ELSEVIER

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Structural and compositional data of maya pottery samples from Lake Petén Itzá, Guatemala: Central America

Kefa K. Onchoke^{a,*}, Pressley S. Nicholson^a, Josephine Taylor^b, Robert R. Friedfeld^c, Leslie G. Cecil^d

^a Department of Chemistry & Biochemistry, Stephen F. Austin State University, Box 13006 – SFA Station, Nacogdoches, TX, 75962-13006, USA

^b Department of Biology, Stephen F. Austin State University, Box 13003 SFASU, Nacogdoches, TX 75962, USA

^c Department of Physics, Engineering and Astronomy, Stephen F. Austin State University, Nacogdoches, TX, 75962, USA

^d Department of Anthropology, Geography, and Sociology Stephen F. Austin State University, Box 13047 – SFA Station, Nacogdoches, Texas, 75962, USA

ARTICLE INFO

Article history: Received 8 January 2021 Revised 5 February 2021 Accepted 12 February 2021 Available online 16 February 2021

Keywords: Lake Petén Itzá Guatemala Pottery sherds FTIR SEM/EDX XRD TGA

ABSTRACT

In this data article, we present the spectroscopic structural data of the pottery samples collected from Petén Itzá, Guatemala. Detailed Fourier transmission infrared, powder X-ray diffraction, scanning electron microscopy coupled to electron dispersive X-ray diffraction, and thermal gravimetric analysis/differential thermal gravimetric analysis (FTIR, PXRD, SEM/EDX, and TGA/DTGA) were discussed in the research article titled "Comprehensive Structural and Compositional Investigation of Maya Pottery Sherds from Lake Petén Itzá, Guatemala, Central America" (Onchoke et al. 2020 [1]). The FTIR, XRD profiles and composition of pottery from Petén Itzá. Guatemala are presented. This data is important and useful for further understanding of the structural composition of pottery sherds used by Maya people of Guatemala. In addition, the TGA/DTGA profiles provide information on the content of the losses upon heating and offers supportive evidence to the spectroscopic data studied.

DOI of original article: 10.1016/j.jasrep.2020.102767

* Corresponding author.

E-mail address: Onchokekk@sfasu.edu (K.K. Onchoke).

https://doi.org/10.1016/j.dib.2021.106886

2352-3409/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Specifications Table

Subject Specific subject area Type of data How data was acquired	 Analytical Chemistry Analytical Archaeology Table, graph, figure (a) Fourier Transform Infrared (FTIR, Perkin Elmer Station 100 Inc., USA) was used for infrared analysis. (b) A Bruker AXS D8 Advance diffractometer equipped with an X-ray tube (Cu K_α radiation: λ = 1.54060 Å, 40 kV, and 40 mA) using a Ni filter and one-dimensional LynxEye detector at scanning speed of 2 °/min and 0.0125 ° step sizes and a 1s/step. (c) A JEOL-JSM 6100 scanning electron microscope equipped with a Horiba scanning electron microscopy dispersive X-ray spectroscopy (SEM/EDX) was used. (d) A Perkin Elmer thermogravimetric and differential thermogravimetric analysis (TGA/DTGA) were performed with thermogravimetric simultaneous thermal analyzer (STA 6000) at 20°C/min heating rates in a nitrogen atmosphere in the range 34°C - 1000°C.
Data format Parameters for data collection	 Raw data, analyzed (a) Power X-ray Diffraction (PXRD) analysis: Pottery samples obtained from Lake Petén Itzá, Guatemala were crushed, air dried, and ground to fine powder. (b) Fourier Transform infrared (FTIR) Analysis: The Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) spectra in the 230 - 4000 cm⁻¹ region was acquired on an abrasive pad (4 cm⁻¹ resolution) with Perkin Elmer Spectrum 100 spectrometer equipped with a Ge/Csl beam splitter and a DTGS detector. (c) SEM/EDX analysis: SEM micrographs and their elemental composition were acquired with use of a JEOL-JSM 6100 scanning electron microscope.
Description of data collection	Forty-two pottery sherds were spectroscopically characterized and their crystalline phases determined. The powder diffraction file was acquired using Bruker AXS DIFFRAC.EVA program [2]. The fitted line profiles, peak search methods, and indexing of the lines were used to calculate the mineral identification via comparisons with the diffraction patterns with TOPAS program [3].
Data source location Data accessibility Related research article	Stephen F. Austin State University All data are available within this article. "Comprehensive Structural and Compositional Investigation of Maya Pottery Sherds from Lake Petén Itzá, Guatemala, Central America", Kefa K. Onchoke, Pressley S Nicholson, Leslie G. Cecil, Robert B. Friedfeld, Josephine Taylor, Paul W. Weatherford [1].

Value of the Data

- The spectral data provided here is valuable for referencing, identification of crystalline phases, and differentiation between the pottery samples from sites around the world.
- The data provides important information for identification of elemental compositions in pottery sherds and samples.
- The powder X-ray diffraction (PXRD) patterns are important for the identification of crystalline phases in pottery, and for comparisons to other archaeological samples.

1. Data Description

In this study, pottery sherds from Lake Petén Itzá, Guatemala, Central America (Fig. 1 adapted from Ref # [4]) were investigated for their composition. The data in this paper presents spectroscopic information on FTIR (Fig. 2), SEM/EDX (Figs. 3 and 4, Table 1), the approximate compositions, d-spacings and hkl patterns (Tables 2, 3, and 4). Fig. 5 depicts sample TGA/DTGA thermograms of select samples 1.12 and 1.17 showing mass losses at different temperatures in the range 33 – 1000 °C. The raw data for FTIR graphs, EDX spectra, and TGA representing Figs. 2, 4, and 5 can be found in the Supplementary Excel file titled Raw *Data FTIR* graphs, Raw EDX data graphs, and Raw data TGA graphs.

Fig. 1. Map of Guatemala; Picture adopted from Ref # [4]. Reprinted with permission from Elsevier publisher. Elsevier License for permission to re-use in a journal article was granted from the Elsevier publisher.

Table 1										
Percentage elemental	composition a	analysis (% wt	/wt dry	basis)	of selected	pottery	sampl	es using	EDX.

		Percentage (%w/w) of elements in sample				
Element	1.17	1.18	1.19	1.20	1.21	1.24
С	-	-	-	-		0.7
0	47.1	49.6	46.5	38.1	46.5	49.8
Na	-	-	-	0.1	0.2	0.5
Mg	0.6	1.1	1.1	0.5	0.7	0.5
Al	10.4	3.3	3.3	7.1	10.7	12.2
Si	18.9	4.6	4.6	11.1	16.2	31.4
Р	-	-	0.1		-	-
S	-	-	0.2	0.1	0.2	-
К	0.8	0.2	0.2	0.4	0.3	1.9
Ca	19.0	40.5	40.5	38.0	22.1	1.5
Ti	0.4	0.2	0.2	0.6	0.4	0.4
Fe	2.7	0.6	0.6	4.0	2.7	1.2

Fig. 2. The FTIR data for pottery samples numbered (A) 1.07, 1.09, 1.10, (B) 1.11, 1.12, 1.14, (C) 1.16 -18, (D) 1.19 -1.21, (E) 1.22, 1.23, 1.25, (F) 1.26 -1.28, (G) 1.29 -1.31, (H) 1.32 - 1.34, (I) 1.36 -1.38, and (J) 1.39 -1.42. The traces are overlain to show their spectral similarities.

Fig. 2. Continued

Table 2

Analysis of the Crystalline Phases, d-spacing, and h, k, l values of sample 1.01 pottery sherd from Guatemala.

Index	Angle (2 θ)	d-Value	Net Intensity	Gross Intensity	Rel. Intensity	h, k, l	Mineral
0	6.198	14.2486	356	958	5.20%	002	Vermiculite
1	22.994	3.86476	235	355	3.40%	1 -2 -1	Gypsum
						0. 1. 0	Ouartz
2	26.533	3.35667	65.8	173	1.00%	011	Quartz
_						101	Quartz
						117}	Quartz
						011	Quanti -
						101	
3	293	3 04574	1687	1785	24 60%	20-2	Whewellite
4	31 345	2 85151	56	146	0.80%	202	Vermiculite
5	35.888	2.00101	240	310	3 50%	1 -1 -10	Vermiculite
5	55.000	2.30003	240	515	5.50%	1 10 0	Alunogen
						2 2 1	Andalusite
						1_3_2	Appite Mica
						3 -1 -3	Laumontite
						330	Mirabilite
						110	Quartz
						131	Talc
						1 _1 _10	Vermiculite
6	39 374	2 2957	429	502	6 30%	1 3 3	Chamosite 1MIIb
0	55.574	2.2331	425	502	0.50%	1 -1 -10	Hexabydrite
						3 -1 -8	Hexabydrite
						111	Talc
						012	Talc
						102	Talc
						136	Vermiculite
						1 _1 _11	Vemiculite
						310	Turquoise
						11_3	Turquoise
7	13 145	2 800504	260	307	3 80%	042	Cynsum Heterogenite 2H
/	45.145	2.005504	200	521	5.00%	042	Turquoico
						2 2 2 2	Turquoise
						13_1	Turquoise
						033	rurquoise
8	47262	1 92169	121	182	1 80%	342	Tourmaline
g	47.202	1.92105	352	412	5 10%	260	Cypsum
5	47.457	1.51420	552	412	5.10%	2.00	Gypsull
						3 5 01	Boray
						40-6	Bolax
						6 - 2 - 2	
						5 -1 -5	Hexabydrite
						1 -8 -1	Aluminite
10	18 181	1 8762	316	37/	4 60%	150	Addininic
10	56 574	1.6255	81.8	137	120%	19_3	Alunogen
11	50.574	1.0255	01.0	157	1.20%	2 _2 _13	Vermiculite
						156	vermeunte
						1, 5, 0	
						3 _1 _7	
12	57423	160345	170	226	2 50%	1 3 14	
13	60 713	1 52421	98.5	155	140%	332	Andalusite
	50.715	1.32721	50.5	155	1,70/0	155	Borax
						060	Talc
						3_3_1	Vermiculite
14	61 398	1 5083	48 3	105	0 70%	1.31	Quartz
15	63 293	1.3085	32.6	891	0.50%	102	Quartz
1.5	55.255	1.10015	52.0		0.00/0	012	2
16	65 896	1 41631	36	896	0 50%	111	Quartz
17	70.532	1.33414	26.9	82.9	0.40%	020	Quartz
				· · · -			· -

Table 3

Analysis of the Crystalline Phases, d-spacing, and h, k, l values of pottery sample 1.02 from Guatemala

Index	Angle (2 θ)	d-Value	Net Intensity	Gross Intensity	Rel. Intensity	h k l	Mineral
0	6.125	14.4181	206	839	36.20%	002	Vermiculite
1	22.944	3.87306	303	433	7.10%	010	Quartz
2	26.52	3.3583	67.6	186	6.70%	210	Aluminite
						011	Quartz
						101	Ouartz
3	29.294	3.04603	4372	4481	6.10%	14-1	Andalusite
4	31.331	2.85272	68.5	171	0.9%	010	Quartz Gypsum
						1 -2 -1	C 71
5	35.865	2.50181	450	540	1.90%	2 -2 -2	Brochantite
						510	
						5 -1 -1	Clinoptilolite
						6 -4 -1	Alunogen
						132	Andalusite
						221	Mirabilite
						330	Polygorskite M.
						2 -6 -1	Talc
						1 -3 1	
						202	
6	36.10778	2.48856	157	247	2.1%	221	Andalusite
						012}	Quartz
						102	
						136	Vermiculite
						1 -2 -2}	Azurite
						210	
						104	
						3 -5 -1	Laumontite
						6 -2 -1	
						3 -3 2	PolygorskiteM
7	39.308	2.29024	738	850	6.10%	1 -2 -2	Azurite
						210	
						104	
8	43.057	2.09912	344	418	1.50%	3 -2 1	Gypsum
9	47.014	1.93126	185	253	1.60%	3 -1 1	Turquoise
9	47.393	1.9167	341	408	4.5%	3-3-2	Gypsum
10	48.385	1.87968	546	612	1.30%	7 -1 -3	Laumonite
						005	Talc
11	57.307	1.60643	296	357	3.90%	1 1 -17}	Vermiculite
						3 -1, -7	
						2 4, 6	
						033	Libethenite
12	56.467	1.6283	97.7	159	1.30%		
13	60.571	1.52744	144	206	1.9%	282	actinolite
						11 1	
						60-2	
	61.2837	1.51124	75.6	137	1.0	061	Vermiculite
	61.31912	1.51041				33-1	Vermiculite
	61.30665	1.50975				330	Vermiculite
14	64.74181	1.43887	161	222	0.7%	7 -1 -5	Clinoptilolite
15	69.100	1.35825	68.8	127	0.9	9 -7 -4	Clinoptilolite
16	70.155	1.34039	63	121	0.80%	-	
17	/2.807	1.29797	64.7	134	0.9%	8 -2 -3	Bassanite
10		4 00 0 - 6		52.0	0.000	/ -1 -9	6
18	/7.062	1.23656	25.2	/3.8	0.3%	1 -11 -2	Gypsum

Table 4 c . 1. a phases d-spacing and h k l value

Analysis of the crystalline phases,	, d-spacing, and h, k,	l values of pottery	sample 1.03.

Index	Angle (2θ)	d Value	Net Intensity	Gross Intensity	Rel. Intensity	h k l	Mineral
0	2.481	35 5764	12440	64561	100%	_	_
1	6 1093	14 49468	218	856	180%	0 0 2	Vermiculite
2	23.007	3 86253	210	366	1.00%	(0, 7, 0)	Alunogen
2	23.007	5.80255	210	500	1.00%	(0, 7, 0)	Passapito
						(2, 2, 0)	Dassaille
						(3, -1, -3)	
						(2, -2, -2)	
	20.20	0.00760	2010	0467	10.00%	(5, -1, -3)	
3	29.38	3.03/63	2019	2167	16.20%	(1, 1, 2)	Andalusite
4	31.421	2.8448	42.7	156	0.30%	-	-
						(2, 0, 1)	Lizardite IM
						(3, 3, 0)}	
						(4, -2, -1)	Mirabilite
						(1, -4, -1)	
						(2, 0, -4)	Vermiculite
						(1, -1, -10)	
						(1, 3, 2)}	
						(1, 10, 0)	Alunogen
						(2, 0, -2)	
5	35.962	2.49529	265	377	2.10%	(1, 3, 2)	
						(1, 0, 2)}	Quartz
						(0, 1, 2)	
						(1, 1, 1)	
						(1, 3, 6)	Vermiculite
						(3, -4, -1)}	
						(3, 3, -1)	Alunogen
6	39.414	2.28431	384	482	3.10%	(2, 3, 2)	Aluminite
						(5, -2, -2)}	Mirabilite
						(2, 4, 2)	
						(0, -2, 4)	Talc
7	43.181	2.09335	305	401	2.50%	(5, -1, -4)	Borax
8	47.178	1.92493	102	198	0.80%	-	
9	47.54	1.9111	263	360	2.10%	-	
						(7, -3, -2)	Laumontite
						(1, 7, 0)	
						(0, 6, 2)	
10	48.538	1.87411	321	414	2.60%	(3, 5, 0)	Borax
11	56.634	1.62392	37	117	0.30%	(3, 4, 1)	Libethenite
						(1, 5, 1)	
						(4, 2, 2)	Libethenite
						(1, -1, -17)	Vermiculite
12	57.452	1.60272	124	211	1.00%	(3, -1, -7)	
						(1, 2, 1)	Ouartz
						(2, 1, 1)	
						(3, -3, 0)	Talc
						(3, -5, -6)	Aluminite
13	60.752	1.52332	65.9	156	0.50%	(4, -5, -4)	
14	64.751	1.43855	80.5	158	0.60%	(5, 0, 2)	Diospore
15	65.727	1.41954	44	119	0.40%	(0, 2, 0)	Diospore
10	001/2/		••	110	0110/0	(0, 2, 0) (1 0 4)	Quartz
						(0, 1, 4)	
						(2, 6, 1)	Talc
						(0, 2, 4)	iuic
						(6, 1, 0)	Andalusite
						(3, 1, 0) (2 0 4)	maanusite
						$(\Delta, 0, -1)$	
						(11 _1 _0)	Rassanite
						(11, -1, -3)	Dassaille
						(3, -13, -2))	Clinoptilolito
16	73 032	1 29/152	22.8	96.2	0.20%	(1, -13, -2) (3 3 7)	Roray
10	10.002	1.23432	22.0	50.2	0.20/0	(J, J, 7)	Dolan

A) Sample 1.13

B) Sample 1.24

C) Sample 1.31

D) Sample 1.35

Fig. 3. Representative SEM micrograph of pottery samples (numbered 1.13 (A), 1.24 (B), 1.24 (C), and 1.35 (D)) from Guatemala showing particle size diameters at magnification 400X and 300X, Voltage applied =15 kV, 20 kV.

2. Experimental Design, Materials and Methods

The experimental methods and procedures that allowed the data here presented are described in References # [1,5–7] and cited references therein. Here, only the protocols for FTIR, PXRD, SEM morphological analysis, and TGA is provided, giving a large number of experimental details, usually omitted in research articles due to the words limit.

2.1. Study site and collection of pottery samples

The 42 samples (numbered 1.01, 1.02, 1.03,1.42) that were analyzed in this study were collected from four sites of Lake Petén Itzá, Guatemala, Central America; namely, Flores, Zacpetén, Ixlú, and Nixtun Ch'ich' (Fig. 1). The samples were tagged with their exact location and the date notating when collected (as shown in Supplementary Information Table in Ref. #1). The samples exhibited a variety of colors; tan, red, and grey (as shown in Ref # [1]) while other pieces exhibited combinations of these colors.

2.2. Preparation of samples and analysis

Pottery samples were crushed to a fine consistency powder using a teflon mortar and pestle.

2.2.1. Fourier Transform Infrared (FTIR) analysis

An adequate concentrated layer of sample was spread on an abrasive pad and slid into the Perkin-Elmer Diffuse Reflectance Accessory. A background scan was acquired prior to acquisition of sample spectral data. In contrast to spectral data acquired via abrasive pads, energy sticks yielded absorption peaks of low intensity. A Perkin Elmer Station 100 with a CsI beam splitter

Fig. 4. EDX elemental analysis spectra of pottery sample number 1.17 (A), 1.18(B), 1.19 (C), 1.20 (D), 1.21(E), 1.24 (F), 1.31 (G). Fig. 4 (Cont'd): EDX elemental analysis spectra of pottery sample number 1.19 (C), 1.20 (D) are continued to next page.

Fig. 4. Continued

Fig. 4. Continued

Fig. 4. Continued

scanning in the range 230 - 4000 cm^{-1} was used to acquire infrared spectra at a resolution of 4 cm^{-1} . Four or more scans were run per sample. Fig. 2A - J depict FTIR spectra of all samples.

2.2.2. Powder x-ray diffraction (PXRD) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) analysis

Powder XRD analysis was performed in the 2θ range of 2° - 90° on a Bruker AXS D8 Advance diffractometer equipped with an X-ray tube (Cu K_{α} radiation: $\lambda = 1.54060$ Å, 40 kV, and 40 mA) using a Ni filter equipped with a one-dimensional high-speed energy-dispersive LYNXEYE XE-T detector at scanning speed of 2 °/min and 0.0125 ° step sizes and a 1s/step.

The crystalline structure peaks were identified using the software TOPAS [3]. Samples were analyzed against 120 crystal structures in two batches of 50 each. Crystalline phases with abundance < 1.0% were removed. The pooled spectra were analyzed a second time and crystals under 1.0% were removed. After analysis of 120 crystal structures and the removal of low crystalline phases, a comprehensive list of pooled crystals was created with percentages \geq 0.5%. Select powder XRD patterns (reported in Ref # [1]) and their *hkl* values and the crystalline phases present in pottery samples are presented in Tables 2, 3, and 4 for representative samples numbered 1.01, 1.02 and 1.03).

A Hitachi S2300 SEM was used to obtain micrographs. To minimize electrical charging, samples were sputter coated with Pd/Au. A JEOL-6100 SEM/EDX attachment and a tungsten filament was used to acquire sample composition. The detector (SiriusSD) is based on Silicon drift sensor technology and was kept at -20°C. The working distance and voltages used were set at 15 mm, and 20 kV, respectively. An analysis period of 120 seconds was run per sample in order to lower the signal to noise ratio. Fig. 3A, 3B, 3C, and 3D depict SEM micrographs for selected samples numbered 1.13, 1.24, 1.31, and 1.35.

Fig. 5. Representative TGA Representative TGA and derivative TGA (DTGA) curves of pottery sherd samples 1.17 (A), and 1.39 (B) acquired under a N_2 atmosphere. The samples were heated at 20 °C/minute.

2.3. Morphological characterization of pottery samples

The pottery sherds were air dried, crushed with mortar and pestle, and analyzed with JEOL-JSM 6100 scanning electron microscope equipped with a Horiba energy dispersive X-ray spectroscopy (SEM/EDX) with an accelerating voltage of 15 kV. The surface morphology, particle diameters of samples were measured at X300, and X400 magnifications (Fig. 3A, 3B, 3C and 3D). Powder XRD patterns (previously reported in Ref. # [1], Supplementary Figure S4) and their hkl values was used to identify the crystalline structural phases present in pottery sample sherds (Tables 2, 3, and 4). Fig. 4 depicts the EDX elemental analysis of select samples numbered 1.17, 1.18, 1.19, 1.20, 1.21, 1.24, and 1.31. Except for sample # 1.31, reported in Ref. # [1], corresponding %wt/wt of elemental compositions for all other samples are shown in Table 1.

2.4. Thermogravimetric Analysis (TGA) analysis

Approximately 20 mg of finely crushed pottery sample was placed onto a sample holder cup. A Perkin Elmer TGA thermogravimetric simultaneous thermal analyzer (STA 6000) at 20°C/min heating rates in a nitrogen atmosphere in the range 33°C - 1000°C. Fig. 5 depicts the TGA and DTGA graphs of representative samples numbered 1.17, and 1.39.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Acknowledgments

The authors gratefully acknowledge financial support from Stephen F. Austin State University Department of Chemistry & Biochemistry Research minigrants and Robert A. Welch Foundation (Grant Number AN-0008). PSN was gratefully supported from the Department of Chemistry & Biochemistry and the Robert A. Welch Foundation. Acknowledgement is extended to Dr. Leslie Cecil for obtaining the pottery samples. Finally, we would like to thank IDAEH (Instituto De Anthropologia E Historia (Spanish: Institute of Anthropology and History; Guatemala) for allowing the export of samples for analysis.

Supplementary Materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.dib.2021.106886.

References

- K.K. Onchoke, P.S. Nicholson, L.G. Cecil, R.B. Friedfeld, J. Taylor, W.P. Weatherford, Comprehensive structural and compositional investigation of Maya pottery samples from Lake Petén Itzá, Guatemala, J. Archaeol. Sci. Rep. 36 (2021) 102767.
- [2] DIFFRAC EVA, Bruker AXS, Madison, WI, USA, 2008.
- [3] BrukerAXS, TOPAS, V5.0. (Computer Software), Karlsruhe, Germany, 2011.
- [4] L.G. Cecil, Central Peten blue pigment: A Maya blue source outside of Yucatan, Mexico, J. Archaeol. Sci. 37 (2010) 1006–1019.
- [5] K.K. Onchoke, C.M. Franclemont, W.P. Weatherford, Data on ion composition and X-ray diffraction patterns of biosolids from wastewater treatment plants in Lufkin and Nacogdoches, Texas, USA, Data In Brief 20 (2018) 880–888.
- [6] K.K. Onchoke, C.M. Franclemont, P.W. Weatherford, Structural characterization and evaluation of municipal wastewater sludge (biosolids) from two rural wastewater treatment plants in East Texas, USA, Spectrochimica Acta A 204 (2018) 514–524.
- [7] C. Weiss, M. Köster, S. Japp, Preliminary characterization of pottery by cathodoluminescence and SEM-EDX analyses: An example from the Yeha region (Ethiopia), Archaeometry 58 (2016) 239–254.