
in gonadal steroid hormone secretion stimulates gonadal 
growth and differentiation. Later in gestation, the placenta 
synthesizes estrogens and androgens, controlled by the fetal 
hypothalamus–pituitary–adrenal (HPA) axis.[3]

Gonadal development
The mammalian gonad is derived from (a) primordial germ 
cells of  the yolk sac wall, (b) stromal cells from primitive 
mesonephros.[4,5] By 4-5 weeks, the germ cells migrate from 
yolk sac and gonadal ridge derives from mesonephros. The 
germ cells incorporate into the gonadal ridge during the 
sixth week.[4] Gonadal embryogenesis is programmed by 
SRY, SF-1, SOX 1, DAX-1 genes.[6,7] CGs are not required 
for fetal gonadal development or sexual differentiation.[8]

Male gonadal differentiation begins at 7 weeks with 
organization of  the gonadal blastema into interstitium 
and germ cell-containing testicular cords. Epithelium 
differentiates into tunica albuginea.[9] Primitive Sertoli 
cells and spermatogonia become visible within the cords. 
Leydig cells derived from interstitium by 8th week synthesize 
androgens. The fetal testes grow from approximately 20 mg 
at 14 weeks of  gestation to 800 mg at birth; at 5-6 months 
they descend into inguinal canal with epididymis and ductus 
deferens.[9]

In females, differentiation of  ovaries begins during 7th week. 
The gonadal blastema differentiates into interstitium and 
medullary cords containing oogonia. By 11-12 weeks, 
cortex contains oogonia surrounded; and medulla consists 
of  connective tissue.[10] At 12 weeks, primitive granulosa 

Figure 1: Schematic representation of the ontogeny of hCG, LH, and 
T in the plasma of a male fetus. The relationship of GnRH, LH and T is 
represented in the upper right corner of the fi gure. hCG: Human chorionic 
gonadotropin, LH: Luteinizing hormone, GnRH: Gonadotropin releasing 
hormone, T: Testosterone

cells begin to replicate and the oogonia in the deepest layers 
of  the cortex enter their fi rst meiotic division. Primordial 
follicles are observed at 18 weeks.[11] The number of  
oocytes progressively declines from 3-6 million at 5 months 
to 2 million at term.[11,12] By 5th-7th month stroma-derived 
thecal cells develop around mature primordial follicles. 
Each fetal ovary weighs about 15 mg at 14th gestational 
weeks and 300-350 mg at birth.[10] The number of  surviving 
primary follicles at birth correlates with the duration of  
postpubertal ovulation. Interstitial steroid-producing cells 
are present after 12 weeks, and during third trimester theca 
cells with steroidogenic capacity surround the developing 
follicles.[12] Ovary produces less steroids, even in the 
presence of  aromatase activity.[10,12]

Fetal estrogen and androgen biosynthesis and their effects
Fetal androgens and estrogens in late-gestation are 
majorly derived from placenta.[13] The placenta lacks 
cytochrome P450 (CYP17) and 17α-hydroxylase 
and 17,20-lyase activities [Figure 2]. Placenta 
synthesizes estrogen from precursors received from 
the fetal adrenal cortex. The adult zone or defi nitive 
zone of  the fetal adrenal cortex lacks the enzyme 
3β-hydroxysteroid dehydrogenase [Figure 2] and cannot, 
synthesize progesterone or 17α-hydroxyprogesterone. 
However, the fetal zone of  the fetaladrenal cortex 
secretes dehydroepiandrosterone (DHEA) and 
dehydroepiandrosterone sulfate (DHEAS) in response 
to ACTH. These steroidogenic intermediates used in 
biosynthesis of  estrogens by placenta, bypassing 
CYP17 [Figures 2 and 3]. Estrogen in fetal bloodstream 
allows fetal growth and development. Estrogen increases 

Figure 2: Steroid biosynthesis in the developing primate fetus. Steroidogenic 
enzymes are represented by the following abbreviations: P450c17 
(17 and #945;-hydroxylase and 17,20-lyase activities); 3 and #946;-HSD 
(3 and #946;-hydroxysteroid dehydrogenase activity); P450c11b1 
(11 and #945;-hydroxylase activity); P450c11b2 (aldosterone synthase 
activity); P450arom (aromatase activity). The fetal zone of the fetal adrenal 
cortex is capable of performing the reactions in the shaded area. The 
overlapping box (right) represents estrogen biosynthesis by the placenta. 
A-dione, androstenedione
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uterine blood fl ow during pregnancy and at term increases 
myometrial contractility to initiate labor. In the male, leydig 
cells produce testosterone in response to human chorionic 
gonadotropin (hCG) and LH between 10 and 20 weeks.[9]

Effect of testosterone and estrogen
Testosterone stimulates differentiation of  primitive 
mesonephric ducts into ductus deferens, epididymides, 
seminal vesicles, and ejaculatory ducts. Androgen receptors 
appear in urogenital mesenchyme and epithelium at 8 and 
12 weeks, respectively.[14] Dihydrotestosterone (DHT) is 
formed from testosterone by the 5α-reductase enzyme 
within the urogenital sinus and urogenital tubercle and acts 
on wolffi an ducts. DHT stimulates male differentiation 
of  the urogenital sinus and external genitalia, including 
differentiation of  the prostate, growth of  the genital 
tubercle to form a phallus, and fusion of  the urogenital 
folds to form penile urethra. The sertoli cells produce 
antimüllerian hormone (AMH), which causes müllerian duct 
regression in male fetus after a 24-36 hour exposure.[15,16] 
AMH gene expression is activated by SRY gene.[15] Male 
phenotypic differentiation testosterone and AMH occurs 
between 8 and 14 weeks. In the female fetus, müllerian duct 
system differentiates in the absence of  AMH, mesonephric 
ducts fail to develop in the absence of  testosterone, and 
the undifferentiated urogenital sinus and external genitalia 
mature into female structures.

Estrogen acts through two nuclear receptors[17,18] 
expressed in 16-23 weeks. Estrogen receptor beta (ERβ) 
is predominant in testis, ovary, spleen, thymus, adrenal, 

brain, kidney, and skin. Estrogen receptor alpha (ERα) is 
prominent in uterus with relatively low levels in most other 
tissues.[17,18] Knockout of  both ERα and ERβ genes has 
little impact on fetal development, but leads to hypoplastic 
uterus, fallopian tubes, vagina, and cervix postnatally, which 
are unresponsive to estrogen.[18] Gonadal hormones are 
involved in (a) structural development of  rat brain and 
(b) control of  CG production.[19-21]

HYPOTHALAMIC–PIUITARY–ADRENAL AXIS

ACTH is secreted by corticotropes in response to 
arginine vasopressin (AVP) and corticotropin releasing 
hormone (CRH).[22] Fetal HPA axis is controlled by 
paraventricular nuclei (PVN) in sheep fetuses.[23] The 
fetal HPA axis is activated progressively throughout latter 
gestation leading to increased biosynthesis of  hypothalamic 
CRH, AVP, and proopiomelanocortin (POMC) in pituitary, 
increased sensitivity of  steroidogenic tissue to ACTH, 
increased abundance of  steroidogenic enzymes in adrenal 
cortex with increase in its size. This results in increased 
ACTH, cortisol levels in nonhuman fetal blood and 
DHEA, DHEAS and estrogens in human fetal blood. The 
molecular processing of  POMC to ACTH is also stimulated 
by placental estrogen in latter developmental stages. In 
sheep the increased cortisol secretion is accompanied by 
an increased binding capacity for cortisol. Prior to term, 
there is an effective negative feedback mechanism by 
which cortisol inhibits fetal ACTH secretion. Estrogen 
selectively suppresses fetal zone growth during second half  
of  pregnancy. At term, human placental estrogen leads to 
positive feedback cycle with progressive increase in fetal 
HPA activity resulting in increase in ACTH and cortisol 
in last 10 weeks of  gestation. This helps in visceral and 
pulmonary maturity.[24] Placental release of  ACTH and 
CRH into fetal blood stimulates fetal HPA axis and effects 
parturition. AVP and catecholamines also stimulate fetal 
ACTH secretion.[25]

Adrenal development
The adrenal glands develop cephalad to the bilaterally 
developing mesonephros by 3-4 weeks.[26,27] The fetal adrenal 
is composed of, fetal zone producing C19 androgens, 
transitional zone producing cortisol and outer defi nitive 
zone producing mineralocorticoids. By 9-12 weeks, fetal 
zone is steroidogenically active. At term, fetal adrenal gland 
weighs 8 grams (80%=fetal zone).[12,26,27] Fetal adrenal cortex 
is developed by genes including SF-1 (steroidogenic factor-1) 
and DAX-1 (dosage-sensitive sex reversal, adrenal 
hypoplasia critical region, on chromosome X, gene 1), 
WT1 (Wilm’s tumor 1), LIM1 (lin-11, Isl1 and mec-3 
homologue) and growth factors like (FGF (fi broblast 
growth factor), (EGF (epithelial growth factor) and 

Figure 3: Relationship between hypothalamus, pituitary, and fetal and 
de and #64257; nitive zones of the fetal adrenal. Both zones of the fetal 
adrenal cortex are stimulated by ACTH secreted by the fetal anterior 
pituitary. The secretion of ACTH is stimulated acutely in response to 
stressors in utero, and chronically in a pattern that produces increased 
activity of the fetal hypothalamus–pituitary–adrenal axis independent of 
stressors at the end of gestation. CRH: Corticotropin releasing hormone, 
ACTH: Adrenocorticotropic hormone, DHAS: Dehydroepiandrosterone 
sulfate, AVP: Arginine vasopressin
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IGF-II (insulin like growth factor II), which are responsive 
to ACTH.[12] IGF-II augments ACTH stimulated expression 
of  steroidogenic enzymes. Definitive zone produces 
cortisol from 30 weeks.[12]

Adrenal steroidogenesis and regulation
The steroidogenic acute regulatory protein (StAR) is 
the rate-limiting factor in adrenal steroidogenesis. The 
fetal adrenal expresses fi ve steroidogenic apoenzymes: 
Two microsomal enzymes with 17-hydroxylase with 
17,20-lyase (CYP17) and 21-hydroxylase (CYP21A2) 
activities, respectively, plus two mitochondrial cytochrome 
P450 enzymes providing cholesterol side-chain 
cleavage (CYP11A1) and C11/C18 hydroxylation of  
the parent steroid structure (CYP11B1/CYP11B2). 
A fifth enzyme in smooth endoplasmic reticulum, 
exhibits both 3ß-hydroxysteroid dehydrogenase (3bHSD) 
and 4, 5-isomerase activities. Defi nitive zone secretes 
cortisol (sheep, human) and corticosterone (rodent) 
in response to ACTH and aldosterone in response to 
angiotensin II and potassium, early in gestation. With low 
3β HSD and high sulfotransferase activities, fetal zone 
produces DHEA, DHEAS, pregnenolone sulfate, several 
53ß-hydroxysteroids, and limited amounts cortisol and 
aldosterone.[26,27] ACTH stimulates steroid production 
by activating StAR and increasing delivery of  cholesterol 
to CYP 11A1; angiotensin II inhibits 3βHSD activity 
and promotes DHEA production in the fetal zone.[26] 
This provides DHEA substrate for placental estrogen 
production. The definitive zone contributes only a 
small fraction of  total fetal adrenal steroid output. The 
substrate cholesterol is derived from circulating low-density 
lipoprotein (LDL) (70%) and from de novo adrenal synthesis. 
The fetal zone contains more LDL binding sites and 
has greater cholesterol synthesis rate resulting in greater 
steroidogenic activity. Both fetal adrenal cortisol and 
placental estradiol regulate hepatic synthesis of  cholesterol 
in the fetus.

About two-thirds of  fetal cortisol is derived from the fetal 
adrenal glands, and one-third is derived from placental 
transfer. A total of  80% of  fetal cortisol is oxidized in fetal 
tissues or placenta by 11β HSD-II to cortisone or further 
metabolites. This isolates the fetus from maternal cortisol. 
As the fetus matures, the activity of  11β-HSD is increased, 
due to increased placental estrogen biosynthesis.[28] As term 
approaches, fetal liver and lung express 11-ketosteroid 
reductase activity that promotes local conversion of  
cortisone to cortisol.[26]

Adrenal hormones act through two nuclear receptors 
including glucocorticoidand mineralocorticoid 
receptors (GRs, MRs). GRs are present since mid-gestation 

in placenta, lung, brain, liver, and gut.[26,29,30] MRs are present 
from 12 to 16 weeks.[31] The human fetal adrenal gland 
secretes aldosterone, which is low in mid-gestation but 
increases 3-fold following caesarian section, and persists 
during the fi rst year of  extrauterine life.[26,32]

Adrenal medulla
The adrenal medulla becomes innervated by sympathetic 
preganglionic nerves at a 80% gestation (in sheep), and 
secretes catecholamines.[33] Prior to innervation, fetal 
adrenal is directly responsive to hypoxia. Biosynthesis 
of  epinephrine is dependent upon the expression of  
phenylethanolamine-N-methyltransferase (PNMT), 
induced by cortisol. Hence adrenal medulla secretes 
epinephrine in late gestation.

The adrenal medulla responds to hypoxia and hypotension 
with increased secretion of  catecholamines. This 
redistributes fetal ventricular output away from somatic 
tissues toward the umbilical–placental circulation. This also 
supports fetal glucose homeostasis; epinephrine secretion 
elevates plasma glucose following fetal distress.

HYPOTHALAMIC–PITUITARY–THYROID AXIS

In first trimester extrahypothalamic TRH stimulates 
pituitary TSH secretion, which mainly increases during 
second trimester. Progressive maturation of  hypothalamic 
pituitary control and of  thyroid gland responsiveness to 
TSH in late third trimester and early neonatal period leads 
to increased TSH and T4.[34,35] Pituitary TSH secretion 
responds to hypothyroxinemia and TRH early in third 
trimester.[36] The maternal and fetal HPT axes operate 
somewhat independently. The placental deiodinase 
converts T4 to rT3 and is relatively impermeable to T4 
and T3. The placenta is also impermeable to TRH, TSH, 
and thyroid-binding globulins. This leads to a gradient of  
T4 and T3 from maternal to fetal plasma. Early in gestation 
placental transfer is the only source of  fetal T4 and is 
essential for normal fetal brain development (between 12 
and 20 weeks, before fetal thyroid hormonogenesis).[37]

Thyroid development
The buccopharyngeal cavity gives rise to (a) a midline 
thickening of  pharyngeal floor (median anlage) and 
(b) paired caudal extensions of  the fourth pharyngobranchial 
pouches (lateral anlagen).[36,38] The median anlage extends 
to fourth branchial arch by 25 days. By 50 days, the median 
and lateral anlagen fuse and migrate caudally to anterior 
neck. Colloid is visible by 70 days with demonstrable 
thyroglobulin synthesis and iodide accumulation. At 
12 weeks, the fetal thyroid gland weighs 80 mg, which 
increases to 1-1.5 g at term. Genes involved in thyroid 
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and parathyroid development are HEX, TTF1, TTF2 and 
PAX8.[36,39,40]

Thyroid hormone secretion
In humans, thyroglobulin biosynthesis starts by 25% 
gestation. The adult thyroid follicular cell can modify iodine 
transport or uptake with changes in dietary iodine intake[41,42] 
during 36-40 weeks, Fetal TSH and T4 are discernible early 
in second trimester. Type 3 deiodinase (D3) converts T4 
to rT3 and is expressed in placenta, liver, and fetal skin 
leading to abundant fetal plasma rT3 circulating throughout 
the second and third trimesters. T3 concentrations increase 
in fi nal stages of  fetal development (30 weeks, suggesting 
late development of  types 1 and 2 deiodinases (D1 and 
D2, respectively)) in liver, kidney, brain, and other tissues 
in association with low placental D3 activity[43] [Figure 4]. 
High levels of  SULT (sulfotransferase) in fetal liver, lung, 
and brain by mid-gestation results in increased formation 
of  iodothyronine sulfates.[34,44,45] The sulfated metabolites 
accumulate as a result of  the low D1 activity in fetal tissues 
and because the sulfated iodothyronines are not substrates 
for D3.[41,44] Plasma T4-binding globulin and total T4 
concentrations increase progressively from low levels at 16-
18 weeks to maximal levels at 35-40 weeks. Free T4 levels also 
increase as a consequence of  the increased T4 production.

THYROID HORMONE ACTION

The circulating T3 levels at parturition (a) prepares fetal 
transition to extrauterine life and (b) stimulates maturation 
of  vision and hearing postnatally in the mouse and toward 
the end of  the second mid-trimester in the human fetus.[46] 
The period of  brain dependency for thyroid hormone 
extends postnatally to 2-3 years of  age, but the early weeks 
and months of  life are most critical.

Figure 4: The ontogeny of thyrotropin, T4, T3, and rT3 in fetal plasma. The 
relationship of thyrotropin, T4, T3, and rT3 is represented in the upper left 
corner of the fi gure. rT3- Reverse T3

Thyroid hormone actions are mediated via two nuclear 
receptors. The genes for receptors are expressed on 
chromosome 17 and 3 for TRα and TR β.[47] There are four 
receptor isoforms–TRα1, TRα2, TRβ1, and TRβ2. TRα2 is 
the auto inhibitory isoform and can inhibit binding of  other 
TRs. In human fetal brain, TRα1 and TRβ1 isoforms and 
receptor binding are present by 8-10 weeks; TRα1 isoforms 
increase 8- to 10-fold by 16-18 weeks.[36,48,49] Liver, heart, and 
lung receptor binding can be identifi ed by 13-18 weeks.[36,49,50] 
Knockout of  both the TRα and TRβ genes in mice results 
in elevated TSH levels, deafness, bradycardia, and decreased 
postnatal growth with delayed bone maturation.[36,47]

OTHER ANTERIOR PITUITARY HORMONES

Pituitary GH secretion starts by 8-10 weeks.[1] Fetal plasma 
GH levels in cord blood increases from 1 to 4 nmol/l 
at fi rst trimester to 6 nmol/l at mid-gestation. Human 
somatotrophs respond predominantly to GHRH at 
9-16 weeks; while response to the inhibitory somatostatin 
develops later in gestation[51] leading to progressive fall of  
plasma GH during second half  of  gestation to 1.5 nmol/l 
at term.[1] The response of  plasma GH to somatostatin, 
GHRH, insulin and arginine are mature at term in humans; 
however, mature responses to sleep, glucose and L-dopa 
are present by 3 months of  postnatal life. GH receptors 
are low in fetal liver and nutrition stimulates fetal IGF 
production.[52,53]

Fetal plasma prolactin levels are low until 25-30 weeks and 
increase to 11nmol/l at term.[1] Brain and hypothalamic 
control of  PRL matures in late gestation and during the 
fi rst months of  extrauterine life.[1] Estrogen stimulates 
PRL release leading to high last trimester fetal plasma PRL 
levels. PRL receptors in fetal tissues during fi rst trimester 
are implicated in fetal growth, skeletal maturation and 
adipose tissue maturation.[54]

POSTERIOR-PITUITARY

Neurohypophysis develops by 10-12 weeks.[55,56] AVP 
and oxytocin are synthesized by magnocellular neurons 
in supraoptic and paraventricular nuclei. AVP has 
three biological activities [Figure 5]. The vasopressor 
action on peripheral vessels is mediated by V1a. V1b 
and V2 receptors mediate Corticotropin-releasing and 
antidiuretic activity. It is less potent on fetal kidneys. 
AVP is an important fetal cardiovascular hormone.[57] 
During last trimester, fetal hypothalamic and pituitary 
responsiveness to both volume and osmolar stimuli 
for AVP secretion are well developed and AVP exerts 
antidiuretic effects on the fetal kidney.[55,56] AVP responds 
to hypoxia, hemorrhage, intrauterine bradycardia, 
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meconium passage, more than to osmolar stimuli.[56,58-60] 
It maintains maternal circulatory homeostasis through 
its vasoconstrictor action, but has a limited effect on 
fetoplacental blood fl ow.[55,60] Fetal hypoxia is also a major 
stimulus for catecholamine release. Both fetal hypoxia 
and AVP stimulate anterior pituitary function including 
ACTH.[60] Aquaporin-1, 2, and 3 receptors in fetal 
and newborn kidney regulate free water clearance.[61,62] 
Maximal concentrating capacity by the fetal kidney 
is limited to about 600 mmol/L. AVP redistributes 
fetal ventricular output toward the umbilical–placental 
circulation, maximizing transfer of  gases between 
maternal and fetal circulations.

Oxytocin circulates in fetal plasma in higher concentrations, 
which increase as the fetus matures and during active labor. 
The placental barrier prevents fetal oxytocin from reaching 
the myometrium. Oxytocin stimulates the release of  ACTH 
via V1b receptor.

INTERMEDIATE LOBE OF PITUITARY

Intermediate lobe cells begin to disappear near term and 
are virtually absent in the adult human pituitary.[63] The cells 
synthesize POMC, which after cleavage produces α-MSH 
and ß-endorphin and corticotropin and ß-lipotropin 
in anterior lobe in response to hypoxia.[64] α-MSH and 
corticotropin play a role in fetal adrenal activation, and 
α-MSH plays a role in fetal growth.[65,66] Neurointermediate 
lobe cells mature in late gestation, perhaps in response to 
cortisol in fetal plasma.[67]

ECTOPIC HORMONES

POMC secreted by the neuroendocrine cells of  fetal 
lung might play a role in stress responsiveness, or in the 
timing of  parturition, by altering adrenal sensitivity to 
circulating ACTH. The neuroendocrine cells also synthesize
VIP (vasoactive intestinal peptide) and serotonin.

Kidney, liver, and testes from 16- to 20-week-old human 
fetuses produce hCG in vitro.[12] ACTH like immunoreactivity 
is present in neonatal rat pancreas and kidney.[68] 
Hypothalamic neuropeptides are also present in fetal gut 
tissues. TRH and somatostatin are produced in neonatal 
rat pancreas and gastrointestinal tissues.[69,70] In human 
neonatal pancreas and blood, TRH and somatostatin 
are derived mostly from extrahypothalamic sources.[71,72] 
Extrahypothalamic TRH controls fetal pituitary TSH 
secretion before maturation of  hypothalamic TRH at 
term.[73]

OTHER ENDOCRINE SYSTEMS

Superior and inferior parathyroid glands develop 
respectively from 4th and 3rd pharyngeal pouches. 
Parafollicular C cells develop from 5th pouch between 
5 and 12 weeks.[36,38] The genes implicated are HOX15, 
GCMB, GATA3, CRKL, and TBX1.[74,75] High fetal calcium 
concentrations (11-12 mg/dl) are maintained by active 
transport from maternal serum through an ATP-dependent 
calcium pump across syncytiotrophoblast.[75] The placental 
calcium pump is activated by a mid-molecule portion of  
PTHrP (67-86 amino acids) secreted by fetal parathyroid 
gland and placenta. Parathormone (PTH) or parathormone 
related peptide (PTHrP) fragments 1-34 activate PTH/
PTHrP receptor leading to fetal skeletal calcium fl ux, 
calcium excretion through fetal kidney, renal 1, 25 (OH) 2 
D production, calcium reabsorption from amniotic fl uid. 
1, 25 (OH) 2 D acts to enhance maternal–fetal calcium 
transport.[75] The placenta is impermeable to PTH, PTHrP 
and calcitonin, but is permeable to 25 (OH) D and 1, 
25 (OH) 2 D.[75] Fetal hypercalcemia results in high blood 
levels of  calcitonin in fetus, contributing to fetal bone 
mineral accretion and inhibition of  bone resorption.[75] In 
addition, 25 (OH) D and 1, 25 (OH) 2 D play a role in fetal 
cartilage growth and bone mineral accretion.[76]

Fetal pancreas is identifi able by 4 weeks of  gestation with 
α and β cells developing by 8-9 weeks. Insulin, glucagon, 
somatostatin, and pancreatic polypeptide are measurable 
by 8-10 weeks.[77] α cells are more numerous than β cells 
in early fetal pancreas and peak at mid-gestation; β cells 
increase throughout second half  of  gestation and at 

Figure 5: The synthesis, release, and action of AVP in the fetus. 
Magnocellular neurons in the paraventricular nucleus synthesize 
vasopressin, releasing the peptide into the bloodstream at the posterior 
pituitary. Parvocellular neurons in the hypothalamic nucleus synthesize 
vasopressin, which is released into the hypothalamo–hypophyseal 
portal blood at the median eminence. Portal blood vasopressin acts as a 
corticotropin-releasing factor at the corticotrope of the anterior pituitary. 
BF: Blood fl ow, BP: Blood pressure, ACTH: Adrenocorticotropic hormone
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term α:β cells ratio is 1:1. Genes implicated in pancreatic 
development are PDX-1, HLXB9, ISL-1, or HES-1, 
whereas NGN3 or Beta 2 genes are responsible for 
endocrine development. Pancreatic β cells are functional 
by 14-24 weeks. Fetal rat pancreas releases insulin in 
response to leucine, arginbine, tolbutamide, or potassium, 
but respond minimally to glucose or pyruvate.[78-80] Similarly 
in monkey fetus, neither glucose nor arginine stimulates 
insulin release near term, but glucagon evokes insulin 
release. GH stimulates insulin gene expression and β cell 
hyperplasia and hypertrophy.[81] Fetal insulin unlike in adults, 
neither stimulates adenylate cyclase system, nor activates 
calcium channel.[80] Pancreatic glucagon concentrations are 
relatively high in fetal plasma and increase progressively 
with age.[78,79] The blunted capacity for insulin and glucagon 
secretion is due to defi cient capacity of  the fetal pancreatic 
islets to generate cyclic adenosine monophosphate (cAMP) 
or to destroy cAMP by phosphodieestrase.[78] Insulin and 
glucagon are not necessary for substrate metabolism in the 
fetus.[79] Glucose is obtained by placental transfer through 
facilitated diffusion. In addition, constant supply of  glucose 
precludes the necessity for endogenous gluconeogenesis 
and gluconeogenetic enzyme activity is low in fetal liver. 
Similarly glycogen storage in fetus is modulated by fetal 
glucocorticoids and human placental lactogen (HPL), with 
insulin playing a role at term.[78,79] But the fetal hepatic 
glucagon receptors are reduced in number leading to 
relative resistance of  fetal liver to the glycemic effect of  
glucagon.

ENDOCRINE REGULATION OF TRANSITION 
TO EXTRAUTERINE LIFE [FIGURE 6]

Adrenal cortex and autonomic nervous system are 
essential for extrauterine adaptation. In long term, 
there is adaptation to an environment of  intermittent 
nutrient supply and transient substrate defi ciency and 
maturation of  the PTH-calcitonin system and the 
endocrine pancreas.

Cortisol
At term, estrogens stimulate placental 11β HSD leading 
to increased conversion of  cortisol to cortisone. The 
resulting decrease in maternal-to-fetal cortisol transfer 
results in stimulation of  fetal CRH and corticotropin 
secretion through the negative-feedback control loop. 
Placental CRH potentiates fetal adrenal activation resulting 
in increased cortisol production by the fetal adrenal.[82] 
The cortisol surge augments surfactant synthesis in lung 
tissue with increased lung liquid reabsorption; stimulates 
adrenomedullary PNMT with increased methylation of  
NE to epinephrine; increases conversion of  T4 to T3 by 

hepatic D1; decreases sensitivity of  the ductus arteriosus 
to prostaglandins, which facilitates ductus closure; induces 
maturation of  several enzymes and transport processes of  
the small intestine; and stimulates maturation of  hepatic 
enzymes.[83] The increased T3 levels stimulate ß-adrenergic 
receptor binding, potentiate surfactant synthesis in lung 
tissue, and increase the sensitivity of  brown adipose 
tissue (BAT) to NE.

Delivery results in high neonatal cortisol levels despite 
lower plasma corticotropin concentrations. This is due 
to decreased inhibition of  adrenal 3βHSD by estrogen 
and removal of  placental CRH action on fetal pituitary 
corticotropin release. Plasma DHEAS and DHEA levels 
fall as the fetal adrenal atrophies.

Catecholamine surge
Parturition evokes catecholamine surge.[84] Plasma 
norepinephrine (NE) concentrations exceed epinephrine 
levels because of  peripheral and adrenomedullary and 
paraaortic catecholamine release. These changes lead to 
increased blood pressure and cardiac inotropic effects; 
increased glucagon and decreased insulin secretion; increased 
thermogenesis with increased free fatty acid levels; and 
pulmonary adaptation by surfactant release.[84]

Figure 6: Actions of cortisol and catecholamines during fetal adaptation to 
the extrauterine environment. The prenatal cortisol surge acts to promote 
functional maturation of several organ systems as indicated. The neonatal 
catecholamine surge triggers or potentiates a number of the extrauterine 
cardiopulmonary and metabolic functional adaptations that are critical to 
extrauterine survival. See text for details. BAT: Brown adipose tissue, 
E: Epinephrine, NE: Norepinephrine, T3: Triiodothyronine, T4: Thyroxine
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Others
• BAT is the major site of  thermogensis, seen 

maximally around kidney and adrenal glands, peaking 
at birth.[85] BAT mitochondria rich containing 
uncoupling protein-1 (UCP-1/thermogenin) that 
uncouples oxidation and phosphorylation of  
adenosine diphosphate, reduces ATP production, 
and consequently enhances thermogenesis.[85] D1 in 
BAT deiodinates T4 locally to T3, which stimulates 
thermogenin.[85] Catecholamine release is the stimulus 
for BAT thermogenesis in early neonatal period

• The neonate shifts from a high-calcium environment 
regulated by PTHrP and calcitonin to a low-calcium 
environment controlled by PTH and vitamin D. 
The relatively obtunded PTH response and the high 
calcitonin levels lead to a 2-3 day period of  transient 
neonatal hypocalcemia.[86] Inhibition of  calcitonin 
secretion and stimulation of  PTH secretion gradually 
result in increased serum calcium levels in the 
neonate. Low glomerular fi ltration and reduced renal 
responsiveness to PTH helps in calcium homeostasis in 
the newborn. These factors limit phosphate excretion 
and predispose the neonate to hyperphosphatemia, 
particularly if  the diet includes high-phosphate milk 
such as unmodifi ed cow’s milk. PTH secretion and 
calcium homeostasis usually return to normal in 
1-2 weeks in full-term infants and within 2-3 weeks in 
the small premature infant

• Postbirth TSH increase is due to cooling of  the neonate 
in the extrauterine environment.[34,36] The TSH surge 
peaks (70 mU/l) at 30 minutes leading to increased 
secretion of  T4 and T3. Additionally increased hepatic 
conversion of  T4 to T3 maintains the T3 level of  105-
220 ng/dL. The reequilibration of  thyrotropin levels 
to the normal extrauterine range is probably due to 
the readjustment of  prevailing serum T3 levels and 
to maturation of  feedback control of  thyrotropin by 
thyroid hormones during the early weeks of  life.[35,36] 
Production of  rT3 by fetal and neonatal tissues abates 
by 3-4 weeks of  age

• Placental withdrawal of  glucose supply leads to 
neonatal hypoglycemia,[78,79] which stimulates glucagon 
and catecholamine secretion while suppressing insulin 
secretion. This depletes hepatic glycogen stores. High 
glucagon/insulin ratio stimulates gluconeogenesis and 
normalized plasma glucose after 12-18 hours.[79] In the 
healthy term infant, glucose homeostasis is achieved 
within 5-7 days of  life; in premature infants, 1-2 weeks 
may be required

• Placental extraction leads to fall in fetal estrogen, 
progesterone, hCG, and HPL levels. The hypoestrogenic 
state removes major stimulus to fetal pituitary PRL 

release, and PRL levels decrease within several weeks. 
The relatively delayed fall may be due to lactotrope 
hyperplasia in the fetal pituitary or to delayed maturation 
of  hypothalamic dopamine secretion. The gradual fall 
of  GH levels during the early weeks of  life is due to 
delayed maturation of  hypothalamic-pituitary feedback 
control of  GH release.[1] IGF-I and IGF-II levels fall to 
infantile values within a few days, presumably because 
of  the removal of  placental HPL and placental IGF 
production

• In male infants, after a transient fall in testosterone 
levels as the hCG stimulus abates, pituitary LH secretion 
rebounds with secondary surge of  estosterone.[1] In 
females, a transient, secondary surge in FSH may 
transiently elevate estrogen levels.

MANIPULATION OF FETAL ENDOCRINE 
DEVELOPMENT DUE TO ENVIRONMENTAL 
CHALLENGES

Exposure to nutritional and environmental challenges 
like hypoglycemia and hypoxemia leads to resetting of  
fetal growth trajectory and endocrine function. These 
developmental adaptations result in infertility, hypertension, 
obesity and insulin insensitivity in adults.[87] Fetus with 
either a disproportionately large or small placenta leads 
to altered placenta: Fetal size ratio resulting in increased 
mortality.

Response to placental insufficiency (hypoglycemia/
hypoxemia) [Figure 7]
• Prolactin and its receptor in adipose tissue have a critical 

role in fetal development. When maternal nutrition is 
enhanced, abundance of  prolactin receptor is associated 
with higher UCP-1 concentration.[85] This facilitates the 
fetal metabolic response at birth and minimizes risk 
of  hypothermia when volume: Surface area is greater 
than in singleton births. Placental insuffi ciency leads to 
decrease in prolactin receptor in brown adipose tissue 
and may impact on thermoregulation after birth[88]

• Fe ta l  p l a sma  concent ra t ions  o f  anabo l i c 
hormones (insulin, IGF-I, prolactin and thyroid 
hormones) near term are normally decreased (with the 
exception of  IGF-II), in accordance with the degree 
of  fetal hypoxaemia or hypoglycaemia.[89] Plasma 
concentrations of  catabolic hormones like cortisol 
and catecholamines are higher. The capacity of  the 
fetal adrenal medulla to synthesize catecholamines 
is potentially impaired from at least mid-gestation in 
placentally restricted fetuses in view of  suppression of  
adrenaline-synthesizing enzyme PNMT.[90] Even though 
plasma noradrenaline concentrations are signifi cantly 



Kota, et al.: Fetal endocrinology

Indian Journal of Endocrinology and Metabolism / Jul-Aug 2013 / Vol 17 | Issue 4576

CONCLUSION

Various genes, hormones, and growth factors act as cellular 
communicating cascade leading to maternal–placental–
fetal interactions and fetal maturation. Fetal endocrine 
system plays a signifi cant role in helping the fetus adjust to 
extrauterine environment. Use of  functional genomics and 
the ability to determine a large range of  molecular responses 
within fetal organs and tissues after hormonal stimulation 
should greatly facilitate understanding of  the consequences 
of  fetal endocrine adaptation to perturbations of  the 
intrauterine environment.
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