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ABSTRACT
Gastric cancer is currently the second leading cause of cancer-related death 

worldwide, especially in Japan, Korea and China, and the 5-year survival rate of 
gastric cancer is less than 30%. Thus, it is important to shed more lights on novel 
agents to prevent gastric cancer or to improve survival rate of the patients. Vitamin 
D not only maintains calcium and bone homeostasis, but also mostly inhibits tumor 
genesis, invasion, and metastasis through activation of vitamin D receptor. Although 
epidemiological results are not consistent, accumulating evidence from gastric cancer 
cells, animal models, and clinical trials suggest that vitamin D deficiency may increase 
the risk and mortality of gastric cancer, but vitamin D supplement might be a safe 
and economical way to prevent or treat gastric cancer. Here, we reviewed the current 
studies on vitamin D and its receptor and focused on the pathogenic roles of their 
alterations in gastric tumorigenesis.

INTRODUCTION

Gastric cancer is the fourth most common cancer 
and the second leading cause of cancer-related death in 
the world. An estimated 1 million new cases of gastric 
cancer occurred and over 0.7 million patients died 
worldwide in 2012 only [1]. Currently, gastric cancer 
is difficult to prevent and cure because of the poor 
understanding of its pathogenesis and difficulty in its 
early diagnosis. Even worse, the future burden of gastric 
cancer is expected to rise with the increase in worldwide 
population and aging process [2]. Therefore, gastric cancer 
is regarded as a major public health problem in the world. 
Multiple therapies (surgery, chemotherapy, radiotherapy, 
immunotherapy, etc.) are applied to gastric cancer 
although surgical resection is considered the primary 
choice for the early stage [3, 4]. Despite of much progress 
in the pathogenesis, diagnosis and treatment of gastric 
cancer, its 5-year survival rate is still less than 30% [5]. 
Therefore, it is urgent to investigate gastric tumorigenesis 
and to elucidate the underlying molecular mechanisms so 

that the best ways for preventment and treatment could 
be developed to decrease the current high morbidity and 
mortality of gastric cancer.

It is well known that vitamin D plays an important 
role in maintaining calcium and bone homeostasis and 
participates in a variety of biological processes in our body 
as well [6]. It has long been thought low vitamin D status 
and inadequate calcium intake are important risk factors 
for various types of human cancer. As early as in 1980, 
the ultraviolet-B (UVB)-vitamin D-cancer hypothesis 
was first proposed by Garland [7] who demonstrated that 
vitamin D is a protective factor against the development 
of colon cancer. Since then, numerous studies have 
shown that vitamin D could inhibit the tumorigenesis and 
prevent tumor progression of breast, colon, skin, pancreas 
and many other cancers [8-12]. The potential anti-tumor 
mechanisms of vitamin D may be relevant to its specific 
receptor, vitamin D receptor (VDR) [13]. VDR is a 
member of the steroid hormone receptor superfamily of 
ligand-activated transcription factors [14]. An interaction 
of vitamin D and VDR can induce a cascade of gene 
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regulation and cell signaling to play important roles in 
their anti-tumor mechanisms, such as suppression of 
proliferation, stimulation of apoptosis and autophagy, 
inhibition of angiogenesis, regulation of immune system 
and so on [15, 16]. Although several reviews on vitamin D 
and VDR in some types of human cancer were published, 
there is no a systematic review on their roles in gastric 
cancer in the literatures so far. Therefore, in this review, 
we try to assess the association between vitamin D/VDR 
and gastric cancer, to explore their multiple anti-tumor 
mechanisms, and to analyze the safety and validity of 
vitamin D in the clinical therapy for gastric cancer. 

VITAMIN D: SOURCES, METABOLISM 
AND RECEPTOR

Vitamin D sources

Vitamin D is not really a vitamin but a prohormone 
of the steroid hormone calcitriol, which was first 
discovered and named by McCollum in 1922 [17]. 
Although at least ten kinds of vitamin D have been 
found, the most important forms of vitamin D relevant to 
human health are vitamin D2 (ergocalciferol) and vitamin 
D3 (cholecalciferol). However, vitamin D2 and D3 are 

shortage in our normal dietary [18]. Abundant vitamin 
D is synthesized in the skin when exposed to sunlight 
[19]. In brief, the UVB (290-315nm) transforms 
7-dehydrocholesterol into previtamin D3 in the skin, 
and then previtamin D3 is further converted into vitamin 
D by thermal isomerization [20, 21]. In addition, food 
supplement, such as normal dietary (the least source of 
vitamin D), fortified food (egg, milk, salmon, etc.) and 
concentrated natural food (e.g. cod liver oil), is another 
subordinate source of vitamin D [22].

Vitamin D metabolism

Since 1α,25-dihydroxyvitamin D (1α,25(OH)2D3, 
calcitriol) nor vitamin D is the most active metabolite 
in our body, vitamin D needs two important cytochrome 
P450-mediated hydroxylation steps in the metabolism. 
Firstly, vitamin D obtained from both dietary and skin is 
converted to 25-hydroxyvitamin D3 (25(OH)D3) by the 
hepatic 25-hydroxylases (CYP27A1) after transporting to 
liver via the vitamin D binding protein. Secondly, 25(OH)
D3 is hydroxylated again in the kidney by the enzyme 
25-hydroxyvitamin D-1α-hydroxylase (CYP27B1) to yield 
calcitriol (Figure 1). Of course, vitamin D metabolism is 
alternatively proceeded in other organs and/or cells and is 
regulated by parathyroid hormone, fibroblast growth factor 
23, and calcitriol itself [23-26]. 

Figure 1: Transforming pathways of vitamin D in human body. Vitamin D can be obtained from foods and synthesized through 
convertion of 7-dehydrocholesterol by UVB in the skin. The absorbed vitamin D transports into liver by binding to vitamin D binding 
protein (DBP), then vitamin D is hydrolysed into form 25-hydroxyvitamin D3 (25(OH)D3) by 25-hydroxylase in the liver. Again, 25(OH)
D3 is hydrolysed into form 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in the kidney.
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Vitamin D receptor

As mentioned above, the biological function of 
calcitriol is primarily mediated by vitamin D receptor, 
which is composed of 427 amino acid residues and belongs 
to the superfamily of steroid/thyroid hormone receptor 
[13]. VDR regulates biological function of calcitriol by 
two mechanisms, one involves transcriptional regulation 
of nuclear VDR, and the other involves nongenomic signal 
transduction pathways of membrane VDR [27]. The first 
one is the most studied anti-tumor mechanism of vitamin 
D. When activated by calcitriol, the phosphorylated 
nuclear VDR forms homodimers or heterodimers VDR-

RXR with one of the retinoid X receptors (RXR), then 
the calcitriol-VDR-RXR complex translocates into 
nucleus and attaches to the vitamin D response elements 
(VDREs) in the promoters of target genes, causing the 
recruitment of co-activators or co-repressors to regulate 
gene expression in target cells [28, 29]. In addition to the 
genomic responses mediated by nuclear VDR, membrane 
VDR mediates rapid responses pathways within 1-2 min 
to 15-45 min, including intestinal absorption of Ca2+ 
(transcaltachia) [30], secretion of insulin by pancreatic 
β-cells [31], opening of voltage-gated Ca2+ and Cl- 
channels in osteoblasts and sertoli cells [32, 33], and 
migration of endothelial cells [34]. 

Table 1:  Study on correlation of sun exposure and gastric cancer

Study design Study period
/Participants Vitamin D index Outcome Summary of findings References 

(year, country)

Ecologic study 1970-1994 TOMS DNA-
weighted UVB 

Mortality of 
premature 

gastric cancer 
Inverse correlation 
P < 0.001

Grant et al. 
(2002,US)

Ecologic study 1961-1990
Average annual 
hours of solar 

radiation 
Mortality of 

gastric cancer
Inverse correlation 
P < 0.001

Mizoue
(2004, Japan )

Ecologic study 1993-2002 
Latitude and 

Annual erythemally 
weighted UVB

Mortality and 
incidence of 

gastric cancer 
Inverse correlation
P < 0.001

Boscoe et al.
(2006,US)

Ecologic study 1990-1994
Latitude and 

dietary supply 
factors

Mortality and 
incidence of 

gastric cancer
Inverse correlation 
P < 0.05

Grant et al.
(2006, western
European)

Ecologic study 1970-1994 TOMS DNA-
weighted UVB 

Mortality of 
gastric cancer

Inverse correlation 
P < 0.001

Grant et al.
(2006,US)

Ecologic study 1978-1992
Latitude, skin 

cancer and 
melanoma

Mortality of 
gastric cancer

Inverse correlation 
p < 0.01

Grant et al.
(2007, Spain)

Case-control 416,134 cases
3,776,501controls

Skin cancer and 
sunexposure 

Incidence of 
gastric cancer

Inverse correlation
SIR: 0.65
95%CI:0.45–0.91

Tuohimaa et al.
(2007,Five 
Continents)

Ecologic study 1950-1994 TOMS DNA-
weighted UVB

Mortality of 
gastric cancer

Inverse correlation 
p < 0.001

Grant et al.
(2010, US)

Ecologic study 1998–2002
UVB from NASA 
database and GIS 

methods
Mortality of 

gastric cancer 
Inverse correlation 
p < 0.001 

Chen et al.
(2010, China)

Nested case-
control

115,016 cases
987,893controls Skin cancer Incidence of 

gastric cancer 
No correlation
OR:1.00 
95%CI:0.85–1.17

Lindelof et al.
(2012, Swedish)

Ecologic study 2000-2002
UVB intensity from 

NASA database 
and spatial Kriging 

method

Mortality of 
gastric cancer

Inverse correlation
HR:0.89 
95%CI:0.83-0.95

Chen et al.
(2013,China)
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VITAMIN D/VDR AND GASTRIC 
CANCER: EPIDEMIOLOGICAL DATA 

Ultraviolet B (UVB) and vitamin D in gastric 
cancer

Abundant vitamin D is synthesized in the skin 
by UVB, which is commonly regarded as the major 
vitamin D . Since Frank Garland proposed the UVB-
vitamin D-cancer hypothesis in 1980 [7], more and 
more epidemiology studies support that UVB related 
vitamin D deficiency is an important risk factor of cancer 
incidence and mortality in recent years [35-38]. In the 
stomach, almost all epidemiological data support a strong 

inverse association between sunlight exposure and cancer 
incidence and/or mortality rates [34-44] (Table 1).

Ecological studies in predominantly European 
populations reported higher cancer survival in areas of 
higher solar UVB irradiation [39], indicating that high 
vitamin D status can improve gastric cancer survival. 
Chen [40] also found the 5-year survival proportions for 
gastric cancer were inversely associated with ambient 
UVB in the developing countries. In particular, Boscoe 
[41] extended the analysis of this relationship to include 
cancer incidence as well as mortality. After studying over 
three million cancer cases between 1998-2002 in the 
United States and three million cancer deaths with daily 
satellite-measured solar UVB levels between 1993-2002, 
they found an inverse relationship between solar UVB 
exposure and cancer incidence and mortality for 10 types 

Table 2: Studies on vitamin D intake and serum vitamin D status in the patients with gastric cancer

Study design Participants Exposure 
to

Methods of 
measurement Outcome Summary of findings

References
(year, 
country)

Case–control
(7y)

723 cases
2,024 controls

Vitamin D
intake Diet history Risk of gastric 

cancer
Positive correlation
OR:1.35
95%CI:1.00-1.83

Vecchia  et al. 
(1994,Italy)

Case-control
(10y)

230 cases
547 controls

Vitamin D
intake

Food  frequency 
questionnaire

Risk of gastric 
cancer

No significant correlation
OR:1.33
95%CI:0.80-2.21

Pelucchi  et 
al.
(2009, Italy )

Prospective 
cohort(24y) 1,105 people Serum 

25(OH)D ELISA
Mortality of upper 
gastrointestinal 
cancers

No correlation
HR:0.97
95%CI:0.88-1.06

Lin et al.
(2012,China)

Prospective 
cohort( 5.25y) 2084 people Serum 

25(OH)D ELISA Risk of gastric 
cancer

No significant correlation
HR:1.77
95%CI:1.16– 2.70

Chen  et al.
(2007,China)

Pooling
project

1,065cases
1,066 controls

Serum 
25(OH)D ELISA Risk of  gastric 

cancer
Inverse correlation
OR=0.65(>100nmol/L)
95%CI:0.26-1.62

Abnet  et al.
(2010,US, 
Finland
and China)

Prospective 
cohort(14y) 51,529 men Predicted 

25(OH)D
Model predicting
25(OH)D

Risk of gastric 
cancer

Inverse correlation
RR = 0.58
95%CI=0.26-1.33

Giovannucci 
et al.
( 2006,US)

Retrospective 
case-control

49cases
49controls

Serum 
25(OH)D ELISA

Risk of gastric 
adenocarcinoma 
with
VD deficiency

Positive correlation
OR=3.8
95%CI:1.42-10.18

Vyas et al.
(2016,US)

Case-control 68 cases
20 controls

Serum 
25(OH)D ELISA Level in gastric 

cancer
Increased in gastric cancer
P=0.036

Fidan et al.
(2010, 
Turkey)

Observational 
study 197cases Serum 

25(OH)D ELISA
An independent 
prognostic factor 
of gastric cancer

Inverse correlation
P=0.019

Ren et al.
(2012,china)

Prospective 
cohort

43,468White 
men
481 Black men

Vitamin D
Intake Dietary

questionnaire

Gastric cancer   
mortality and  
incidence
with 
hypovitaminosis D

Increased  incidence
RR=1.57 95% CI=1.16-2.11
Increased mortality
RR=2.27 95%CI=1.57-3.28

Giovannucci 
et al.
(2006,US)
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of cancer, including gastric cancer. Following this initial 
finding, the protection role of UVB in gastric cancer was 
continually reported worldwide [42-44]. The people with 
deficiency of synthesis vitamin D in the skin are also in 
the high risk and/or mortality of gastric cancer [40-43]. 
For example, the premature with inadequate doses of solar 
UVB radiation showed increased gastric cancer mortality 
in the U.S. [45], the Blacks with low vitamin D levels 
were found to have higher risk of cancer incidence and 
mortality especially in digestive system [46]. To further 
assess whether patients with skin cancer have an altered 
risk of developing other cancers, a study found that 
the patients with skin cancer really have a high risk of 
developing other cancers, and the standardized incidence 
ratio of gastric cancer in sunny countries was significant 
lower than in less sunny countries (SIR(S)/ SIR(L) 0.61, 
95%CI 0.38-0.9). Moreover, the apparently protective 
effect of sun exposure against second primary cancer 
was more pronounced after non-melanoma skin cancers 
than melanoma [47]. This result was also reported in an 
ecologic study of cancer mortality rates in Spain [48]. 
However, another case control study from Sweden [49] 
showed divergent result, the cases with the diagnosis 
of basal cell carcinoma in skin had an increased risk of 

getting another form of cancer, and had no correlation with 
gastric cancer (OR 1.00, 95%CI 0.85-1.17). One limitation 
of this study is the exposure factor bias, whereby the study 
completely neglects the factor of sun exposure to patients, 
which may lead to this contradiction. More convincingly, 
Grant [50] found that solar UVB and vitamin D can 
reduce the risk of gastric cancer using Hill’s criteria for 
causality. But most of these epidemiological results are 
from ecologic studies, further investigations to directly 
measure vitamin D status in vivo are needed. 

Vitamin D intake and serum vitamin D in the 
patients with gastric cancer

Although the protective role of vitamin D from 
solar UVB on gastric cancer is obvious, the relationship 
between vitamin D intake and serum vitamin D in the 
patients with gastric cancer is inconsistent. There are 
about ten cohort studies in all (Table 2). These studies 
measured serum concentrations of 25(OH)D3 as serum 
vitamin D status, and assessed dietary vitamin D intake 
by a diet history questionnaire [51, 52], or food frequency 
questionnaire [53, 54]. 

Figure 2: The anti-cancer mechanisms mediated by vitamin D and its analogues through VDR activation in gastric 
cancer cells. Four cellular signaling pathways are likely involved in the anti-cancer mechanisms of vitamin D: 1) it inhibits mammalian 
DNA polymerase α to halt NUGC-3 human gastric cancer cells at the G1 phase in the cell cycle, 2) it blocks cell cycle of gastric cancer cells 
by decreasing the expression of cyclin-dependent kinase, CDK2, CDK4, CDK6 and Cyclin D1, 3) together with VDR, Egr-1 and p300 it 
induces gastric cancer cell apoptosis through PTEN upregulation, and 4) it acts as an antagonist of hedgehog signaling to suppress viability 
of gastric cancer cells. CDK: cyclin dependent kinase; PTEN: phosphatase and tensin homolog deleted on chromosome 10; Egr-1: early 
growth response gene 1; Hh: hedgehog.
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The latest cohort study from China [55]investigated 
whether baseline serum 25(OH)D3 concentrations were 
associated with all-cause mortality and cause-specific 
mortality rates over 24 years of follow-up (1986-2010). 
They found that serum 25(OH)D3 concentrations were 
not associated with the mortality of upper gastrointestinal 
cancer in Chinese population. Similarly, Pelucchi [53] and 
Chen [56] did not find a significant relationship between 
dietary intake of vitamin D and risk of gastric cancer. 
However, another study [57] reported a non-statistically 
significant but suggestive inverse relationship between 
vitamin D status and risk of gastric cancer. In particular, 
the Cohort Consortium Vitamin D Pooling Project of Rarer 
Cancers (VDPP) brought together 10 cohorts to conduct a 
prospective study of the association between vitamin D 
status and upper gastrointestinal cancers. In multivariate 
adjusted models, circulating 25(OH)D3 concentrations 
were not significantly associated with the risk of upper 
gastrointestinal cancer, but higher concentrations of 
25(OH)D ( > 100 nmol/L) were inversely associated with 
the risk of gastric cancer (OR:0.65, 95% CI 0.26-1.62) 
[57]. However, some studies found a positive association 
between vitamin D and the risk of gastric cancer [52, 
58]. Such as in a case-control study from Italy [52], a 
significant positive association was reported between 
vitamin D intake and the risk of gastric cancer (OR: 1.35, 
95% CI: 1.00-1.83).

On the contrary, some studies support the notion 
of vitamin D-reduced the incidence and mortality of 
gastric cancer [54-56]. A retrospective case-control study 
revealed that the prevalence of vitamin D deficiency in 
gastric adenocarcinoma group was significantly higher 
than that in the control group (OR: 3.8, 95% CI:1.42-
10.18, P:0.0079), suggesting a positive correlation 
between vitamin D deficiency and incidence of gastric 
adenocarcinoma [59]. A Health Professionals Follow-
Up study found an increment of 25 nmol/L in predicted 
25(OH)D3 level was associated with a 17% reduction in 
total cancer incidence, a 29% reduction in total cancer 
mortality, and a 45% reduction in digestive cancer 
mortality, particularly in gastric cancer. It was therefore 
recommended that at least 1500 IU/day may be necessary 
for the vitamin D supplementation to prevent digestive 
cancer mortality [60]. Ren [61] also reported an inverse 
association of serum 25(OH)D3 concentrations with 
clinical stage and lymph node metastasis of gastric cancer, 
suggesting that serum vitamin D level is a significant 
independent prognostic factor and vitamin D deficiency is 
associated with poor prognosis in gastric cancer. 

As mentioned earlier, dietary vitamin D intake is 
a minimum source for the levels of circulating serum 
vitamin D since only 3 ng/mL differences were found 
in measured serum vitamin D between high and low 
dietary intake [62]. Besides, serum vitamin D status in 
most studies were based on one-time blood collection 

only, it is obvious that a single measurement of serum 
vitamin D cannot reflect real exposure to vitamin D in 
an etiologically relevant period. Even more, vitamin D 
status not just refer 25(OH)D3 but include 1α,25(OH)2D3 
and vitamin D binding to DBP since a very little vitamin 
D circulates as a free form of 25(OH)D3 [63]. All these 
may make an inconsistent relationship between vitamin D 
status and gastric cancer. 

Vitamin D receptor in gastric cancer

The biological function of vitamin D, especially its 
anticancer effects, are largely through activation of VDR 
[64, 65], which is required to suppress tumorigenesis and 
may be a new target for cancer chemoprevention and/or 
chemotherapy [66]. It has been reported that a higher VDR 
expression is associated with reduced mortality, favorable 
tumor characteristics and an improved prognosis in breast, 
prostate and colon cancer [67-70]. One study from China 
[71] reported similar results that VDR expression was 
significantly lower in gastric cancer tissues, and that 
among cancer tissues VDR was higher expressed in well 
and moderate differentiated tissues and in small tumors, 
indicating that VDR could be a prognostic factor for 
gastric cancer. 

Most VDR gen polymorphisms were identified 
since 1997 [72], and about six gen polymorphisms were 
found to be associated with cancers [73-75]. A case-
control study [76] revealed a strong relationship between 
VDR TaqI(T/T) and the susceptibility of Chinese Han 
population to gastric cancer. Another study in Chinese 
Han population [77] revealed the patients of gastric cancer 
with the ƒ allele (Fƒ+ƒƒ) had higher risk of a poorly 
differentiated type of gastric cancer. This finding has been 
reproduced in Uygur [78].

Vitamin D binding protein in gastric cancer

Vitamin D binding protein (DBP), a key protein 
in vitamin D metabolism, also mediates the biological 
function of vitamin D [79]. Several studies [80] have 
investigated serum DBP levels and DBP polymorphisms 
in association with cancer risk. Humphries [81] has 
validated DBP as one of the novel biomarkers of human 
gastric cancer. Two common coding single nucleotide 
polymorphisms (SNP) were identified in DBP gene, 
Glu416Asp (rs7041) and Thr420Lys (rs4588) [82]. 
Zhou [83]found that DBP Thr420Lys and Glu416Asp 
polymorphism had significant impact on the risk of 
developing gastrointestinal cancers in Chinese population. 
So far, the evidence is too little to confirm the relationship 
between DBP and gastric cancer, but it sheds some light to 
further study on DBP in gastric cancer.
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VITAMIN D/VDR AND GASTRIC 
CANCER: LABORATORIAL RESEARCH

Vitamin D in animal models of gastric cancer

The anti-tumor effects of vitamin D have been 
extensively studied in animal models. Since vitamin 
D has the side effect of hypercalcemia, its analogs are 
widely used. Hiroki [84] found that 1α(OH)D3, a synthetic 
analogue of vitamin D3, markedly inhibited the inductions 
of ornithine decarboxylase (ODC) activity by promoters 
of carcinogenesis in the stomach, suggesting an anti-
tumor effect of vitamin D on gastric carcinogenesis. 
Vitamin D analogue 1α(OH)D3 largely reduced the 
incidence of gastrointestinal tumors induced by N-methyl-
N’-nitro-N-nitrosoguanidine in male Wistar rats [85]. 
24R, 25-dihydroxyvitaminD3, a vitamin D3 derivative, 
also had chemopreventive effects on glandular stomach 
carcinogenesis in rats possibly by influencing calcium 
pharmacodynamics [86]. All of these results suggest that 
vitamin D and its analogs can inhibit the occurrence and 
development of gastric cancer in animal models. 

Vitamin D regulation of specific signaling 
pathways in gastric cancer cells

Although abundant evidences from epidemical 
studies and animal models suggest vitamin D could 
obviously inhibit gastric cancer in vivo, its antitumor 
mechanisms are unclear. Some evidence indicate that 
vitamin D could block cell cycle, induce apoptosis and 
inhibit cell invasion and metastasis (Figure 2.) [87, 88]. 

Selective inhibitors of mammalian DNA polymerase 
α, vitamin D2 and D3 could halt NUGC-3 human gastric 
cancer cells at the G1 phase in the cell cycle [89]. Park 
[90] found that 19-nor-1,25-dihydroxyvitamin D2, a 
vitamin D analog, could block cell cycle of MKN45 
gastric cancer cells by decreasing the expression of cyclin-
dependent kinase(CDK), CDK2, CDK4, CDK6 and Cyclin 
D1. Functional VDR elements have been identified in the 
promoter of PTEN, suggesting that vitamin D may play 
a role in the regulation of PTEN expression as a nuclear 
transcription factor [91]. A study [92] demonstrated that 
vitamin D induced apoptosis through PTEN upregulation 
in HGC-27 gastric cancer cells, and that vitamin D 
receptor, Egr-1 and p300 induced PTEN expression in a 
synergistic fashion. Another study indicated that EB1089, 
a vitamin D analog induced gastric cancer cells apoptosis 
through a VDR and mitochondrial apoptosis pathway, 
which was blocked by treating the cells with VDR siRNA 
or butin, an inhibitor of the mitochondrial apoptosis 
pathway [93]. 

Since Hedgehog signaling pathway plays an 
important role in the pathogenesis and the prognosis of 

gastric cancer, targeting this pathway is a new potential 
therapeutic opportunity in gastric cancer [94]. Vitamin D3 
may act as an antagonist of hedgehog signaling to suppress 
viability of gastric cancer cells, and it also has a synergistic 
effect with other anticancer drugs by reducing mRNA 
expression of the target genes of hedgehog signaling ( 
Ptch1, Gli1, cyclin D1 and bcl2) [95]. Co-treatment with 
cisplatin and 1α,25(OH)2D3 enhanced cisplatin-mediated 
cell growth inhibition and cell apoptosis of human gastric 
cancer cells with an upregulation of Bax, a decrease in 
ERK and AKT phosphorylation levels, and an increase in 
p21 and p27 levels [96]. 

Vitamin D up-protein1

Vitamin D3 upregulated protein 1 (VDUP1) is a 46 
kDa protein upregulated by 1α,25(OH)2D3 [97]. VDUP1 
has an antitumor activity by forming a transcriptional 
repressor complex, which induced cell-cycle arrest at 
the G0/G1 phase and suppressed cell invasiveness and 
tumor metastasis [98, 99]. In clinic, VDUP1 expression 
is significantly lower in gastric cancer tissue than in their 
adjacent normal tissue and the downregulation of VDUP1 
expression is associated with poor prognosis [100]. 
Kwon [101] found that VDUP1 negatively regulates 
Helicobacter pylori-associated gastric carcinogenesis in 
mice by disrupting cell growth and inhibiting the induction 
of TNFa, NF-kB and COX-2, suggesting that VDUP1 
may serve as a potential target for the development of 
anticancer agents for gastric cancer. 

Viatmin D with H. pylori and microRNA

Helicobacter pylori (Hp) infection plays an 
important pathogenic role in most gastric cancer cases 
[102, 103]. International Agency for Research on Cancer 
(IARC) classified Hp as a group 1 carcinogen in 1994, 
and reconfirmed this classification in 2009 [2]. A cross-
sectional study found a significant positive correlation 
between the levels of serum 25-OH vitamin D and serum 
Hp specific IgG antibody titers, indicating that vitamin D 
analog may have antibacterial action against Hp [104]. 
Kouichi Hosoda [105] further confirmed Vitamin D3 
decomposition product (VDP1) can exert an antibacterial 
action against Hp by inducing a collapse of cell membrane 
structures of Hp and ultimately lysing the bacterial cells. 
These findings suggest that VDP1 may become a new 
antibacterial substance against Hp. 

MicroRNAs (miRNAs) are short, single strands 
of noncoding RNA with important functions in mRNA 
translation and regulation of cell cycle and apoptosis 
[106]. It was reported that miR145 induced by 1α, 
25(OH)2D3 through VDR could inhibit colony formation, 
gastric cancer cell viability and induce cell arrest at 
S-phase by targeting E2F3 and CDK6. This might hold 
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promise for prognosis and therapeutic strategies for gastric 
cancer [107].

Vitamin D/VDR in immunity

In the last few years, accumulating evidence 
indicates an important modulatory role of vitamin D/VDR 
in adaptive and innate immune cells [108-110], which 
is distinct from their classical anti-tumor roles. After 
identification of VDR in series immune cells, numerous 
cellular and molecular targets of VDR in the immune 
system have been elaborated [111, 112]. VDR regulates 
all stages of a T cells life, ranging from development to 
differentiation and elicitation of effector functions [113]. 
Likewise, VDR is essential for Th2 cell function, and 
vitamin D could increase the activities of regulatory T 
cells and Th2 cells while suppressing Th1 cell activity 
[114, 115]. In antigen-presenting cells, vitamin D is 
believed to program dendritic cells (DC) for tolerance, 
dampen their ability to activate effector T-cell generation, 
and enhance their potential to induce anti-inflammatory 
regulatory T (Treg) cells. Vitamin D also interacts with DC 
to influence their migration and their capacity to instruct 
T cells and hence to initiate, fine tune or dampen immune 
reactions [116]. On the other hand, vitamin D-treated DCs 
are significantly more potent in driving differentiation of 
IL-22-producing T cells and are markedly enhanced to 
secrete TNF-α, IL-6, IL-1β and IL-23 [117]. However, 
despite compelling evidence for the roles of vitamin D/
VDR in immunity, there are no studies on vitamin D/VDR 
in gastric cancer immunity.

Vitamin D and gastric cancer: clinical trial

To date, it is scarce for the clinical trial directly 
exploring vitamin D to potentially treat gastric cancer 
[118, 119]. In a 4 year, population-based, double-blind, 
randomized placebo-controlled trial [119], Joan et al. 
found that the relative risk of developing cancer was 0.232 
for the calcium plus vitamin D group and 0.587 for the 
calcium alone group, and that serum 25-hydroxyvitamin 
D concentrations were significant, independent predictors 
of cancer risk. As Hp is regarded as an independent 
risk factor of gastric cancer, Kawaura et al. [118] tested 
whether long term 1α(OH)D3 administration could inhibit 
Hp infection, and they found that Hp infection rate was 
significantly lower in subjects with 1α(OH)D3 treatment 
than those without treatment. This study reconfirms 
vitamin D analog has antibacterial action against Hp. 

CONCLUSIONS

Vitamin D has received extensive attention in 
recent years, especially after Mark [120] found vitamin 
D could promote protein homeostasis and longevity 

in nematodes. Most current evidence suggests that 
vitamin D is inversely associated with the morbidity and 
mortality of gastric cancer. Not only laboratorial studies 
at the levels of cells, tissues and animal models but also 
clinical trial support an anti-cancer role of vitamin D. 
However, the epidemiological data are still paradoxical. 
The studies utilizing ultraviolet B exposure as a main 
measurement consistently show the increased risk of 
gastric cancer with vitamin D deficiency, but some studies 
measuring serum 25(OH)D3 levels in human body do 
not support this notion. As discussed above, imprecise 
and inconsecutive assessment of serum vitamin D status 
may lead to the obscure relationship between 25(OH)D3 
levels and gastric cancer risk. The laboratorial studies 
demonstrate that vitamin D and its metabolites activate 
VDR to inhibit viability, proliferation and metastasis 
of gastric cancer cells, and also explore the underlying 
molecular mechanisms against gastric tumorigenesis 
and progression. Furthermore, vitamin D metabolites 
or analogues might also inhibit Hp infection and Hp-
associated gastric cancer. Although basic research supports 
the protective effects of vitamin D against gastric cancer, 
further studies are needed to elucidate its anti-tumour 
mechanisms, especial its interaction with VDR. At last but 
not least, large-scale and long-term clinical randomized 
controlled trials (RCTs) are necessary to make a definite 
conclusion whether vitamin D can really offer preventive 
and/or therapeutic benefits to gastric cancer. 
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