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Metabolic activity grows in human cancers
pushed by phenotypic variability

Jesús J. Bosque,1,3,* Gabriel F. Calvo,1 David Molina-Garcı́a,1 Julián Pérez-Beteta,1 Ana M. Garcı́a Vicente,2

and Vı́ctor M. Pérez-Garcı́a1

SUMMARY

Different evolutionary processes push cancers to increasingly aggressive
behaviors, energetically sustained by metabolic reprogramming. The collective
signature emerging from this transition is macroscopically displayed by positron
emission tomography (PET). In fact, the most readily PET measure, the maximum
standardized uptake value (SUVmax), has been found to have prognostic value in
different cancers. However, few works have linked the properties of this meta-
bolic hotspot to cancer evolutionary dynamics. Here, by analyzing diagnostic
PET images from 512 patients with cancer, we found that SUVmax scales superli-
nearly with the mean metabolic activity (SUVmean), reflecting a dynamic preferen-
tial accumulation of activity on the hotspot. Additionally, SUVmax increased with
metabolic tumor volume (MTV) following a power law. The behavior from the pa-
tients data was accurately captured by a mechanistic evolutionary dynamics
model of tumor growth accounting for phenotypic transitions. This suggests
that non-genetic changes may suffice to fuel the observed sustained increases
in tumor metabolic activity.

INTRODUCTION

The development of cancer involves the accumulation of genetic and epigenetic alterations leading to a

broad diversity of subclones that compete for space and resources.1,2 The evolutionary dynamics resulting

from these heterogeneous populations lead to the selection of cells having better fitness, for instance in

their proliferation rate, which implies that there is a progression to higher grades of malignancy with

time.3,4 To sustain their energetic requirements imposed by these alterations, tumor cells deploy a reper-

toire of metabolic adaptations that allow them to thrive under detrimental conditions,5 being the most

common a preference for a glycolytic metabolism and avidity for glucose.6

Positron emission tomography (PET) leverages this reprogramming to render a spatially structured three-

dimensional image of the tumor metabolic state. The so-called standardized uptake value (SUV) of any

biomolecule analog is computed in each voxel to generate a macroscopic visualization that emerges

from the collective behavior at the cellular level.7,8 Accordingly, PET data provides a macroscopic picture

of the trajectory followed by cancers to moremalignant states. Nevertheless, few studies have taken advan-

tage of this information from an evolutionary dynamics perspective.9,10 The simplest PET-derived param-

eter, the activity of the hotspot (SUVmax), is now an essential tool in cancer diagnosis and monitoring.11,12

The SUVmax is known to provide relevant prognostic information in many cancers, with higher values being

associated with worse outcomes.13–17 However, the evolutionary dynamics processes underlying its signif-

icance have been mostly unexplored.

Mathematical models of cancer dynamics allow us to unveil and quantify the principles that rule progres-

sion.18,19 These have usually focused on genetic instability as the main driver of clonal evolution,20 even

though other mechanisms might be also relevant.21 The results point to an evolution to states of higher

malignancy and faster tumor growth rate, even when the selective advantages can be small.22 Recent

studies have usedmechanistic mathematical models to find relevant biomarkers in PET images.23 Addition-

ally, the application of the scaling laws approach24,25 to cancer metabolic images has revealed key aspects

of how tumors grow.26 Here, we used mathematical modeling to analyze the evolutionary dynamics behind

PET data of patients, and specifically the SUVmax.

1Department of
Mathematics, Mathematical
Oncology Laboratory
(MOLAB), University of
Castilla-La Mancha, Ciudad
Real, Spain

2Nuclear Medicine Unit,
Hospital General
Universitario de Ciudad Real,
Ciudad Real, Spain

3Lead contact

*Correspondence:
jesus.bosque@uclm.es

https://doi.org/10.1016/j.isci.
2023.106118

iScience 26, 106118, March 17, 2023 ª 2023 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

ll
OPEN ACCESS

mailto:jesus.bosque@uclm.es
https://doi.org/10.1016/j.isci.2023.106118
https://doi.org/10.1016/j.isci.2023.106118
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2023.106118&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


To understand the increase in cancer aggressiveness during its natural history, we analyzed diagnostic PET

images from 512 patients with cancer from six different histologies. Specifically, we focused on a key

parameter, SUVmax, and its relation to the mean activity in the tumor (SUVmean) together with the metabolic

tumor volume (MTV), unveiling the existence of power law relationships. We proposed a mechanistic math-

ematical model that reproduces the behavior of the patient data. This encompasses cell proliferation,

migration, death, and phenotype variability. The formulation, analysis, and results from these models sug-

gest that non-mutational events may suffice to fuel the increase in tumor aggressiveness with time. Figure 1

summarizes the conceptual design of our work.

RESULTS

The activity of the tumor hotspot grows faster than the average activity

We first studied the scaling of SUVmax with respect to the SUVmean, which gives an average of the SUV values

in the tumor as a whole. We first used four cohorts of patients imaged using 18F-fluorodeoxyglucose (18F-

FDG) as a radiotracer (see STAR Methods): lung adenocarcinoma (LUAD), lung squamous cell carcinoma

(LUSC), breast cancer (BC), and head and neck cancer (HNC) (Figure 2A). The four cohorts followed power

laws ðSUVmax = aSUVb
meanÞ with high coefficients of determination (R2 > 0:9, Figure 2B). The b exponents

clustered around bx1:2 (Figure 2C) and were consistently larger than 1: b = 1:194G0:023 (LUAD), b =

1:188G0:030 (LUSC), b = 1:155G0:035 (BC), and b = 1:173G0:043 (HNC).

Two additional cohorts of patients with cancer underwent a PET imaging procedure on diagnosis, using

radiotracers that are surrogates for membrane synthesis or, equivalently, cell proliferation: patients with

breast cancer (BC-FLT) and patients with glioma (GLI) (Figure 2A). The first group was studied using

30-deoxy-30-18F-fluorothymidine (18F-FLT) and the second was imaged with 18F-fluorocholine (18F-

FCHOL). Both datasets showed a good fit to a power law, with R2 = 0:934 (BC-FLT) and R2 = 0:801

(GLI). The scaling exponent for BC-FLT was in line with previous results b = 1:206G0:037 pointing out

that this value might be characteristic of many malignancies. For the GLI cohort, we found a lower coef-

ficient of determination, R2 = 0:801 (Figure 2B) and a substantially smaller scaling exponent b = 1:023G

0:067 (Figure 2C).

A B C

D

Figure 1. Overview of the research methodology

(A) PET image acquisition from different patients with cancer and extraction of the standardized uptake value (SUV).

(B) Image analysis and segmentation to obtain the tumor lesion activity (TLA), maximum SUV (SUVmax), and metabolic

tumor volume (MTV) of each patient.

(C) Regression analysis of each histology to determine the specific metabolic scaling laws between SUVmax with both the

mean SUV (SUVmean) and the MTV.

(D) Mathematical modeling comprising phenotypic transitions of different tumor cell traits to compute the

spatiotemporal dynamics of the metabolic activity.
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Maximum tumor activity grows with tumor size for a broad variety of cancers

We then investigated whether the value of SUVmax might also follow a power law of the form SUVmax =

aMTVb. The exponents found for the different patient cohorts took values in the range [0.217, 0.347], specif-

ically b = 0:305G0:052 (LUAD), b = 0:217G0:032 (LUSC), b = 0:347G0:075 (BC), b = 0:230G0:036 (HNC), b =

0:257G0:036 (BC-FLT), b = 0:223G0:101 (GLI) (Figure 3A). Even though the coefficients of determination were

consistently smaller than in the previous SUVmax-SUVmean relation shown in Figure 2, indicating a lower accu-

racy of the power law fit, they still reflected an increase of the maximum metabolic activity with volume. The

scaling exponents obtained for different cohorts were clustered around the value b = 0:3 (Figure 3B).

Thus our first two key observations were that: (i) the maximum tumor activity grew faster than the mean ac-

tivity value indicating an increased metabolic heterogeneity and (ii) the maximum tumor metabolic activity

increased with size, pointing out to an increase of tumor aggressiveness during the tumor’s natural his-

tories. These results, obtained for different cancer histologies, are in line with the observed correlations

between size and aggressiveness for many cancers.

Phenotype variability gives rise to a persistent increase in proliferation activity

We used the EvoFKmodel (see Box 1) to reproduce in silico the spatiotemporal dynamics of metabolic het-

erogeneity. Low cell density distributions with spherical symmetry and a narrow proliferation width were

used as initial data to obtain the radially distributed cell density nðr; tÞ and metabolic activity Aðr; tÞ (see
STAR Methods for details). Figure 4A plots time snapshots for the cell density spatial profiles. In the early

stages, cells are concentrated near the origin, and the density increases in that vicinity. As the tumor prog-

ress, cell migration increases leading to a broadening of nðr;tÞ. When the cell density reaches the carrying

capacity ðnðr; tÞ =K = 1Þ, the profile adopts the form of a traveling wave that moves as an invading front.

Activity profiles are also shown at the same time points in Figure 4A. Initially, most of the proliferative ac-

tivity occurs at the tumor center. Then, this proliferative profile lifts and occupies a larger space around the

A B

C

Figure 2. SUVmax versus SUVmean from diagnostic PET images of six patients with cancer cohorts

(A) Anatomic location of the different tumors analyzed.

(B) Log-log plots of SUVmax versus SUVmean for lung adenocarcinomas (LUAD), lung squamous cell carcinomas (LUSC), breast cancers (BC) and head and neck

cancers (HNC), all imaged with 18F-FDG radiotracer (first two columns); breast cancers (BC-FLT) imaged with 18F-FLT and gliomas (GLI) imaged with
18F-FCHOL. All the cohorts were fit to a power law SUVmax = aSUVb

mean, plotted by a red dashed line. For each subplot, we show the best scaling exponent b,

the coefficient of determination R2 of the regression, and the Spearman’s rank correlation coefficient rs between both variables.

(C) Summary of the scaling exponents for SUVmax versus SUVmean in the six cohorts of patients. The dashed line marks the value b = 1:2.
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lesion core. Eventually, the proliferative profile detaches from the location of the maximum cell density and

develops a peak that moves away from the tumor center. This entails that the most proliferative point

ceases to be located at the tumor core, even though proliferation might still be large there. Subsequently,

the hotspot ofAðr; tÞmoves toward the tumor boundary (which corresponds to the region where the spatial

gradient of the cell density is larger). Moreover, the maximum value of the proliferation activity increases

with time as the tumor progress. This parallels the situation of higher activity hotspots with larger MTVs

observed in our data.

To further elucidate the contribution of evolutionary dynamics to the growth in tumor activity, we investi-

gated the profiles in the distribution of the proliferation rate. The mechanism of phenotypic variation in

Equation 1 is purely stochastic and assumes an equal probability of cells transitioning to a higher/lower

proliferative state. At each time step, we calculated the distribution of the proliferation rates for the entire

cell population, denoted as Pðr;tÞ, which represents the probability density function for any cell to have a

proliferation rate r at a time t (see STAR Methods). Figure 4B displays the time evolution of Pðr; tÞ at

different time points. Two effects are readily noticeable; a broadening in the phenotype landscape

together with a drift in the mode of Pðr; tÞ toward higher proliferation values. The first effect contributes

to cell heterogeneity, while the second effect reflects the arrow of evolutionary dynamics, evidencing

the selection of more aggressive phenotypes. To study the spatial location of more aggressive phenotypes,

we calculated the average proliferation rate rðr; tÞ as a function of the distance r (inset of Figure 4B). Initially,

the average proliferation rate was homogeneously distributed across space but, as the tumor grew, it ac-

quired a sigmoidal shape whose most prominent values occur far from the tumor center.

Hence, the EvoFK model (1) predicts that the presence of fluctuations in the proliferation phenotype,

embodied in the diffusion constant Dr, leads to an increase with time in the most prominent value of the ac-

tivity. A noteworthy consequence of this feature is that it captures an internal temporal scale in the evolutionary

dynamics of tumor growth. We further explored these results using different values of the diffusion parame-

ters, specifically the pairs Dc = 3:8310� 4 cm2 day�1, Dr = 1:6310� 8 day�3 (Figures S1A and S1B) and Dc =

4310� 5 cm2 day�1, Dr = 1:6310� 8 day�3 (Figures S1C and S1D) with a similar overall behavior.

B

A

Figure 3. SUVmax versus MTV from diagnostic PET images of six different cohorts of patients with cancer

(A) Lung adenocarcinomas (LUAD), lung squamous cell carcinomas (LUSC), breast cancers (BC) and head and neck cancers (HNC), respectively, all imaged

with 18F-FDG radiotracer. Breast cancers (BC-FLT) imaged with FLT and gliomas (GLI) imaged with 18F-FCHOL. All the cohorts were fit to a power law

SUVmax = aMTVb plotted by a dashed red line. The fitting exponents that yielded the best b in each case, together with the coefficients of determination R2 of

the regression, and the Spearman’s rank correlation coefficient rs between both variables, are shown in each panel.

(B) Scaling exponent distribution of the power law fits for SUVmax versus MTV from diagnostic PET images in the six cohorts of patients cluster around b = 0:3.
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In silico dynamics of SUVmax with SUVmean and metabolic tumor volume

To assess in silico the changes with time experienced by the activity of the hotspot with respect to themeta-

bolic activity of the overall tumor, we computed the relationship between themaximum value of the activity

AmaxðtÞ and the mean activity AmeanðtÞ (see STAR Methods for their mathematical definitions). The pair

AmaxðtÞ � AmeanðtÞ is depicted in a log-log plot in Figure 4C. The figure shows that the activity in the hot-

spot grows faster with time than the average tumor activity. Different growth stages are also revealed there.

We found that, in the last stage of the simulated time, AmaxðtÞ and AmeanðtÞ were related by a power law

plotted as an orange dashed line in Figure 4C. The slope of the line, corresponding to the exponent of

this power law, was b = 1:44. We also calculated the metabolic tumor volume MTV ðtÞ by selecting the re-

gions of the in silico tumor that have a proliferation activity higher than a given threshold Ath. Figure 4D

depicts the log-log plot pairAmaxðtÞ � MTVðtÞ for the same time points. As the metabolically active region

of the tumor became larger, the activity hotspot showed a higher maximum. Moreover, from a certain point

during the progression, the evolution of logðAmaxðtÞÞ � logðMTVðtÞÞ became convex, showing an increas-

ingly growing slope. At the last third of the simulated temporal frame of this plot, a power law was fit

yielding an exponent b = 0:265 (slope of the dashed line in Figure 4D). Hence, the results obtained from

the time evolution of EvoFK model (1) in the clinically relevant regime were consistent with the scaling

laws observed in the datasets.

Full patient cohort simulations replicate the SUVmax vs SUVmean and SUVmax vs metabolic

tumor volume scaling laws

To further substantiate the predictions based on model (1) from Box 1, we generated a synthetic cohort of

150 patients with randomly chosen parameters as described in STAR Methods. For each virtual patient, we

computed the MTV ðtdiagÞ at the resulting diagnosis time tdiag, randomly chosen to replicate the real situ-

ation in which patients receive their diagnosis after the tumors have grown without treatment. We also

calculated the total lesion activity TLA ðtdiagÞ. We plotted the pair TLA-MTV for each simulation in Figure 5C

and found a scaling law with exponent b = 1:188G0:013. Therefore, multiple simulations of the EvoFK

model (1) led to results compatible with the observations in patient data26 (see also Figure S2).

Next, we calculated the maximum activity AmaxðtdiagÞ and the mean proliferation activity AmeanðtdiagÞ, both
at diagnosis. The log-log plot of the results is shown in Figure 5A. The distribution of these simulations is

compatible with a power law having an exponent b = 1:317G0:009, which is close to the values obtained

for real patients.

We also computed the scaling relations between AmaxðtdiagÞ and MTV ðtdiagÞ. A power law with exponent

b = 0:259G0:016 was obtained. Our simulated data (Figure 5B) reproduced the trend observed in the

Box 1. In silico spatio-temporal model of tumor phenotypic variability

To connect our observations with evolutionary dynamics processes, we developed a simple conceptual mathematical

model (hereinafter denoted EvoFK) based on a continuous Fisher-Kolmogorov-type partial differential equation (PDE)

and incorporating cell migration, proliferation, and phenotypic transitions.21,23 The tumor cell density is assumed to

be a function of space x˛U3R3, and proliferation rate r˛ ½0;rm�, where rm is the maximum proliferation rate. A cell

density function u = uðx; r; tÞ encompasses position and proliferation, so that uðx; r; tÞ represents the density of tumor

cells that, at time t, have a proliferation rate r at point x. The PDE that models the evolution of the cell density func-

tion is

vu

vt
= DcV

2u + Dr

v2u

vr2
+ ðr � mÞ

�
1 � 1

K

Z rm

0

uðx; r0; tÞ dr0
�
u: (Equation 1)

Equation 1 accounts for migration (diffusive motion with motility coefficient Dc > 0), phenotypic transitions, and pro-

liferation. The fluctuations in the proliferation phenotype, which occur through a random walk-like process in r with

diffusion constant Dr > 0, reflect continuous transitions that change the cell proliferation rate r. The third term consists

of twomechanisms. The first one includes the proliferation rate rminus a constant m> 0 that regulates the death rate so

that those cells having a larger factor r � m will feature a fitness advantage. The second factor, which has a non-local

logistic form (integral over the proliferation variable r0) with a local carrying capacity K > 0, represents the interplay

between clones with different phenotypes competing for the available space. Once the function u = uðx; r; tÞ is
computed, the total spatial cell distribution nðx;tÞ, the proliferation activityAðx;tÞ, and other relevant quantities can be

defined as described in STAR Methods.
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patient datasets (see Figure 3). Interestingly, not only the obtained exponents were similar in real and simu-

lated data, but also the calculated dispersion is similar in both sets.

To evaluate the dependence of the results on the chosen diffusion parameters, we performed additional sets

of simulations of Equation 1 simulating the dynamics of other 1650 virtual patients. These were done in groups

of 150, resembling the previous method, but in this case, the parameters were changed. First, we allowed the

parameter Dc to be fixed and run simulations with variable Dr for three different values of Dc (Figure S3). Sec-

ondly, we allowed Dc to change in our in silico-generated cohorts, now with a fixed Dr, and performed three

different sets of simulations for fixed values of it (Figure S4). Afterward, we used two different fixed values for

the carrying capacity K (Figure S5). Finally, we tested three variations of fixed values of the parameter modu-

lating the death rate m (Figure S6). Even though the concrete values of the exponents changedwithin a reason-

able range, we found that the conclusions held true for ample ranges of the parameters.

DISCUSSION

Deregulated pathways in cancer lead to unconstrained growth in which genomic instability opens the

genomic landscape by enabling successive mutations.27 After the inactivation of stability genes, mutations

in ordinary genes become much more frequent, benefiting tumor progression by producing cell variants

with potentially increased fitness.28 Thus, cancer cells experience a process of clonal evolution29 allowing

them to obtain advantageous traits that fuel their proliferative and invasive potential and are responsible

for the progressive increases in tumors’ malignancy.30

These evolutionary dynamics have a macroscopic reflection in metabolic imaging,31 in which the hotspot of

activity has a special relevance capturing the dynamics of the underlying biology.23,32,33 For that reason, in

this work, we investigated its scaling in relation to the overall uptake of the tumor. In six cohorts of cancer

diagnostic PET images, the value of SUVmax was related to the SUVmean by a power law with a high coeffi-

cient of determination and, in five of the six cohorts, the power-law exponents clustered around b = 1:2.

A

DC

B

Figure 4. Dynamics of cell density and proliferation activity from simulations of model (1) (Box 1)

(A) Evolution of the cell density normalized to the carrying capacity nðr; tjÞ=K (dashed curves) and the corresponding

proliferation activity Aðr; tjÞ (solid curves) at time points tj = 0; 200; 400; 600; 800; and 1000 days. The tumor center is

located at r = 0.

(B) Evolution of the probability density of proliferation rates in the tumor population. The inset shows the spatial profile of

the averaged proliferation rðr; tjÞ. Both sets of curves correspond to the same time points as in (A).

(C) Log-log plot of the relation of Amax and Amean at each time of the simulation run. The dashed orange line, which has a

slope of 1.44, displays the tendency of the circles for sufficiently long times.

(D) Log-log plot of the maximum activity in the tumor Amax versus MTV. The dashed orange line, which has a slope of

0.265, displays the tendencies of the simulation data for sufficiently long times. The color code bar denotes the temporal

frame of all plots in (A-D). Simulation parameters are listed in STAR Methods. See also Figure S1 for simulations with

different values of Dc and Dr.
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The emergence of these two properties is remarkable and suggests that fundamental principles are at play.

Previous works have pointed out that the metabolic activity increases faster than volumetric change,26

which is also confirmed in this work (Figure S2). Here, the scaling exponents around 1.2 imply that as the

total activity of a tumor rises globally, the activity in the SUVmax increases faster than the mean: it is the

growth in the activity of the SUVmax that takes the lead over the global increase in tumor activity. The dif-

ference arises in gliomas, where the exponent was very close to 1, pointing to an evolution of the SUVmax

proportional to the SUVmean. This discrepancy may come from the fact that gliomas are diagnosed at late

stages where the hotspot would not have any margin of departure from the whole tumor; there might be a

limit in the growth of the activity that is reached at late stages of the tumor evolution. This is in line with

works in which low-grade gliomas show an increase in proliferation after therapy, but high-grade gliomas

do not.34

To gain more insight on the increase of SUVmax with time, longitudinal measurements at different time

points would be needed, but this type of data is scarce; growing tumors are usually treated or—as in

the case of palliative care patients—not followed up with imaging. Since tumor volumes grow during their

unperturbed natural evolution, the strategy followed here was comparing the SUVmax of different patients

with their corresponding MTVs. Even though this approach will be affected by noise, since the comparison

is carried out on different patients with independent evolutions, it provides an averaged picture of how

both quantities are related. Our results from this perspective revealed a power law relating the SUVmax

with the MTV, but now with a lower coefficient of determination, as was expected—especially in gliomas,

where the R2 was very low. The low values of R2 indicate that the power law is not able to model much of the

variability in the relationship between both variables, which is in part due to noise—as reflected by the sim-

ulations—, nevertheless, the results show a clear tendency of SUVmax to be higher for higher MTV. All of the

six different cancer cohorts available for our study showed a scaling exponent b � 0:3, reflecting a trend in

how the SUVmax increases with MTV.

Those results arose with three different radiotracers, two of membrane biosynthesis (18F-FCHOL and 18F-

FLT35,36) and one of the glucose uptakes (18F-FDG). To support an ever-increasing rate of growth and pro-

liferation, tumors must rearrange their cellular metabolism, which is achieved in part by alterations in the

genetic code.31 This allows them to redirect essential nutrients to the generation of cellular building blocks.

It has been longly known that, even in the presence of oxygen, cancer cells process glucose to lactate

(aerobic glycolysis) instead of using the mitochondria to oxidize pyruvate to carbon dioxide (oxidative

phosphorylation), a pathway that is much more efficient in terms of ATP production. This is joined to a

remarkable rise in glucose uptake. Both effects are aimed at optimizing macromolecular biosynthesis to

sustain the growth requirements.37 Thus, glucose is mostly used by tumors for biosynthesis, the reason

for which we related the measured activity of the radiotracers to cellular proliferation. Analyzing the

A B C

Figure 5. In silico scaling laws obtained from numerical simulations of model (1) (Box 1)

(A) Log-log plot of maximum proliferation activity Amax versus mean activity Amean taken from the final time points of 150

simulations with different values of the main parameters. The dashed line is the result of fitting the data to a power law

which gives an exponent of b = 1:317G0:009 (R2 = 0:993).

(B)Amax against themetabolic volumeMTV follows the tendencyof a power lawwith exponentb = 0:259G0:016 (R2 = 0:649).

(C) TLA versus MTV fits with a power law having exponent b = 1:188G0:013 (R2 = 0:984). (A-C) In all the cases, the scaling

laws between the key variables from the simulations reproduce well what is seen in real data from patients. See

Figures S3-S6 for results obtained with different values of the parameters. See Figures 2, 3, and S2 to compare with the

corresponding relationships extracted from patients with cancer.
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simulations of tumor growth using the EvoFK model (1), and obtaining the proliferation activity through

Equation 12, we reproduced computationally the relationships and approximate exponents between

TLA and MTV, SUVmax and SUVmean, SUVmax and MTV, as well as the weak correlation between the later

quantities.

Genome instability in cancer expresses preferentially by chromosomal instability (CIN)38,39 with the loss or

acquisition of whole chromosomes and structural aberrations rearranging the location of the genetic mate-

rial.40 The accumulation of mutations allows cells to explore the fitness landscape41 which increases tumor

growth rate, tumor grade, and invasiveness.41,42 Additionally, non-genetic mechanisms such as methylation,

acetylation, or chromatin remodeling also affect individual fitness and have to be taken into account.43,44

Someof those changes are heritable, for what they can enable evolutionary processes,45,46 and their stochastic

nature may affect traits like the proliferative potential driving cell fitnesses and progression.47,48 Thus the

inherent noise in biological systems, and not only the coding mechanisms, contribute to phenotypic vari-

ability49 and has evolutionary consequences.50 Indeed, random fluctuations are known to have a role in the

evolution of different traits including growth rates, affecting the fitness of subgroups of cells in the absence

of genetic differences. Some examples have been described in yeast51 and bacteria.52

Our mathematical model was built on the basis of these stochastic epigenetic changes and taking the pro-

liferation rate as the affected variable, modeled by a continuous variable subject to a small level of random

variability. This is opposed to discrete substantial changes more akin to genetic mutations. Importantly,

phenotype changes can go upwards or downwards in aggressiveness with equal probability, however,

the emerging evolutionary dynamics drive the tumor to higher proliferative states. This kind of approach,

which brings epigenetic modifications into focus, has been well studied in mathematical oncology through

a family of models known as phenotype-structured PDE models.53,54 These typically quantify one or two

abstract levels of expression ranging from 0 to 1 which have an impact on a continuous range of pheno-

types showing different behavior or response to treatment.55 With a few exceptions,56 these models

have not traditionally considered the spatial effects of tumor growth explicitly. Here, we joined the pheno-

type-structured methodology with the classic Fisher-Kolmogorov model to obtain a general model for

spatial tumor growth. Moreover, we structured our population by means of an intrinsic trait of the cells,

namely, their proliferation rate, which allows us to formulate the model with no additional indefinite attri-

butes. The formulation of the model involves the use of a parameter Dr for the variability in the phenotypic

changes affecting the proliferation. This parameter has not yet been studied experimentally in humans,

although a combination of in vitro experiments and analysis of real-time growth of non-small-cell lung car-

cinoma cells was carried out in ref. 57 and values for Dr were estimated. The found values in that work were

larger than the ones employed here because our model is applied to patients, for which we expect a slower

global dynamics than for the mentioned in vitro measurements. With the chosen range of parameters, we

predict an evolution of the in silico patients that matches the one observed for the real patients. This range

should be understood as a first approximation to the order of this model parameter, although caution must

be taken until further experimental methods confirm this.

It is interesting that such a simple model accounting only for a single aspect of evolutionary dynamics can

reproduce so well a plethora of the traits identified in metabolic images from real patients. We suggest that

the kind of biological effects discussed may have a role in the evolution of the disease, as hinted by the

striking similarity between the mathematical model adequacy of our model to the data. Recent research

works have provided parallel results in the context of other biological systems.58 Also, previous mathemat-

ical modeling studies in substantially simpler scenarios describing growth in vitro have also highlighted the

potential role of proliferation fluctuations in the increase of tumor aggressiveness.57 Here we study the

adaptation of the model to data from patients. A joint effort from modelers and clinicians led us to gather

diagnostic PET images from six different cohorts of patients with cancer. It would be interesting to broaden

the usage of this model to more kinds of cancers, and also to test the behavior in cancers undergoing

different treatments. Hopefully, this study will encourage other researchers to test the results found in

these cohorts, and extend the conclusions to improve our general knowledge of this group of diseases.

Nevertheless, our model does not intend to be conclusive. Many other attributes such as metastatic/inva-

sive or angiogenic potentials, chemotactic migration,59 traits conferring resistance to therapies, the levels

of oxygen in the microenvironment,60 the influence of the immune system,61 and so forth, play a relevant

role in the evolutionary dynamics of cancer. It is thus intriguing that a mathematical model including a
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limited number of biological phenomena can reproduce the global features of the relationships between

the most relevant macroscopic metabolic variables so accurately. This fact may point out either to a domi-

nant role of proliferation as the most relevant trait in the cancers studied and/or an averaging of the poten-

tial relevance of other traits at the scale of our observations with voxels of several mm3 in size.

In conclusion, we have provided evidence from large cohorts of patients with cancer that the metabolic ac-

tivity increases as the tumors grow, and that this rise is manifestly higher for the most active point of the

tumor with respect to its mean activity. To provide a mechanistic explanation for the observations, we

have employed a spatiotemporal model of tumor growth that incorporates random changes in a contin-

uous fashion for the proliferation rate. This is inspired by recent experiments and assumes a stochastic

and heritable variation in the traits of genetically identical cells. The results from our model in terms of pro-

liferation activity closely resemble traits that are seen in PET images, suggesting that these non-genetic

mechanisms may play a role in cancer evolutionary dynamics.

Limitations of the study

To further validate the predictions of themathematical model used in the present study (see Box 1) in terms

of the time evolution of tumor activity, it would be necessary to incorporate longitudinal imaging datasets

from different untreated patient cohorts. Data of this type are scarce because growing tumors are typically

either treated or—as in the case of palliative care patients—not followed up with imaging. Therefore, in this

work, we resort to the use of data from different patients at the time of diagnosis, which inevitably intro-

duces noise to the relationships between variables. Moreover, we used data from six different cohorts of

patients with cancer, but it would be advisable to broaden the scope to more types of cancers. It is impor-

tant to stress that we did not intend to use our mathematical model to make specific predictions of the local

dynamics of particular tumors by predicting the local SUV values from the initial data. The model was in-

tended only as a simulation tool allowing us to study in silico the interplay between the selected features

in untreated tumors: cell motility, proliferation with evolutionary capabilities, cell death, and local compe-

tition for space and resources. Possible extensions of the mathematical modeling approach could include

allowing variations in the diffusive coefficient to account for evolutionary dynamics effects in cell motility,

the interaction with the microenvironment, and so forth.
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(2023). Stochastic fluctuations drive non-
genetic evolution of proliferation in clonal
cancer cell populations. Bull. Math. Biol. 85, 8.

58. Mattingly, H.H., and Emonet, T. (2022).
Collective behavior and nongenetic
inheritance allow bacterial populations to
adapt to changing environments. Proc. Natl.
Acad. Sci. USA 119. e2117377119.

ll
OPEN ACCESS

iScience 26, 106118, March 17, 2023 11

iScience
Article

http://refhub.elsevier.com/S2589-0042(23)00195-5/sref22
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref22
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref22
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref22
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref22
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref22
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref23
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref23
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref23
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref23
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref23
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref23
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref23
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref23
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref24
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref24
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref24
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref24
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref25
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref25
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref25
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref25
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref26
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref26
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref26
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref26
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref26
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref26
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref27
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref27
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref27
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref27
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref27
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref27
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref28
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref28
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref28
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref29
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref29
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref29
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref29
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref29
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref30
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref30
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref31
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref31
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref31
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref32
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref32
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref32
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref32
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref32
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref32
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref32
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref32
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref32
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref33
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref33
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref33
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref33
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref33
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref33
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref33
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref33
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref33
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref33
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref33
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref33
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref33
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref34
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref34
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref34
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref34
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref34
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref34
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref34
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref35
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref35
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref35
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref35
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref36
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref36
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref36
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref36
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref36
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref36
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref37
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref37
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref37
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref37
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref38
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref38
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref38
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref38
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref39
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref39
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref39
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref39
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref39
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref39
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref40
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref40
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref40
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref40
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref41
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref41
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref41
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref41
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref42
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref42
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref42
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref43
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref43
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref43
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref43
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref44
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref44
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref44
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref44
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref44
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref44
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref45
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref45
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref45
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref45
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref45
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref46
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref46
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref46
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref46
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref46
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref46
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref47
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref47
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref47
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref47
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref47
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref47
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref47
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref48
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref48
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref48
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref48
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref48
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref49
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref49
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref49
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref49
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref50
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref50
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref50
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref50
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref50
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref50
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref51
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref51
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref51
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref51
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref51
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref52
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref52
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref52
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref52
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref52
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref52
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref53
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref53
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref53
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref53
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref53
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref54
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref54
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref54
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref54
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref54
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref54
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref54
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref55
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref55
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref55
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref55
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref55
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref55
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref55
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref56
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref56
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref56
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref56
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref57
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref57
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref57
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref57
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref57
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref57
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref58
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref58
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref58
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref58
http://refhub.elsevier.com/S2589-0042(23)00195-5/sref58


59. Narla, A.V., Cremer, J., and Hwa, T. (2021). A
traveling-wave solution for bacterial
chemotaxis with growth. Proc. Natl. Acad. Sci.
USA 118. e2105138118.

60. Rocha, H.L., Godet, I., Kurtoglu, F., Metzcar,
J., Konstantinopoulos, K., Bhoyar, S., Gilkes,
D.M., and Macklin, P. (2021). A persistent
invasive phenotype in post-hypoxic tumor
cells is revealed by fate mapping and
computational modeling. iScience 24,
102935.

61. Shelton, S.E., Nguyen, H.T., Barbie, D.A., and
Kamm, R.D. (2021). Engineering approaches
for studying immune-tumor cell interactions
and immunotherapy. iScience 24, 101985.

62. Clark, K., Vendt, B., Smith, K., Freymann, J.,
Kirby, J., Koppel, P., Moore, S., Phillips, S.,
Maffitt, D., Pringle, M., et al. (2013). The
Cancer Imaging Archive (TCIA): maintaining

and operating a public information
repository. J. Digit. Imaging 26, 1045–1057.

63. Vallieres, M., Kay-Rivest, E., Perrin, L.J., Liem,
X., Furstoss, C., Aerts, H.J., Khaouam, N.,
Nguyen-Tan, P.F., Wang, C.-S., Sultanem, K.,
et al. (2017). Radiomics strategies for risk
assessment of tumour failure in head-and-
neck cancer. Sci. Rep. 7, 1–14.

64. Kostakoglu, L., Duan, F., Idowu, M.O., Jolles,
P.R., Bear, H.D., Muzi, M., Cormack, J., Muzi,
J.P., Pryma, D.A., Specht, J.M., et al. (2015). A
phase II study of 3’-deoxy-3’-18F-
fluorothymidine PET in the assessment of
early response of breast cancer to
neoadjuvant chemotherapy: results from
ACRIN 6688. J. Nucl. Med. 56, 1681–1689.

65. Boellaard, R. (2009). Standards for PET image
acquisition and quantitative data analysis.
J. Nucl. Med. 50, 11S–20S.

66. Schiesser, W.E. (2016). Method of Lines PDE
Analysis in Biomedical Science and
Engineering (John Wiley & Sons, Inc).

67. Jbabdi, S., Mandonnet, E., Duffau, H.,
Capelle, L., Swanson, K.R., Pélégrini-Issac, M.,
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Jesús J. Bosque (jesus.bosque@uclm.es).

Materials availability

This study did not utilize any physical material.

Data and code availability

This paper does not report original code. Any additional information required to reanalyze the data re-

ported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Lung cancer patients (LUAD & LUSC)

Lung cancer patients (LUAD & LUSC) were gathered from a multicenter prospective study of patients who

underwent surgery between June 2007 and December 2016. The Institutional Review Boards (IRB) from the

participating hospitals approved the study, and every patient signed a written informed consent. Only

patients with a maximum longitudinal size in computed tomography scan (CT) larger than 2 cm were

selected. 115 LUAD patients (92 men, 23 women, age range 48–81 years, median 65 years) were included

in the dataset, of which 3 were excluded due to complications of surgery leading to the death of the patient,

4 were discarded for having metastases present at diagnosis, and 2 were omitted due to the lack of clinical

data. The data from PET images of the remaining 106 patients were used in this study. The distribution of

stages was: 44 stage I, 36 stage II, 26 stage III, and 0 stage IV (due to exclusion). The TNM staging was: 23 T1,

67 T2, 14 T3, and 2 T4; 69 N0, 16 N1, 21 N2; all M0. 139 LUSC patients were collected (122 men, 17 women,

age range 47–78 years, median 64 years). Of them, 5 patients were excluded due to post-surgery death and

3 were discarded due to the presence of metastasis at the time of diagnosis. Criteria and protocol were as

in the LUADgroup. Staging was: 47 stage I, 45 stage II, and 39 stage II. TNM staging was: 27 T1, 64 T2, 25 T3,

and 15 T4; 84 N0, 27 N1, 20 N2; 131 M0. The PET machine was a dedicated whole-body PET/CT scanner

(Discovery SDTE-16s; GE Medical Systems) in three-dimensional (3D) mode. Image acquisition began

60 min after intravenous administration of approximately 370 MBq (10 mCi) of 18F-FDG; the images ob-

tained had a voxel size of 5:4735:4733:27 mm, with no gap between slices, and a matrix size of 1283

128. The inclusion criteria considered only newly diagnosed patients with available pretreatment PET/

CT examination and a lesion uptake higher than background (SUVmax larger than twice the background),

and absence of distant metastases.

Breast cancer patients (BC)

61 patients (all women, age range 25–80 years, median 51 years) from a multicenter prospective study,

beginning in September 2009, were included in the study. The study was approved by the IRB of Hospital

General Universitario de Ciudad Real, Spain. Written informed consent was obtained from all the patients.

Histologies were 59 ductal carcinomas and 2 lobular carcinomas. The following inclusion criteria were used:

(1) newly diagnosed locally advanced breast cancer with clinical indication of neoadjuvant chemotherapy,

(2) lesion uptake in PET images higher than background, (3) absence of distant metastases, and (4) tumor

size bigger than 2 cm. The protocol, procedure, and PET/CT machine were as in the LUAD group. 15 pa-

tients had N0, 35 N1, 4 N2, and 7 N3. PET machine and protocol was as in the case of lung cancer patients.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB (R2020a) The MathWork, Inc. Natick, MA https://www.mathworks.com/

products/matlab.html
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Head and neck cancer patients (HNC)

PET images were acquired from the The Cancer Imaging Archive (TCIA)62 and the Head-Neck-PET-CT

collection (H&N1 dataset).63 This cohort was composed of 92 patients with primary squamous cell carci-

noma of the head and neck (stages I-IV) treated between 2006 and 2014 at Hôpital Général Juif (Montreal,

Canada). The inclusion criteria in the present study were: (1) availability of pretreatment PET studies and (2)

presence of a well-defined primary tumor. 76 patients (63 men, 13 women, age range 18–84 years, median

62 years) were selected satisfying these criteria. The locations of the tumor were: 3 hypopharynges, 13

larynges, 11 nasopharynges and 49 oropharynges. The staging was: 0 stage I, 4 stage II, 26 stage III, and

46 stage IV. The TNM staging distribution was: 11 T1, 19 T2, 34 T3, and 12 T4; 11 N0, 16 N1, 47 N2, and

2 N3; 72 M0 and 4 Mx. FDG-PET scans were obtained from a hybrid PET/CT scanner (Discovery ST, GE

Healthcare) within 37 days before treatment (median: 14 days). A median of 584 MBq (range: 368–715)

was injected intravenously. Imaging acquisition of the head and neck was performed using multiple bed

positions with a median of 300 s (range: 180–420) per bed position. The slice thickness resolution was

3.27 mm for all patients and the median in-plane resolution was 3:5233:52 mm (range: 3.52–4.69).

Breast cancer patients (BC-FLT)

This cohort included pretreatment 18F-FLT PET/CT scans of patients from the American College of Radi-

ology Imaging Network (ACRIN) 6688 study. This study was observational, non-randomized, multicenter

phase II and the data are available at the TCIA (ACRIN-FLT-Breast).64 This dataset included histologically

confirmed breast cancer patients with the following inclusion criteria: (i) primary breast cancer measuring

2 cm or more (ii) candidate for neoadjuvant chemotherapy (NAC) and surgical resection of the residual pri-

mary tumor after chemotherapy, and (iii) no distant metastases present. All patients received a baseline

pretreatment 18F-FLT PET/CT study within 4 weeks before NAC initiation. After the injection of 2.6 MBq/kg

(mean, 167 MBq; range, 110–204 MBq), a whole-body image (5–7 bed positions) was obtained at 60 min

(mean, 70 min; range, 50–101 min). All patients were scanned on calibrated and ACRIN-accredited PET/

CT scanners, which incorporated a review of image quality and testing of SUVs using a uniform phantom

and review of images. 78 patients were included in the study (100% women, age range 22–83 years, median

50 years).

Glioma patients (GLI)

Patients with informed consent were included consecutively from a prospective non-randomized multi-

center study approved by the IRB of the participating hospitals (FuMeGA: Functional and Metabolic

Glioma Analysis). A basal 18F-fluorocholine PET/CT scan was performed in glioma patients after MRI

with an operable brain lesion and a good performance status (ECOG % 2). Only patients with pathologi-

cally confirmed brain glioma were included. Our study comprised 65 patients from the period 2017–2019 of

which 5 were excluded. The histologies of the 60 remaining patients (39 men, 21 women, age range 23–80

years, median 64 years) were 51 glioblastomas (3 of them IDH mutant), 8 anaplastic astrocytomas, and 1

oligodendroglioma. The same hybrid equipment (Discovery DSTXL-1, General Electric) was used for all

the PET/CT scans. 185 MBq of 18F-FCHOL were administered intravenously and PET registration was initi-

ated 40 min afterward. First, a brain scan was performed starting with a low-dose CT transmission study

(modulated 120 kV and 80mA) without intravenous contrast, followed by a 3D emission study with an acqui-

sition time of 20 min (one single bed). Voxel size was 2:3432:3433:27 mm.

METHOD DETAILS

PET image analysis

An experienced nuclear medicine physician (A.M.G.V.) and an imaging engineer (J.P.-B.) independently as-

sessed the PET scans in an AdvantageWindows station (v.4.). PET scans were considered positive if SUVmax

was higher than twice the uptake of the normal tissue background. Only positive PET scans were consid-

ered for subsequent tumor segmentation. PET images in DICOM (Digital Imaging and Communication

in Medicine) files were imported into the scientific software package MATLAB (R2020a, The MathWorks,

Inc., Natick, MA, USA). The tumor was first manually located in a 3D box and then delineated by an expert

(A.M.G.V., J.P.-B., V.M.P.-G., and J.J.B.) with the aid of a guiding semiautomatic algorithm. All segmenta-

tions were performed using an in-house developed software that allowed the support of a digital pencil on

a tablet. Physiological activity contiguous with tumor uptake, e.g. choroid plexus or skull in the brain, was

manually excluded from the tumor segmentations. From the radiotracer concentration in each voxel, the

radiotracer SUV is given by
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SUV =
ACvox

FDGdose=W
; (Equation 2)

where ACvox represents the average activity concentration in a voxel in kBq/mL, FDGdose is the dose of

the radiotracer administered in MBq and W is the body weight in kg.65 The DICOM files contain a stored

value Sv that has to be scaled by the slope RS to retrieve the actual concentration in a voxel ACvox = Sv$ RS.

Moreover, the radiation dose FDGdose is subjected to natural exponential decay so the injected total dose

RTD has to be corrected for the time that it takes from injection to the specific voxel to be processed ðEtÞ.
This implies an additional termDF$e

lnð2ÞEt=HF , withDF the decay factor of the radiopharmaceutical and HF its

half-life. Altogether, this leads to the formula from which SUV was computed

SUV =
Sv 3RS 3W

RTD 3DF 3 elnð2ÞEt=HF
: (Equation 3)

Global metabolic parameters were computed from the segmented images using the MATLAB software.

The results of the delineation procedure gave rise to a 3D matrix containing the SUV values ðSiÞ of the N

voxels of the tumor. For every tumor we calculated the following metrics:

� MTV:Metabolic tumor volume, corresponding to the volume of the segmented region, computed as

the number N of selected voxels multiplied by the volume of one voxel VV

MTV = N3VV : (Equation 4)

� TLA: Total lesion activity (corresponding to total lesion glycolysis, TLG, in the groups where 18F-FDG

was used), calculated as the sum of the SUV value multiplied by the volume of the voxel for all the N

voxels in the tumor

TLA =
XN

i = 1
Si 3VV : (Equation 5)

� SUVmax: Maximum value of SUV in the tumor

SUVmax = maxfSi : i = 1;2;.;Ng: (Equation 6)

� SUVmean: Average value of SUV in the tumor calculated as the quotient

SUVmean =
TLA

MTV
: (Equation 7)

Scaling laws

For each cohort, scaling laws for variables Y versus X were obtained by log-plotting Y versus X and fitting

the datasets to a power law of the form

Y = a Xb; (Equation 8)

where a is a (positive) rate constant, and b is the scaling exponent. The value of the exponent b has impor-

tant implications for the behavior of the system and distinguishes between sublinear ðb < 1Þ and superlin-

ear ðb > 1Þ scalings. In turn, a is just a constant of proportionality with little implications; for the sake of

clarity, its value is not stated along the manuscript, even though it is calculated for the different fits pre-

sented here.
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Numerical solution of the PDE model

We simulated the growth of the tumor using Equation 1 assuming a spherical geometry U = ½0;Rlim�, with
Rlim denoting the maximum radius of the computational window, which was set at Rlim = 6 cm. The PDE

reads then as

vu

vt
= Dc

 
v2u

vr2
+
2

r

vu

vr

!
+Dr

v2u

vr2
+ ðr � mÞ

�
1 � 1

K

Z rm

0

uðr ; r0
; tÞdr0

�
uðr ; r; tÞ; (Equation 9)

where rR 0 denotes the radial distance from the tumor center. The initial condition for Equation 9 was

taken to be

uðr ; r;0Þ = u0 exp

 
� r2

2s2
r

� ðr � r0Þ2
2s2

r

!
; (Equation 10)

where u0 and sr denote the amplitude and the SD of the spatial profile, respectively. Parameters were set to

u0 = 3:43109 cell day cm�3, sr = 0:07 cm, r0 = 2:2310� 2 day�1, and sr = 2310� 3 day�1.

Homogeneous Neumann boundary conditions were imposed at r = 0 and r = Rlim. Equation 9, in the non-

normalised form showed, was solved numerically by means of the method of lines.66 The computational

domain, ðr;rÞ, chosen as ½0; 6�cm3 ½0; 0:06�day� 1, was discretised in a mesh consisting of 4013241 equi-

spaced nodes. The parameters representing the characteristics of the cell population and evolutionary dy-

namics, which were included explicitly in the computation, wereDc = 1:3310� 4 cm2 day�1,Dr = 1:63 10� 8

day�3, m = 4:0310� 3 day�1, and K = 6:03107 cell cm�3. Dc was taken from previous publications.67–69 The

parameter modulating the death rate m is equivalent to an estimated half-life of 250 days, and the carrying

capacity was estimated from a maximum packing of cells in vivo corresponding to a cube of 23 mm3 side.

The value of the variability of phenotypes Dr cannot be retrieved from the literature, since for the moment

there are no available experiments that quantify it, and therefore we used values for which our results

resembled the data from patients (see discussion section). Since the EvoFK equation is non-local, the

method of lines was adapted to include numerical integration using Simpson’s rule for quadratures. This

led to a system of coupled ordinary differential equations (ODEs) in time for each point in the space/pheno-

type computational window. The resulting ODE system was solved using the stiff MATLAB (R2020a, The

MathWorks, Inc., Natick, MA, USA) solver ode15s.

Definition of the key quantities from the model

From the solution uðx; r; tÞ of Equation 1, a number of useful quantities can be calculated:

� Marginal cell density: Number of tumor cells at point x and time t,

nðx; tÞ =

Z rm

0

uðx; r; tÞ dr; (Equation 11)

where rm denotes the maximum (biologically feasible) proliferation rate.

� Proliferation activity: Density of tumor cells produced at point x and time t due to mitosis

Aðx; tÞ =

Z rm

0

r

�
1 � 1

K

Z rm

0

uðx; r0; tÞdr0
�
uðx; r; tÞdr: (Equation 12)

� Probability distribution of proliferation rates: Fraction of tumor cells that have a proliferation rate r

at a time t over the total number of cells

Pðr; tÞ =

R
U
uðx; r; tÞdxR rm

0

R
U
uðx; r; tÞdx dr

: (Equation 13)
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� Local averaged proliferation rate:

rðx; tÞ =

R rm

0 uðx; r; tÞr dr
nðx; tÞ : (Equation 14)

� Metabolic tumor volume (in silico):We replicated the process used in the PET images. To do so, we

selected a proliferation activity threshold Ath, set in our case to Ath = 8500 cell cm�3 day�1, and

considered only those regions with a higher activity A>Ath. Then, we performed the following

spatial integration over that domain Uth : = fx ˛UjAðtÞ >Athg

MTVðtÞ =

Z
Uth

dx: (Equation 15)

� Total lesion activity (in silico): The calculation of the total activity in the simulated tumor emulated

the procedure applied to medical PET images taking only the regions with A>Ath and integrating

over the computational domain Uth : = fx ˛UjAðtÞ >Athg

TLAðtÞ =

Z
Uth

Aðx; tÞdx: (Equation 16)

� Maximum proliferation activity: The maximum of the profile of proliferation activity was evaluated

similarly to the case of the images as

AmaxðtÞ = max
x˛U

Aðx; tÞ: (Equation 17)

� Mean proliferation activity: The mean activity was computed as the ratio between the total lesion

activity and the metabolic tumor volume of the in silico tumor

AmeanðtÞ =
TLAðtÞ
MTVðtÞ : (Equation 18)

All the above integrals were calculated by means of Simpson’s rule for numerical quadrature.

Generation of synthetic patient cohorts

We run simulations of Equation 9 for a group of 150 virtual patients with parameters randomly chosen in the

ranges Dc ˛ ½1310� 4; 1:5310� 4� cm2 day�1, Dr ˛ ½2:5310� 9; 4310� 8� day�3, m˛ ½1310� 3; 5310� 3� day�1

using uniform distributions. The value of the carrying capacity K, which was not expected to show high inter

patient variability, was fixed to K = 6:03107 cell cm�3.

The proliferation-spacemesh ðr; rÞwas discretized using 3513181 equispaced nodes. The initial conditions

were taken as in Equation 10, taking parameters randomly in the ranges r0 ˛ ½2310� 2; 2:4310� 2� day�1 and

sr ˛ ½7310� 4; 4:5310� 3� day�1. The endpoint of the simulation was drawn from an uniform distribution

tdiag ˛ ½500; 1000� day. The endpoint of the simulations was considered to correspond to the patient initial
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PET imaging study at diagnosis time. The variablesMTV, TLA,Amax andAmean were calculated at these final

times tdiag for each simulation. Additionally, we performed a sensitivity analysis of these results by carrying

out 1650 more simulations. This sensitivity analysis was performed in four groups of simulations fixing one

parameter at a time in different values while the others were randomly chosen in the said ranges. We per-

formed this analysis for three fixed values of Dc , three fixed values of Dr, two fixed values of K (besides the

already fixed value used for the definite simulations in the results section), and three fixed values of m. In this

way, we generated eleven more groups of in silico patients which confirm the validity of the model for

different values of the parameters.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of power law regressions and Spearman’s rank correlation

As a previous examination of the relationships existing in the data, we computed the Spearman’s rank cor-

relation coefficient rs between pairs of variables. This statistic assesses how well the relationship between

two variables is described by a monotonic function, what is evaluated by analyzing the ranks of the pairs of

data. The sign indicates the direction of the association between variables: positive when both variables

tend to increase together, and negative otherwise. A perfect correspondence in the ranks of the pairs of

data will yield a rs equal to + 1 or � 1, while rs = 0 indicates no relationship between the variables. Spear-

man’s rank correlation coefficient is the same as the Pearson correlation coefficient between the rank vari-

ables. The calculations of the Spearman’s rank correlation coefficients were made through the function

corr of the same MATLAB (R2020a, The MathWorks, Inc., Natick, MA, USA).

After the initial evaluation by the Spearman’s rank correlation coefficient, we performed a fit of the pairs of

data to power laws of the form Equation 8. All the regressions to power laws carried out in this article were

performed as linear least squares fits (with two parameters) of the logarithmic transformed variables. The fit

and the associated statistics were computed through the fitlm function of MATLAB (R2020a, The

MathWorks, Inc., Natick, MA, USA). The goodness of fit was determined by the coefficient of determination

R2, which gives the proportion of the variation in the dependent variable that is explained by the statistical

model (in this case, a linear regression). In a set of data Yi with mean Y which is fit by fi, the coefficient of

determination is given by

R2 = 1 �
P

iðYi � fiÞ2P
iðYi � Y Þ2 : (Equation 19)

Values of R2 closer to 1 indicate a better fit of the statistical model to the data, while low values close to

0 indicate that the variability of the data is badly predicted by the regression.
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