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ABSTRACT: Benchmarking data sets have become common
in recent years for the purpose of virtual screening, though the
main focus had been placed on the structure-based virtual
screening (SBVS) approaches. Due to the lack of crystal
structures, there is great need for unbiased benchmarking sets
to evaluate various ligand-based virtual screening (LBVS)
methods for important drug targets such as G protein-coupled
receptors (GPCRs). To date these ready-to-apply data sets for
LBVS are fairly limited, and the direct usage of benchmarking
sets designed for SBVS could bring the biases to the evaluation
of LBVS. Herein, we propose an unbiased method to build benchmarking sets for LBVS and validate it on a multitude of GPCRs
targets. To be more specific, our methods can (1) ensure chemical diversity of ligands, (2) maintain the physicochemical
similarity between ligands and decoys, (3) make the decoys dissimilar in chemical topology to all ligands to avoid false negatives,
and (4) maximize spatial random distribution of ligands and decoys. We evaluated the quality of our Unbiased Ligand Set (ULS)
and Unbiased Decoy Set (UDS) using three common LBVS approaches, with Leave-One-Out (LOO) Cross-Validation (CV)
and a metric of average AUC of the ROC curves. Our method has greatly reduced the “artificial enrichment” and “analogue bias”
of a published GPCRs benchmarking set, i.e., GPCR Ligand Library (GLL)/GPCR Decoy Database (GDD). In addition, we
addressed an important issue about the ratio of decoys per ligand and found that for a range of 30 to 100 it does not affect the
quality of the benchmarking set, so we kept the original ratio of 39 from the GLL/GDD.

■ INTRODUCTION

G protein-coupled receptors (GPCRs) are a class of important
proteins in cellular signal transduction and involved in many
physiological functions and diseases.1,2 They are thus
considered to be promising targets for modern drug discovery3

and have been targeted by ∼30−40% of marketed drugs.4 In
recent decades, huge efforts have been invested in under-
standing the structure and functions of GPCRs,5−8 which
facilitate the development of structure-based drug design
(SBDD) on this type of target.9 Although crystal structures
of a limited number of GPCRs have been resolved,10 those
receptors only account for a notably small percent of over 800
GPCR members because it is challenging to conduct X-ray
crystallographic studies of such membrane proteins.3,11 There-
fore, much of the efforts have to rely on ligand-based drug
design (LBDD) approaches including 2D similarity search-
ing,12−14 pharmacophore modeling,15−18 and predictive QSAR
modeling.19,20 Specifically, LBDD exploits the knowledge of the
known ligands that bind to or act on the target rather than the
structural information on macromolecular targets. It has been
applied widely in GPCR-based drug discovery.21−25

Up to now, a variety of methods for LBDD have been
developed while new methods are still emerging.26−28 The
objective evaluation of these methods becomes an important
issue, since such an assessment can not only assist users to
choose the reliable methods in their studies but also inspire
developers to improve their methods as well.29 In fact, this kind
of benchmarking study has become common for in silico
screening, especially in structure-based virtual screening
(SBVS).30−33 In those cases, the authors normally conducted
retrospective small-scale virtual screening (VS) using the public
or in-house benchmarking sets. In order to evaluate different
methods in an accurate and impartial way, the quality of
benchmarking sets proves to be rather crucial. In recent years,
there have been a growing number of benchmarking sets
developed by multiple research groups worldwide. Among
them, the Directory of Useful Decoys (DUD) benchmarking
sets provided by the Shoichet Laboratory (http://shoichetlab.
compbio.ucsf.edu/) were widely used for validating novel
methods or comparing different methods as they provide
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challenging but fair data sets.31,33−35 Its first version was
released by Huang et al.36 in 2006, and its enhanced version
DUD-E was released in 2012.29 In addition to DUD/DUD-E,
the maximum unbiased validation (MUV) data sets were
recently developed based on PubChem Bioactivity data37 using
the refined nearest neighbor analysis originated from spatial
statistics.38 In 2011, Wallach and Lilien developed an algorithm
to compile benchmarking virtual decoy sets (VDS) to enlarge
the chemical space. They proved that VDS displays a similar
quality to DUD,39 though there exist concerns about the
synthetic feasibility. The GPCR ligand library (GLL) and
GPCR Decoy Database (GDD) were recently compiled with
the focus on evaluating molecular docking methods for GPCR
drug discovery.40 The demanding evaluation kits for objective
in silico screening (DEKOIS) was designed for benchmarking
docking programs and scoring functions.41 More recently,
Cereto-Massague et al.42 developed DecoyFinder for building
target-specific decoy sets, which used the same algorithm as for
DUD.
Depending on the initial purpose, e.g., SBVS or LBVS, the

benchmarking sets are normally developed by relevant methods
and can only be used for that purpose. From the beginning of
the above-mentioned benchmarking efforts, the main focus has
been on the evaluation of SBVS approaches, in particular
molecular docking. Unfortunately, the application of these
ready-to-apply data sets to ligand-based virtual screening
(LBVS) is restricted because they normally include limited
targets whose crystal structures are available. Until now there
are only three benchmarking sets that can be directly employed
for LBVS, i.e., MUV, REPROVIS-DB, and DUD LIB VS 1.0.
The database of reproducible virtual screens, i.e., REPROVIS-
DB, was compiled with data from prior LBVS applications
including reference compounds, screening databases, com-
pound selection criteria, and experimentally confirmed hits.43

Although there are general tools to build decoy sets for those
targets not included in the benchmarking sets above, they are
not suitable in nature for LBVS, especially for GPCRs targets.
As reported, the DUD-E decoy generating tools and Decoy-
Finder are specially designed for the evaluation of docking
methods. The MUV can generate decoys for LBVS, but this
method had not been validated on biological targets outside of
the PubChem database. Therefore, there is a great need to

design novel algorithms to build benchmarking sets for LBVS
and validating them on important targets such as GPCRs.
As discussed in the prior studies, there are three critical issues

to address in evaluating the quality of benchmarking sets, i.e.,
“artificial enrichment,” “false negative,” and “analogue
bias.”41,44−46 Artificial enrichment is caused when the ligands
differ significantly from the decoys in low-dimension vector
space of physicochemical properties or molecular topologies.44

As Rohrer and Baumann pointed out, in this case, to
differentiate ligands from decoys actually relies on the obvious
dissimilarities between them rather than the performance of VS
methods.38 “False Negative” means the decoys that are
supposed to be inactive against the target are proved later to
be active by bioassay. This situation did appear in DUD.45 In
order to reduce this type of error, a strict criterion with a preset
cutoff for structural dissimilarity is normally introduced.
“Analogue bias” is another important issue, especially for
LBVS, which can make the performance of LBVS over-
optimistic and cause large bias.38,45,47The first method to
address this bias was proposed by Clark and Webster-Clark, a
weighting scheme based on the ROC metric following ligand
clustering.48The second one, which was applied in DUD LIB
V1.049 and DUD-E,29 is the clustering of actives to enlarge
chemical diversity. Rohrer and Baumann proposed the third
one to utilize two cumulative distribution functions of
distances, G(t) for active−active distance and F(t) for active-
decoy distance, to make actives and decoys exhibit spatially
random distribution, which was finally proved to be effective in
lowering analogue bias and artificial enrichment.38,46

In this paper, we introduce our novel method to address the
above issues which was mainly composed of three main
strategies: (1) analogues excluding, (2) physicochemical
properties-based strategy, including a preliminary target-specific
property filter and ‘similarity in properties’ (“simp”)-based
filtering, and (3) topology-based strategy, including a
preliminary target-specific topology filter and our unique
“similarity in structure dif ference” (“simsdif f ”)-based filtering.
We applied this workflow to build Unbiased Ligand Set (ULS)/
Unbiased Decoy Set (UDS) for 17 agonists/antagonists sets of
10 representative GPCR targets and carried out Leave-One-Out
(LOO) Cross-Validation (CV) to evaluate the performance of
ULS/UDS compared with GLL/GDD based on the metrics of

Table 1. Summary of GPCRs Ligand Data Sets Collected from GLL for This Study

GPCRs family subclass target ligand type label no. of ligands

amine serotonin 5HT1F agonists 5HT1F-AGO 131
5HT1F antagonists 5HT1F-ANTA 11

dopamine DRD5 agonists DRD5-AGO 11
DRD5 antagonists DRD5-ANTA 12

histamine HRH4 agonists HRH4-AGO 11
HRH4 antagonists HRH4-ANTA 15

muscarinic acetylcholine ACM4 agonists ACM4-AGO 15
ACM4 antagonists ACM4-ANTA 51

peptide opioid OPRM agonists OPRM-AGO 140
OPRM antagonists OPRM-ANTA 27

bombesin BRS3 antagonists BRS3-ANTA 17
somatostatin SSR2 antagonists SSR2-ANTA 25
angiotensin AG22 antagonists AG22-ANTA 32

prostanoid prostaglandin PE2R3 agonists PE2R3-AGO 16
PE2R3 antagonists PE2R3-ANTA 125

melatonin melatonin MTR1B agonists MTR1B-AGO 135
MTR1B antagonists MTR1B-ANTA 24
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mean(ROC AUCs). To make a fair comparison, we employed
“simp”-based VS validation, MACCS50 “similarity in structure”
(“sims”)-based VS validation, as well as the topological
similarity search using function class fingerprints of maximum
diameter 6 (FCFP_6) fingerprint. We also explored the
underlying mechanisms of reducing enrichment bias among
our three strategies, i.e., analogues excluding, physicochemical
properties-based filtering (mainly “simp”), and topology-based
filtering (mainly “simsdif f ”). In addition, we investigate the
effect of the decoys/ligands ratio on the quality of ULS/UDS
which is an important question that has not been addressed
before. We anticipate that the benchmarking sets built by our
workflow can be utilized for performance evaluation of different
LBVS approaches in an unbiased manner.

■ METHODS
Source of Ligand Sets. All GPCR ligand sets were

downloaded from the GLL/GDD Web site (http://cavasotto-
lab.net/Databases/GDD/).40 In GLL, there are 25 145 ligands
(agonists and antagonists) for 147 human Class A Rhodopsin-
like GPCRs targets. In fact, they were initially taken from the
GLIDA database which collects data from the literature and
various public Web sites.51 Notably, those ligands in GLL had
already been prepared with an appropriate protonation state at
pH 7.0, the most probable tautomer and correct stereochemical

forms. In our study, since our purpose is to prove the efficacy of
our methodology, it is unnecessary to build decoy sets for all
GPCRs targets. We chose 17 ligand sets for 10 representative
GPCRs targets from GLL, and each set contains various
numbers of agonists or antagonists ranging from 11 to 140.
More targets were selected for major subclasses of amine
GPCRs and peptide GPCRs, e.g., 5HT1F, DRD5, HRH4, and
ACM4 to amine GPCRs while OPRM, BRS3, SSR2, and AG22
to represent peptide GPCRs. For minor subclasses, prostanoid
(PE2R3) and melatonin (MTR1B) receptors were included.
The detailed information about the ligand data sets is shown in
Table 1. As for the source of decoys, they were taken from the
ZINC database (http://zinc.docking.org/), which is a free
database of commercially available compounds for virtual
screening.52 In our case, we downloaded all purchasable
molecules (∼18 million) from ZINC. The decoys in GDD
for those targets were also downloaded for the purpose of
comparison.

General Workflow to Construct ULS/UDS. The work-
flow of building the benchmarking ligand/decoy sets for a
specific target is shown in Scheme 1. It is written based on
Matlab (version 7.6.0.324) and Pipeline Pilot (version 7.5,
Accelrys Software, Inc.) and consists of four consecutive steps,
including ligand processing, preliminary filtering, precise
filtering, and validation. The purpose of ligand processing is

Scheme 1. Workflow for Construction of Unbiased Benchmarking Sets for LBVS
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to ensure chemical diversity of ULS, where the analogue
excluding strategy is applied. Preliminary filtering is used to
build target-specific Potential Decoys (PDs) in a fast way using
two preliminary target-specific filters, i.e., property filter and
topology filter. Precise filtering is the most critical component,
which consists of “simp”-based filtering and “simsdif f ”-based
filtering. Specifically, the former is applied to reduce the
“artificial enrichment,” a common problem found in bench-
marking sets for SBVS, while the latter is designed to reduce
the “analogue bias” in LBVS. The validation as of the last step is
to prove the efficacy of those strategies applied.
Ligand Processing. This step is to (1) collect all the

agonists or antagonists for a specific target; (2) exclude those
ligands with mutual MACCS “sims”, i.e. ,Tanimoto coefficient53

(Tc) ⩾ 0.75, also called analogues, to build ULS; (3) calculate
physicochemical properties of the ligands in ULS by using
Pipeline Pilot, including LogP, Molecular Weight (MW),
Number of Hydrogen Bond Acceptors (HBAs), Number of
Hydrogen Bond Donors (HBDs), Number of Rotatable Bonds
(RBs), and Formal Charge (FC); and (4) calculate MACCS
structural keys for each ligand and mutual MACCS “sims”
between ligands. The formula of “sims” is shown in eq 1:

= =
+ −

sims
N

N N N
Tci j i j

i j

i j i j
, ,

,

, (1)

In fact, its formula was directly taken from Tc, a common
metric for topological similarity between two chemical
compounds. In the formula, i is for the target compound and
j is for the reference compound. N means the number of bits in
the fingerprint. Therefore, Ni,j represents the number of the bits
in the fingerprints shared by compounds i and j, while Ni and Nj
indicate the number of bits for compounds i and j, respectively.
Since the ligands are collected from the literature and various

public databases, they normally contain too many analogues of
the similar chemical scaffold, which results in low structural
diversity. In our method, mutual MACCS “sims” values (Tc) for
all the ligands are calculated to build a similarity matrix,
followed by our customized scripts in Matlab to exclude
analogues. The reasons to set the cutoff value to be 0.75 are as
follows: Tc = 0.75 was defined as a cutoff to differentiate actives
from inactives in GDD. To be more specific, compounds in
ZINC that were topologically similar to the query ligand with
the Tc ⩾ 0.75 were regarded as actives. When GDD was built,
those “active” compounds were excluded in order to reduce the
false negative rate during screening.40 For the same reason, Tc
= 0.75 is applied as the maximum threshold when our potential
decoy (PD) set is being built in the next preliminary filtering
step. Because of these, the topological similarity values between
all PDs and every ligand are less than 0.75. Under this situation,
if (1) one ligand in the ligand set is left out as a query for
similarity search and (2) many other ligands in the ligand set
are similar to that query with Tc ⩾ 0.75, it is obvious that those
similar ligands are easy to retrieve against the background of
PDs due to their high similarity to the query. To reduce this
type of screening bias, those analogues are excluded.
Preliminary Filtering. At this step, PDs are obtained by

our two preliminary filters based on the range of
physicochemical properties and mutual topological similarity
(MACCS “sims”) to the ligands. First, the maximum and
minimum values of each physicochemical property for all the
ligands are set as a target-specific property filter. Next, all data
of each physicochemical property are scaled linearly so that the

minimum value becomes 0 and the maximum value is 1.0.
Ensuingly, we set the minimum value of mutual MACCS “sims”
from all compounds in ULS and the maximum of 0.75 to be a
target-specific, topology filter. After physicochemical properties
and MACCS “sims” to ligands in ULS for each ZINC
compound are calculated, the original ZINC database is filtered
by these two preliminary filters in order to enrich PDs
effectively (reduce the size of PDs largely for the next step)
while ensuring the physicochemical and topological similarity
between PDs and all the ligands.

Precise Filtering. Here, we design two formulas for precise
filtering to obtain the FDs for UDS. To ensure the good quality
of final decoys, we generate decoys for each ligand individually.
One precise filtering criterion is referred to as “simp,” defined to
describe the physicochemical difference between each ligand
and its PDs as shown below:

∑= − −
=

simp
n
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1
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p represents the scaled value of physicochemical property, n is
the total number of physicochemical properties used for the
calculation, and i is the index for individual property. T is for
the target compound, and R is for reference compound; the
“simp” represents the physicochemical similarity between target
compound and reference compound. The other precise filtering
criterion, i.e., “simsdif f ”, is defined in eq 3:

∑=
−
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m is the number of the ligands, i is the index for the query
selected from the ligand set, ranging from 1 to m. m − 1 is the
number of the ligands except for the query, thus the remaining
ligands’ index is set to j (from 1 to m − 1). The decoy index is
set to k. simsdiffi k, is used to record the average difference

between two topological similarities, i.e. MACCS “sims”, of
which one is between the decoy k and remaining ligands j, and
another is between the query i and the remaining ligands j. In
this step, “simp” cutoff can be automatically updated for each
run to make sure there are enough decoys, i.e., more than 39
for our FDs. Normally, we set it to be 0.95, but when fewer
than 39 decoys are obtained, the value is decreased by 0.05
gradually until enough decoys are found. The decoys filtered by
“simp”-based criteria are ranked according to “simsdif f ” value,
and the final 39 decoys at the top of the list are picked up.
Ideally, “simsdif f ” values for all the FDs are ‘0’. But since the
chemical space of the ZINC database is limited, what we can do
is to select the decoys with the lowest “simsdif f ” values. When
moving to the next ligand, we also make sure there are no
duplicates in the new decoy set. After the corresponding decoys
for each ligand are finalized, i.e. our UDS for LBVS, the whole
benchmarking set for the specific target is constructed and
ready for validation.

Validation. The LOO CV is applied to the retrospective
similarity-based LBVS on our ULS/UDS. The LOO CV
procedure is designed as follows. At each cycle, one ligand is
moved out from ULS as a query, and its corresponding decoys
are removed from the UDS as well. The remaining compounds
of both ligands and decoys then constitute a screening set for
internal validation purpose. All compounds are coded by six
physicochemical properties and MACCS structural keys that
were used in the early stage of our workflow, followed by the
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traditional similarity-based LBVS. On the basis of the ranked
similarity values for the screening compounds and their
observed activity values, i.e., 1 for ligands and 0 for decoys,
we compute the ROC curves and their corresponding AUCs.
This process is repeated m times if there are m ligands. In
addition, we calculate the mean(ROC AUCs) as a metric to
evaluate the quality of the benchmarking set. Similar metrics
have been proposed and implemented previously by a couple of
research groups, such as mean(ROC) in MUV38 and the
deviation from optimal embedding score (DOE score) in
DEKOIS.41 As a special ROC curve, the diagonal line y = x
indicates randomly assigning both classes, i.e., ligand or decoy.
The AUC of this curve is 0.5 in this situation.54 Accordingly,
the enrichment curves moving toward the diagonal line (AUC
= 0.5) indicate that those similarity-based LBVS approaches fail
to distinguish ligands from decoys. In this way, ligand and
decoy are in a random distribution around chemical spaces, and
it meets our goal of reducing overoptimistic enrichment caused
by artificial bias. Therefore, we deem ROC AUC = 0.50 to be
the optimal embedding in the current workflow.

■ RESULTS AND DISCUSSION

Retrospective Similarity-Based LBVS Detects Ana-
logue Bias in GLL/GDD. We encoded 17 representative
data sets in GLL/GDD, eGLL/eGDD, and ULS/UDS with six
physicochemical properties and MACCS structural keys and
conducted retrospective LBVS based on calculated “simp” and
MACCS “sims.” Particularly, we designed the eGLL/eGDD set
to be the intermediate after our “analogues excluding” strategy.
As we know, there are two aspects that affect the screening
performance: one is the composition of ligands, and another is
the decoy building strategy. To make a fair comparison, we
applied our “analogues excluding” strategy to the GLL as in the

construction workflow of ULS/UDS and extract the decoys
from the GDD accordingly. In this way, the eGLL/eGDD set
contains the same composition of ligands as ULS/UDS. The
results of the retrospective LBVS are shown in Table 2 and
Figures 2−4. For “simp”-based VS, the average value of the
metrics of mean(ROC AUCs)s for 17 GPCRs targets is at the
same level (close to 0.50) for all three data sets, i.e., GLL/
GDD, eGLL/eGDD, and ULS/UDS. In GLL/GDD, the
minimum value is 0.492 and even the maximum value is only
0.630. In fact, for most of the GPCRs targets, the mean(ROC
AUCs)s in eGLL/eGDD are similar to those of the other two
sets. The average value is 0.495, and the range is from 0.358 to
0.653 (cf. Table 2, Figures 2 and 3). All three lines in Figure 2
(upper panel, “simp”) are close to the random distribution
curve for the majority of GPCRs targets, while fluctuating
slightly over the same set of receptors such as BRS3-ANTA,
AG22-ANTA, and PE2R3-AGO. Figure 3 shows more details
about ROC curves from “simp”-based VS for 17 data sets. For
most ROC curves in these plots, the red and blue curves of
each iteration match well with the random distribution curve.
However, for MACCS “sims”-based VS, the average value of
mean(ROC AUCs)s in GLL/GDD is as high as 0.781 and
fluctuates at the range from 0.629 to 0.941 (Table 2).
Consistently, both the blue line (GLL/GDD) and red line
(eGLL/eGDD) in Figure 2 are fairly distant from the line of
random value. It is even more obvious from Figure 4 to observe
that for most of the GPCRs targets, the ROC curves in red and
blue are distant from random distribution curve. These results
indicate that although GLL/GDD (eGLL/eGDD) reduced
artificial enrichment significantly as represented by the ideal
performance of “simp”-based VS (thus good for SBVS), there
exists a large bias when topology-based similarity search is
conducted with MACCS keys (“sims”). To be more specific,

Table 2. Metrics of Mean(ROC AUCs) from Leave-One-Out Cross-Validation Based on Similarity Search by Physicochemical
Properties (“simp”), MACCS Keys (“sims”) and External Validation by FCFP_6 Fingerprint

data set
GLL/GDD
(simp)

eGLL/eGDD
(simp)

ULS/UDS
(simp)

GLL/GDD
(sims)

eGLL/eGDD
(sims)

ULS/UDS
(sims)

GLL/GDD
(FCFP_6)

ULS/UDS
(FCFP_6)

5HT1F-AGO 0.557 0.474 0.491 0.797 0.717 0.554 0.801 0.651
5HT1F-
ANTA

0.552 0.572 0.518 0.663 0.672 0.458 0.618 0.549

DRD5-AGO 0.508 0.498 0.436 0.713 0.680 0.552 0.720 0.662
DRD5-ANTA 0.526 0.527 0.452 0.658 0.622 0.531 0.665 0.590
HRH4-AGO 0.542 0.446 0.451 0.909 0.900 0.726 0.871 0.796
HRH4-ANTA 0.503 0.490 0.474 0.694 0.669 0.530 0.580 0.557
ACM4-AGO 0.504 0.490 0.467 0.665 0.638 0.506 0.590 0.515
ACM4-
ANTA

0.516 0.486 0.486 0.629 0.592 0.498 0.669 0.662

OPRM-AGO 0.511 0.527 0.477 0.736 0.572 0.510 0.773 0.654
OPRM-
ANTA

0.500 0.358 0.476 0.882 0.722 0.589 0.884 0.589

BRS3-ANTA 0.565 0.382 0.348 0.874 0.837 0.639 0.940 0.950
SSR2-ANTA 0.506 0.489 0.350 0.795 0.727 0.583 0.808 0.793
AG22-ANTA 0.533 0.580 0.415 0.830 0.876 0.694 0.803 0.705
PE2R3-AGO 0.630 0.653 0.367 0.941 0.931 0.728 0.938 0.745
PE2R3-
ANTA

0.492 0.427 0.478 0.712 0.562 0.482 0.816 0.643

MTR1B-
AGO

0.541 0.478 0.501 0.908 0.817 0.581 0.899 0.700

MTR1B-
ANTA

0.555 0.543 0.484 0.873 0.858 0.598 0.833 0.720

Min 0.492 0.358 0.348 0.629 0.562 0.458 0.580 0.515
Max 0.630 0.653 0.518 0.941 0.931 0.728 0.940 0.950
Average 0.532 0.495 0.451 0.781 0.729 0.574 0.777 0.675
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Figure 1. continued
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Figure 1. continued
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Figure 1. The physicochemical properties distributions of ligands and decoys in ULS/UDS and GLL/GDD for all 17 data sets. Color and sign: GLL,
blue, full line; GDD, red, full line; ULS, black, dotted line; UDS, green, dotted line.
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although each query’s Euclidean distances of physicochemical
properties to all decoys are close to its distances to other
ligands, its chemical scaffold is quite different from decoys
which makes the decoys rank low on the list. By contrast, other
ligands to the same target are ranked high, thus becoming easy
to identify. Therefore, a serious caveat exists for current
standard, “simp”-based approaches to build the benchmarking
decoy sets when applying to the problem of LBVS. Herein, we
suggest adding a topology-based filtering strategy which takes
into consideration the topological similarities not only between
the query and its decoys, but also between its decoys with other
ligands as well.
As we mentioned before, all the mean(ROC AUCs)s across

17 data sets in ULS/UDS are smaller for “simp”-based VS when
compared with GLL/GDD. Among them, results for 5HT1F
antagonists, 5HT1F agonists, MTR1B antagonists, and MTR1B
agonists are the closest to 0.50, a value for random distribution.
However, for PE2R3 agonists, BRS3 antagonists, SSR2
antagonists, and AG22 antagonists, their values appear to be
distant to 0.50 (cf. Table 2). Apparently, there are more decoys
ranking at the top of the list with high physicochemical
similarity in these cases. The reason for this is likely that not
enough compounds in the ZINC database meet filtering criteria
for both “simp” and “simsdif f ” for a certain number of ligands
due to the limited chemical space in the database itself.
Notably, for the same PE2R3 agonists, SSR2 antagonists, and
AG22 antagonists, the value of mean(ROC AUCs)s changes
slightly from GLL/GDD to eGLL/eGDD but substantially
from eGLL/eGDD to ULS/UDS. Therefore, we think the
decrease in values from GLL/GDD to ULS/UDS is mainly
caused by our physicochemical properties-based and topology-
based filtering strategies we applied because of the same
composition of eGLL to ULS. For example, for PE2R3 agonists

the value goes from 0.630 in GLL/GDD to 0.367 in ULS/UDS.
This type of “antiscreening” phenomenon, i.e. the ROC AUCs
fall below 0.50, is actually a situation that always happens in the
real practice of virtual screening. In this scenario, the ratio of
actives in a chemical library is normally lower than usual and
there exist “false positive” molecules which rank high but are
inactive in themselves. To recognize this type of molecule and
lower the value of FPR (“1 − specificity”) at the x-axis remains
to be one of the major tasks of virtual screening methods.55 In
this sense, these kinds of data sets with mean(ROC AUCs)
below 0.50 in our ULS/UDS are acceptable as it poses the
challenge to current methods and will facilitate their advance-
ment.

Our Workflow Makes ULS/UDS Unbiased Measured
by “simp”- and MACCS “sims”-based VS. As demonstrated
in its original article and our current study, the GLL/GDD has
already achieved a good level for “simp”-based VS thus is useful
to SBVS as well since physicochemical properties of ligands do
play an important role in many scoring functions. This implies
that the GLL/GDD methodology is an effective way to reduce
artificial enrichment for SBVS, but not necessarily for LBVS. In
our current workflow, we keep the physicochemical properties-
based strategy but add topology-based mechanisms in order to
(1) exclude analogues in the ligand set and (2) exclude decoys
that do not meet our filtering criteria defined by the preliminary
target-specific topology filter and the simsdif f filter. Through
these strategies, we achieved our goal in our ULS/UDS
benchmarking set as shown below. In the third and sixth
columns in Table 2, the average value of mean(ROC AUCs)
across 17 GPCRs targets for “simp”-based VS is 0.451, while the
value for MACCS “sims”-based VS is 0.573. In Figure 2, the
green lines (ULS/UDS) show the small difference from the
random line of 0.5. These results indicate it is challenging to
differentiate the ligands from decoys in our ULS/UDS using
either “simp”-based or MACCS “sims”-based VS, thus ideal to
evaluate the approaches of LBVS. In comparison to GLL/
GDD, the average value of mean(ROC AUCs) in ULS/UDS
was reduced significantly from 0.781 to 0.574 for MACCS
“sims”-based VS. Depending on various GPCRs targets, the
decreasing rate of mean(ROC AUCs) ranges from 36.00%
(MTR1B-AGO) to 16.36% (AG22-ANTA). We also observe
the significant differences between red curves (GLL/GDD) and
green curves (ULS/UDS) in Figure 4.

External Validation by FCFP_6 Fingerprint Shows the
Improvement by ULS/UDS. Since our workflow employs
physicochemical properties and MACCS structural keys during
the construction of ULS/UDS, it becomes necessary to verify
their performance using other fingerprints as an independent
validation. We employed the FCFP_6 fingerprint for this
purpose because of its proven accuracy in recent years.56 The
results are collected in Table 3 and Figures 2 and 5 as well to
make the comparison with GLL/GDD. The mean(ROC
AUCs) of ULS/UDS is smaller than its corresponding value
of GLL/GDD across all 17 data sets, and its average drops by
12.65% (0.675 vs 0.777). Consistently, most ROC curves in
green (ULS/UDS) are below ROC curves in red (GLL/GDD).
These data indicate that similar to the prior two LBVS
approaches (“simp”- and “sims”-based), the bias in enrichment
has been reduced largely in our data sets. It is especially true for
the data set of OPRM-ANTA, in which the mean(ROC AUCs)
falls to 0.589 (ULS/UDS) from 0.884 (GLL/GDD).
Interestingly, for the same data sets such as ULS/UDS the
values of mean(ROC AUCs) are higher for FCFP_6 fingerprint

Figure 2. The performance of leave-one-out cross-validation in the
metrics of mean(ROC AUCs) across 17 data sets from similarity
search by physicochemical properties (“simp”, upper panel), MACCS
structural keys (“sims”), and FCFP_6 fingerprint (lower panel).
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than MACCS keys consistently across all targets, suggesting
that there exist certain systemic reason(s) derived from
fingerprints themselves. On the other hand, the values of
mean(ROC AUCs) for GLL/GDD with MACCS are similar to
those with FCFP_6 (the average value is 0.781 vs 0.777). We
can observe the similar trends from Figure 2, lower panel, in
which the dark blue line (MACCS on GLL/GDD) comes close
to the light blue line (FCFP_6 on GLL/GDD) while the line of
FCFP_6 is above the line of MACCS keys based on our
benchmarking set. In the future, we plan to employ additional

LBVS approaches to check if it is a common observation and
explore its implication to real screening.

The Underlying Mechanisms of Reducing Enrichment
Bias. As mentioned before, we employed three major strategies
in our workflow. Among them, the physicochemical properties-
based (mainly “simp”) strategy has been proved to be effective
in randomly sampling and matching in properties for ligands
and decoys. And it had been widely utilized in the generation of
DUD, DUD-E, and GLL/GDD benchmarking data sets. To
locate the exact mechanism(s) of reducing enrichment bias by

Figure 3. The ROC curves from similarity search by physicochemical properties (“simp”) for all 17 data sets. For each data set, the curves are colored
in red for GLL/GDD, blue for eGLL/eGDD, and green for ULS/UDS, respectively. The multiple curves in the same color represent different
iterations in LOO CV for the specific benchmarking set, while the diagonal line in black shows the random distribution.
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our method, we analyzed in detail our two other strategies, i.e.
the analogues excluding and topology-based strategy (a
preliminary target-specific topology filter and “simsdif f ”-based
filtering). For the first one, the differences in composition
between GLL and ULS may be enough to lower the
enrichment bias. To test this possibility, we employed eGLL/
eGDD for the comparison. Table 3 collects mean(ROC AUCs)
values for 17 data sets and their statistical data for both GLL/
GDD and eGLL/eGDD. In fact, the values are not so different
between these two groups. The average mean(ROC AUCs)
does not decrease largely, only with a small change from 0.781
to 0.729. The maximal value goes down from 0.941 to 0.931,
while the minimal value goes from 0.629 to 0.562. In general,
the average of decreasing rate is around 6.76%. In some cases
such as 5HT1F antagonists and AG22 antagonists, the
mean(ROC AUCs)’s increase by 1.36% and 5.58%, respec-
tively. Nevertheless, there are cases with significant changes

after excluding, for example, PE2R3 antagonists and OPRM
agonists whose decreasing rates are greater than 20%. We
postulate that it might be related to the exclusion of highly
similar ligands, which leads to a higher excluding ratio. To
confirm it, we plot the relationship between excluding ratio and
decreasing rate from GLL/GDD to eGLL/eGDD (cf. Figure
6). Basically, the effect of analogues excluding to lower the
enrichment bias is more obvious when the excluding ratio is
above 0.70. In this region, most data sets show the decreasing
rate above 10% (cf. Figure 6 and detailed data are in Table S1).
Therefore, the effect of analogues excluding does exist but is
limited to lower enrichment bias for LBVS. Because the
difference between eGLL/eGDD and ULS/UDS mainly lies in
our topology-based filtering strategies, i.e. a preliminary target-
specific topology filter and “simsdif f ”-based filtering, their
powers are reflected apparently by comparing the columns in
Table 2. The purpose of the preliminary topology filter is not

Figure 4. The ROC curves from similarity search by MACCS structural keys (“sims”) for all 17 data sets. For each data set, the curves are colored in
red for GLL/GDD, blue for eGLL/eGDD, and green for ULS/UDS, respectively. The multiple curves in the same color represent different iterations
in LOO CV for the specific benchmarking set, while the diagonal line in black shows the random distribution.
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only to eliminate the possibility of a “false negative” in the
decoy sets but also help lower analogue bias, while our novel
formula of “simsdif f ” addresses directly the problem of
enrichment bias. Generally speaking, across all 17 data sets
the average mean(ROC AUCs)’s (“sims”-based VS) decreases
to 0.574 from 0.729 aided by our method. In comparison, with
only analogues excluding and simple physicochemical proper-
ties-based filtering in eGLL/eGDD, the enrichment bias still
exists as their mean(ROC AUCs)s values stay distant from 0.50
for the majority of data sets. In some cases such as PE2R3
antagonists and OPRM agonists whose mean(ROC AUCs)’s
are lowered to nearly 0.50, we consider this as a coincidence
because in the process of building GDD they followed the
principle of “first come, first served” and did not consider the
effect of topological similarity in the ligand sets. In addition, the
maximum value of mean(ROC AUCs) is 0.728 and the
minimum value is 0.458 for ULS/UDS sets (“sims”-based VS),
while the maximum/minimum values are as high as 0.931 and
0.562 in eGLL/eGDD. In particular, the data sets with the best
performance are 5HT1F agonists, 5HT1F antagonists, MTR1B
agonists, MTR1B antagonists, OPRM agonists, and OPRM
antagonists. Their mean(ROC AUCs)’s by “sims”-based VS are
also very close to 0.50. The green curves in Figure 3 also show
the good quality of these data sets. Nevertheless, from Table 2
and Figures 2 and 4, we can see there are exceptions in ULS/
UDS whose values are above 0.70 but still below the high values
of eGLL/eGDD. For example, the decreasing rate for HRH4
agonists is 20.17% and 22.60% for PE2R3 agonists. After
analysis, we find most decoys for these two targets have high
values of “simsdif f ” (above 0.10), which make the ROC curves
distant from the random distribution level (cf. Tables S2 and
S3). Therefore, our method is also restricted by limited
chemical space of ZINC like other benchmarking data sets. In
summary, these data prove that our topology-based filtering
strategies (preliminary topology filter plus the “simsdif f ” filter)

contribute to the effect of lowering enrichment bias for LBVS
more than analogues excluding.
Although our methods can achieve good results for the

current data sets, there are several issues that need to be
addressed in the sequel studies. First, for the problem of “false
negative” in decoys, the authors of MUV and DUD-E proposed
to include only true inactives that had been experimentally
validated.29,38 Since it is not possible to obtain enough real
inactives for all the targets, we follow many groups to adopt a
fingerprint-based Tc value (i.e., 0.75 for MACCS keys) as the
cutoff to differentiate actives and inactives.41 Second, although
ZINC is an ideal source of decoys, its limited chemical space
restricts our method in obtaining proper decoys for some
specific targets, i.e. the decoy sets for HRH4 agonists and
PE2R3 agonists. In VDS, the authors tried to create virtual
decoys to enlarge the chemical space, which may be a good
alternative but needs to be further justified for LBVS.39 Third,
to make it comparable with GLL/GDD, we only include six
drug-like physicochemical properties though there were
recommendations to use more.45

Physicochemical Properties Distributions of GLL/GDD
and ULS/UDS. Similar to the prior publications29,40 on
benchmarking sets (DUD, DUD-E, GLL/GDD, etc.), we
employed property distribution to check the match between
ligand set and their decoys for all 17 GPCRs targets. From the
plots in Figure 1, we can conclude that our UDS approximates
to ULS closely for most targets in all six physicochemical
properties, i.e., logP, MW, HBAs, HBDs, RBs, and FC. For
example, in the data sets for the 5HT1F antagonists, 5HT1F
agonists, MTR1B antagonists, and MTR1B agonists, the
property distribution curves for ligands and decoys of ULS/
GDD match closely, similar to or better than those in GLL/
GDD, which is consistent with the results from “simp”-based
VS (cf. Figure 2, upper panel). These examples are to
demonstrate that our workflow affords a comparable
property-matching ability to the GDD methodology, which
explains the similar results for both benchmarking sets.
However, to some targets like we mentioned before, i.e.
PE2R3 agonists, BRS3 antagonists, SSR2 antagonists, and
AG22 antagonists, the curves do not match tightly for our
ULS/UDS. We have attributed this to two reasons in the prior
paragraph. For BRS3 antagonists, the property distribution
curve indeed proves our discussed point. At the graphs of logP,
MW, and HBA in which the curve profile of ULS does not fit
well to that of UDS, GLL also does not match GDD in that
aspect. Interestingly, the curves of ULS overlap with the ones of
GLL while the curves of UDS fit to the ones of GDD. This
indicates that both methods cannot locate enough decoys that
meet the “simp”-based criteria, caused by the limitation in
chemical space of the original database. In fact, it is a common
problem that occurred to DUD, DUD-E as well. The similar
observation also exists in some cases of SSR2-ANTA, PE2R3-
AGO, and other targets. In summary, the benchmarking set of
ULS/UDS we built can be an alternative to GLL/GDD to
evaluate docking methods to GPCRs.44

Scaffold Analysis of GLL vs ULS Shows that Our
Analogues Excluding Improves Chemical Diversity.
Scaffold analysis was conducted for 17 GPCRs target sets in
GLL to estimate the chemical diversity in this published
database.40,53 For this analysis, we generated Murcko frame-
works57 using the Generate Fragments component in Pipeline
Pilot to count the unique molecular scaffolds. In this
component, the “Fragments To Generate” parameter was set

Table 3. Comparison of GLL and ULS in Term of Chemical
Diversity

no. of compds no. of scaffolds
compound/
scaffold ratio

data set GLL ULS GLL ULS GLL ULS

5HT1F-AGO 131 40 74 34 1.77 1.18
5HT1F-ANTA 11 7 10 7 1.10 1.00
DRD5-AGO 11 8 10 8 1.10 1.00
DRD5-ANTA 12 9 11 9 1.09 1.00
HRH4-AGO 11 8 4 4 2.75 2.00
HRH4-ANTA 15 11 14 11 1.07 1.00
ACM4-AGO 15 12 9 9 1.67 1.33
ACM4-ANTA 51 26 42 26 1.21 1.00
OPRM-AGO 140 37 84 35 1.67 1.06
OPRM-ANTA 27 8 22 7 1.23 1.14
BRS3-ANTA 17 4 11 4 1.55 1.00
SSR2-ANTA 25 5 18 5 1.39 1.00
AG22-ANTA 32 7 20 7 1.60 1.00
PE2R3-AGO 16 7 6 5 2.67 1.40
PE2R3-ANTA 125 26 82 21 1.52 1.24
MTR1B-AGO 135 35 54 27 2.50 1.30
MTR1B-ANTA 24 12 15 9 1.60 1.33
min 1.07 1.00
max 2.75 2.00
average 1.62 1.18
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to “Murcko Assemblies,” and other parameters were set as
default values. After excluding analogues to constitute ULS, we
carried out the same analysis to check the effect of our
analogues excluding. Table 3 shows the comparison between
GLL and ULS in terms of number of compounds, number of
unique scaffolds, and the ratio of compounds to scaffolds. From
this table, we can observe that after excluding analogues by
using our strategy, the ratios of compounds/scaffolds decrease
for all the targets and the average ratio decreases by 27.3%,
from 1.62 to 1.18. The ratio of 1.18 means that ULS contains

only 1.18 compounds per scaffold class, thus representing
higher chemical diversity than GLL. At the same time, the
number of ligands per receptor drops noticeably, e.g., from 135
to 35 for MTR1B-AGO, which can help reduce the computing
cost of screening effort. From these two aspects, we concluded
that our analogues excluding is effective in improving chemical
diversity of the ligand set.

Effect of Decoys/Ligands Ratio on Quality of ULS/
UDS. To the best of our knowledge, this issue has not been
addressed before. In fact, the ratio of decoys to actives had been

Figure 5. The ROC curves from similarity search by FCFP_6 fingerprint for all 17 data sets. For each data set, the curves are colored in red for
GLL/GDD and green for ULS/UDS, respectively. The multiple curves in the same color represent different iterations in LOO CV for the specific
benchmarking set, while the diagonal line in black shows the random distribution.
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set arbitrarily as different research groups defined different
ratios in their studies, i.e., 36 in DUD36 and VDS,39 39 in
GDD,40 50 in DUD-E,29 and 30 in DEKOIS,41 respectively. In
this study, we keep the same ratio as in GDD in order to
compare our methodology with GDD in a fair way. In this
section, we intend to examine the effect of various ratios on
mean(ROC AUCs) of our data sets. To address this question,
we select five representative GPCRs targets as samples whose
current mean(ROC AUCs) values are distributed at different
levels; i.e. the values for HRH4 agonists and PE2R3 agonists
are above 0.70; the value for AG22 antagonists is in the range of
[0.60, 0.70]; the value for ACM4 agonists is close to 0.50, and
the one for 5HT1F antagonists is below 0.50. Apart from
studying the ratios mentioned in other papers, we also increase
the ratio to 100 so as to see the effect between 30 and 100. In
this way, we have five points of ratio for each data set, i.e. 30,
36, 39, 50, and 100. The results of various ratios are shown in
Figure 7 (cf. data in Tables S4 and S5). In general, there is no
significant change from 30 to 100 for both types of screening

methods across the five data sets. All mean(ROC AUCs)s
basically stay at the same level as 39, for both “simp”-based and
“sims”-based VS. There is only a small spike for 39 at 5HT1F
antagonists in comparison to other numbers with “simp” but are
still close to 0.50. According to these results, we conclude that
the effects of various decoys/ligands ratios (from 30 to 100) are
nearly the same. In our current workflow, the number of 39
then appears to be a reasonable ratio for constructing the decoy
sets and also is good for the purpose of comparison to GDD.

The Structural Features of Ligands and Decoys in
ULS/UDS. As discussed before, values of “simp” and “simsdif f ”
are associated with the quality of the benchmarking set
measured by mean(ROC AUCs). To obtain a detailed view of
the individual benchmarking set, we chose the data set of
MTR1B-AGO as an example to explore the structural features
of ligands and decoys. The chemical structure of each ligand in
ULS, its major scaffold, as well as its closest decoy in UDS are
listed in Table 4, together with their “simp” and “simsdif f ”
values. Overall, we have the following observations: (1) The
chemical structures of ligands are mostly different from each
other, represented by unique scaffolds (Murcko frameworks).
(2) The physicochemical properties of those decoys listed
match well with those of the ligands, as shown by fairly high
“simp” values (0.951−0.993). (3) In terms of chemical
topology, the decoys resemble the ligands to a certain degree,
with MACCS “sims” (Tc) at the range of [0.500, 0.745]. It
should be noted that all MACCS “sims” are smaller than 0.75
(empirical threshold for active/inactive), which ensures the
likelihood of decoys to be true inactives. (4) The “simsdif f ”
value can be applied here as a quantitative measure for how
difficult it is to differentiate ligands from decoys. In this case,
the “simsdif f ” values of those decoys are extremely close to 0
with the highest value of 0.066, indicating that it is rather
difficult to enrich the ligands by simple approaches such as
similarity search. In summary, the structural features of the
ligands and decoys in ULS/UDS meet the criteria for building
benchmarking sets of high quality for LBVS.

■ CONCLUSIONS
In the current study, we attempt to design an effective method
to create benchmarking data sets for LBVS. As a means of
validation, we applied our methods to a multitude of GPCRs
targets. This kind of benchmarking study has become common
in recent years for the purpose of virtual screening, though the
main focus had been placed on the SBVS. Due to the lack of
crystal structures, there is great need for unbiased benchmark-
ing sets to evaluate different LBVS methods for GPCRs drug
discovery. To be more specific, our methods can (1) ensure
chemical diversity of ligands, (2) maintain the physicochemical
similarity between ligands and decoys, and (3) make the decoys
dissimilar in chemical topology to ligands. In addition, with the
LOO CV based on MACCS or FCFP_6 fingerprint on 17
GPCRs’ data sets, our ULS/UDS sets generated by this method
reduced the “artificial enrichment” and “analogue bias” in GLL/
GDD sets with great success. As our workflow includes
analogues excluding, physicochemical properties-based filtering,
and topology-based filtering, we move further to prove that our
topology-based filtering strategies (mainly “simsdif f ”) account
more for the effect of lowering the enrichment bias for LBVS
than two other strategies, i.e., analogues excluding and “simp”-
based filtering. Measured by the mean(ROC AUCs) from
“simp”-based VS, we recovered the relationship in property
distribution between our ULS and UDS sets. Its quality of

Figure 6. The relationship between the excluding ratio (removing
ratios of analogues) and the decreasing rate of mean(ROC AUCs)
from GLL/GDD to eGLL/eGDD.

Figure 7. The effect of different decoy/ligand ratios on mean(ROC
AUCs) from similarity search based on physicochemical properties
(“simp,” upper panel) and MACCS keys (“sims,” lower panel).
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Table 4. Chemical Structures of Each Ligand and Its Scaffold (Murcko Framework) As Well As Its Corresponding Closest
Decoy in ULS/UDS Benchmarking Set for MTR1B-AGOa
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match is a popular metric to measure the performance of
benchmarking sets, while a mismatch leads to the artificial
enrichment in SBVS. Finally, we found out that the ratio for
decoys and ligands in a range of 30 to 100 does not affect the
quality of the benchmarking set, in which we employed the
number of 39 for building our decoy sets (UDS).
Our methods mainly focus on generating decoy sets for

application in LBVS. In fact, according to the outcome of our
“simp”-based VS, it is challenging to differentiate ligands and
decoys in ULS/UDS sets using similarity search based on six
physicochemical properties, which is a basic criterion of
benchmarking for molecular docking.29,36,39,41,42 In the future,
the benchmarking sets generated by our method can be
extended to evaluate the methods of SBVS or even make a
comparison between SBVS and LBVS in an unbiased manner.
Our most immediate goal would be to apply this method to
create benchmarking sets for each subtype in the chemokine

receptor family for which the LBVS methods are still the most
suitable tool for the discovery of subtype-selective chemokine
receptor antagonists.
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