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One of the major challenges in the medical domain today is how to exploit the huge amount of data that this field 
generates. To do this, approaches are required that are capable of discovering knowledge that is useful for 
decision making in the medical field. Time series are data types that are common in the medical domain and 
require specialized analysis techniques and tools, especially if the information of interest to specialists is concen­
trated within particular time series regions, known as events. 
This research followed the steps specified by the so-called knowledge discovery in databases (KDD) process to 
discover knowledge from medical time series derived from stabilometric (396 series) and electroencephalo­
graphic (200) patient electronic health records (EHR). The view offered in the paper is based on the experience 
gathered as part of the VIIP project.1 

Knowledge discovery in medical time series has a number of difficulties and implications that are highlighted by 
illustrating the application of several techniques that cover the entire KDD process through two case studies. 
This paper illustrates the application of different knowledge discovery techniques for the purposes of classifica­
tion within the above domains. The accuracy of this application for the two classes considered in each case is 
99.86% and 98.11% for epilepsy diagnosis in the electroencephalography (EEG) domain and 99.4% and 99.1% 
for early-age sports talent classification in the stabilometry domain. The KDD techniques achieve better results 
than other traditional neural network-based classification techniques. 

© 2016 Anguera et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). 
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1. Introduction 

The quantity of information generated by the many different activities 
carried out in medicine is constantly on the increase. The efficient and 
responsible use of this information is one of the key challenges today. 

In the healthcare field, information is generated at many different 
levels: management, planning, medical examinations, etc. In particular, 
the research described in this paper focuses on patient medical data, 
formally known as electronic health records (EHR). 

EHRs may contain very wide-ranging data types: nominal (ICD9 
codes, CPT codes), ordinal (pain scales, PEW scores), numerical 
(temperature, BP), unstructured clinical narratives (for which text 
mining techniques are required), etc. There is a lot of literature on 
clinical systems operating on these data types [1]. However, more  and  
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more EHRs contain a data type whose structure may, on occasions, be 
extremely complex and which has been found after investigation not 
to have been thoroughly researched: time series. 

A time series can be defined as a sequence TS of time-ordered data 
TS ={TSt, t =1,…,N}, where t represents time, N is the number of obser­
vations made during that time period and TSt is the value measured at 
time instant t. The results of medical examinations (electroencephalo­
gram, electrocardiogram, electromyogram, etc.) very often constitute 
a time series [2,3]. Such is the importance of time series in medicine 
today that important data types like medical images (radiodiagnosis) 
are also very often mapped as time series for later processing and 
analysis [4]. 

The analysis of time series for knowledge discovery is far from 
straightforward and requires the application of special-purpose tools, 
especially if the key information of interest to the expert is concentrated 
within particular time series regions, known as events. Data mining is 
an interesting option in this respect. As illustrated by the success stories 
described by Shadabi and Sharma [5], data mining techniques have a 
huge potential for analysing such large volumes of stored medical data 
in order to discover knowledge. Generally, the extraction of useful, 
tacit and previously unknown knowledge from large data volumes is 
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what is known as knowledge discovery in databases (KDD). The KDD 
process ranges from the understanding and preparation of the data to 
the interpretation and use of the discovered knowledge (results of the 
KDD process). Data mining is the stage of the KDD process where the 
data are studied and useful information is extracted using a set of 
techniques and tools [6]. 

Traditional time series analysis techniques examine whole time se­
ries. However, the techniques applied in this case study were especially 
designed to address the analysis of time series events. As discussed in 
detail later, together, these techniques solve a classification problem, 
for example, by means of a strategy combining: 

a) The identification of time series events 
b) The generation of time series reference models for several subjects 
c) The comparison of a subject (to be classified) with different refer­

ence models. 

The aim of this paper is to report the results of two case studies 
applying the above techniques and also share with the scientific com­
munity the experience that we have gained in the field of medical 
time series analysis, highlighting the particularities of medical time 
series processing throughout the different stages of the KDD process. 
To do this the case study research methodology was used in order to 
propose and apply advanced knowledge discovery techniques on data 
from two branches of medicine: stabilometry and electroencephalogra­
phy. In doing so, the above process was supervised in its entirety by 
medical specialists from the respective fields. A sample of their impres­
sions is reported as lessons learned in Section 5. Other researchers may 
find the experience shared in this paper useful for more efficiently 
and successfully undertaking similar projects for extracting useful 
knowledge from other medical time series. 

The remainder of the paper is organized as follows. Section 2 dis­
cusses some papers and concepts of interest related to our proposal. 
Section 3 describes the reference domains used in this research. 
Section 4 details the process enacted to extract knowledge from time se­
ries, as well as the results of its application. Section 5 briefly discusses 
different issues of interest related to the proposed techniques and the 
illustrated case study (applicability, relationship to other techniques, 
limitations, viewpoint of medical experts, etc.). Finally, Section 6 reports 
the conclusions of the research and states some challenges in this field. 

2. Background 

The literature covers different approaches based on the application 
of computer techniques applied to the domain of medicine. Some are 
based exclusively on expert knowledge [7–12]. Others, however, learn 
from previous problems (case-based approaches) [13,14] or are 
representations (e.g., decision trees) that support decision making 
(model-based approaches) [15]. There are also hybrid approaches, such 
as the one illustrated in this article, where expert knowledge is used to 
gain a better understanding of the domain and KDD techniques are then 
applied to build models for use in decision making (e.g., diagnosis) 
based on the medical data. 

The KDD process includes the following stages (which may vary 
slightly from author to author) [6]: 

1.	 Domain and data understanding. This  first phase (which some 
authors consider to be outside the scope of the KDD process) studies 
the general characteristics of the data to be analysed and the source 
domain. 

2.	 Data selection. This phase determines all the sources of data of inter­
est, which are unified in a target dataset. 

3.	 Data preprocessing. The goal of this stage is to assure the quality of 
the data. To do this, a series of tasks are performed on the dataset 
generated in the selection phase. These tasks include reducing 
noise, handling missing values, etc. 
4.	 Data transformation and reduction. In this phase, the preprocessed 
data are subjected to a number of filters and operations in order to 
assure that the data format is suitable for running data mining 
algorithms. 

5.	 Data mining. A series of techniques and machine learning 
algorithms can be applied to the correctly formatted data in order 
to discover knowledge. These techniques are applied in order to 
solve different problem types, known as tasks. 

6.	 Knowledge interpretation/evaluation. The last step in the KDD 
process aims to evaluate the resulting models and, if the assessment 
is positive, interpret the knowledge inferred from the models. 

Clearly, KDD is a well-established process divided into phases and 
tasks. It generally functions as a paradigmatic framework for discovering 
knowledge from the data of any domain. And medicine is not immune ei­
ther to the beneficial effects of being able to access a highly standardized 
and widely documented framework such as the above. In fact, applying 
the KDD process to a branch of medicine by documenting and storing 
(whenever possible) the interim and final results could be a major step 
forward in medical research based on data analysis. 

2.1. Time series analysis techniques 

There are a great many techniques related to time series analysis in 
the literature. 

There are techniques for comparing time series and extracting 
common subsequences. The most noteworthy are techniques based 
on Fourier [6] or wavelet [16,17,18] transforms. Others are based on 
comparing time series singularities, known as landmarks [19]. Unlike 
the above, another group of techniques address the time series directly, 
using concepts such as the time warping distance [20,21], minimum 
bounding rectangles (MBR) [22], Markovian  models  [23] or graph 
theory [24]. Of the above, the wavelet-based technique is most closely 
related to our proposal, as it is somehow capable of identifying events. 
The drawback of this technique, however, is that the events in question 
(wavelets) do not necessarily match up with the segments of interest to 
domain experts. The other techniques described in this section are 
useful for comparing two whole time series. These techniques apply 
different methods to extract information on the entire time series. In 
many domains, like EEG or stabilometry, the focus should be exclusively 
on regions of interest (events) in the time series. 

There are techniques not only for comparison but also for generating 
transform-based reference models [25]. Again, however, they analyse 
the whole time series in order to output the transform coefficients 
(which are modelled). The same applies to other research aiming to 
find parts that a group of time series have in common but which are 
not necessarily of interest to the specialist [26,27,28,29]. Some tech­
niques are based on previously transforming the series into a set of seg­
ments. Even so, their applicability is confined to specified domains [30]. 

On the other hand, there are some proposals in the literature related 
to event identification. They are linked to specified domains, which 
means that they are either not usually generally applicable [31,32] or 
are based on identifying the prominently shaped segments of the series 
[33,34,35] that do not necessarily match up with the events that are of 
interest to domain specialists. 

Finally, this article illustrates an example of time series classification. 
Note, therefore, that most of the reviewed literature concerns tradition­
al techniques like the simple nearest neighbour algorithm [36,37,38]. 
We have also found techniques that are more like the approach reported 
here and are based on distinctively identifying subsequences in time 
series (not necessarily events of interest for experts) [39]. 

2.2. Time series analysis techniques applied to medicine 

Other authors have proposed different approaches to time series 
analysis techniques for the medical domain. Firstly, several authors 
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conducted an interesting survey of time series with regard to what they 
are capable of modelling and why they should be used to analyse the 
complexity of some multidimensional data that would otherwise not 
be understandable for expert systems analysing raw data [40]. These 
time series have been widely used in the field of KDD applied to medi­
cine in many papers. A prominent example is the data mining research 
applied to the classification and treatment of known medical conditions 
[41], proposing an expert system that classifies and automatically 
recommends a treatment based on a history of known diseases and 
disorders (partly characterized by data mining-based measurements 
and diagnoses). Another similar and again very interesting article [42] 
proposes a time series clustering system based on formal concept anal­
ysis. This prototype outperformed other classical clustering techniques, 
although it had a problem in common with many other proposals of this 
type: medical specialists find it hard to select the right techniques, tools, 
steps and technologies in order to undertake KDD. On this ground, sev­
eral authors put together a practical guide for the above KDD-focused 
phases in the field of medicine [43]. Finally, another problem with re­
spect to time series management in a domain as complex as medicine 
is the explosion of complexity resulting in multi-valued data clustering 
tasks. On this ground, many papers are in favour of reducing data 
dimensionality by abstracting subseries of interest. This would simplify 
the data analysis and classification processes. [44]. 

In any case, and as we are given to understand by the above and 
papers like [45], where several authors review the state of the art up 
until 2011 on clustering and other implemented techniques for KDD 
from time series, this is a key data type in medicine today. Hence, there 
is a need for proposals like the one outlined in this article, whose 
aim is to communicate a case study on time series events analysis, an 
issue not previously addressed in the medical field by any of the above 
techniques. 

3. Reference Domains: EEG And Stabilometry 

3.1. The EEG field 

Electroencephalography (EEG) is a branch of medicine responsible 
for studying electrical brain activity. To do this, it uses an electroenceph­
alogram machine, which is able to graphically represent this activity. 
Electroencephalography is used among other things to diagnose disor­
ders like epilepsy and brain injuries or tumours. The signals generated 
by an electroencephalogram are time series, whose analysis has brought 
major advances in the medical domain [46,47,48]. 

In the past, electroencephalography was a tool used exclusively by 
physicians. Recently, different methods from the intelligent systems 
field have been applied to discover knowledge from electroencephalo­
graphic time series [49,50]. This was the perfect opportunity to specify 
medical knowledge and standardize different diagnostic procedures. 

Electroencephalographic devices generate time series that record 
electrical activity (voltage) generated by brain structures over the 
scalp. EEG signals contain a series of waves characterized by their 
frequency and amplitude. EEG time series include certain types of spe­
cial waves that are characteristic of some neurological pathologies, 
like epilepsy. Such waves are known as paroxysmal abnormalities and 
can be considered as events (special regions of the time series that are 
interesting for domain experts). 

During this research we have taken into account three kinds of 
events: 

•	 Spike wave: A wave whose amplitude is relatively higher than 
the other waves in the signal and has a period of between 20 and 70 
milliseconds. 

•	 Sharp wave: A wave whose amplitude is relatively higher than 
the other waves in the signal and has a period of between 70 and 
200 milliseconds (see Fig. 1). 

• Spicule: A sharp wave with an abrupt change of polarity. 
The features characterizing these events are the duration and ampli­
tude of the wave, as shown in Fig. 1. 

3.2. Stabilometry Field 

Stabilometry is a branch of medicine responsible for studying 
human postural control [51,52]. Postural control is a key element for 
understanding a person's ability to perform their routine activities. 

Postural control is measured by means of a device called a 
posturograph. To do this, patients take a series of tests, designed to sin­
gle out the major sensory, motor and biomechanical components that 
contribute to people's balance [53]. Fig. 2 shows a patient performing 
a posturographic test. 

Although stabilometry was originally devised merely as a technique 
for assessing a patient's postural control and balance, it is now consid­
ered to be a useful tool for diagnosing and treating balance-related 
disorders [54–59]. 

Throughout this research, we have used a posturography device 
called Balance Master, manufactured by NeuroCom® International 
[60]. The device is composed of a metal plate placed on the floor and 
divided into two interconnected longitudinal plates. The metal plate is 
surrounded by a wooden platform, whose sole mission is to prevent pa­
tients from stumbling and falling. The patient stands on the metal plate 
and completes different types of tests, called US, LOS, BIS, RWS and WBS 
[61]: 

•	 US (Unilateral Stance): The aim of this assessment protocol is to 
measure the ability of patients to keep their balance standing on one 
foot with either eyes open or eyes closed. 

•	 LOS (Limits of Stability): The aim of this assessment protocol is to 
measure the maximum distance that patients with both feet on the 
platform can intentionally displace their centre of gravity without 
losing balance or stepping for a time. 

•	 BIS (Bilateral Stance): The aim of this assessment protocol is measure 
patient balance on different surface types during which patients must 
stand still on the platform on top of first a firm surface and then a foam 
surface. 

•	 RWS (Rhythmic Weight Shift): The aim of this assessment protocol is to 
quantify patient ability to voluntarily move their centre of gravity 
laterally from left to right and forward and backward between two 
targets at various speeds. 

•	 WBS (Weight Bearing Squat):The aim of this assessment protocol is to 
measure the percentage of body weight borne by each of the two legs. 
Ideally each leg should bear approximately half the body weight. 

These tests generate time series that measure patient balance. This 
case study focused on the US test, as, according to the consulted experts, 
this is the assessment protocol that reveals most information about sub­
ject balance. The aim of the US test is to measure how well able patients 
are to keep their balance standing on one foot with either eyes open or 
eyes closed. Ideally patients should remain perfectly static with no sway 
throughout the test. An interesting event type for this test is located at 
times when patients lose their balance and put their raised foot down 
on the platform. This event type is known in the domain as a fall and 
is identified when the pressure on the sensor corresponding to the lifted 
leg is greater than a specified threshold (∂). These events are character­
ized by their duration and intensity (see Fig. 3). 

4. Applied Methods and Results 

The case study reported below stated two different scenarios, one for 
each of the two reference domains. The KDD process was enacted from 
start to finish in each of the above scenarios, applying the specified tech­
niques (see Sections 4.1 to 4.6). The ultimate aim was to classify individ­
uals represented by their respective time series. In fact, two reference 
models were output for each domain (healthy and epileptic for EEG; 
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Fig. 1. Event taken from an EEG time series. 
basketball players and ice-skaters for stabilometry). The idea was to test 
the discriminatory power of the proposed classification strategy, 
adopting for this purpose the approach defined by the cross-validation 
technique (90% for training; 10% for testing). 

In the statistical study conducted throughout the case study, tried 
and tested descriptive and predictive methods were applied for hypoth­
esis testing based on p-values whose critical value was consistently 
below the confidence threshold of α = 0.05. 

The entire process is described below. 

4.1. Understanding the domain and the data 

The first step was to understand the data for each of the two 
domains. 

To do this, time series first had to be studied thoroughly, analysing 
their many features. Some of the key characteristics are: 

•	 Size of the time series (number of timestamps). Size can determine 
the amount of resources required to store and process the series. In 
this case, the size of the time series is manageable (from 1000 to 
4000 timestamps). 

•	 Type of recorded value. Values will generally be numerical, as applies 
to this research. This generally makes the research simpler, as there is 
a wider range of techniques for use or from which to borrow ideas. 

•	 Regions of special interest. Time series may have regions that are of 
interest to domain experts. These regions have to be identified and 
characterized. Such regions are known as events and are usually a 
Fig. 2. Patient performing a test on a stabilometric platform.	 
very common feature of medical time series. It is evident in this case 
that there are events of interest, as discussed in Section 4.3. 

•	 Regions without interest. If there are regions of special interest 
(events), the other regions may be of less or even of no interest. It is 
important to clarify this point with experts. In this research, the 
experts specified that time series regions that were not events could 
be disregarded. 

•	 Range of recorded values. The value range is necessary in order to 
identify any regions of interest. 

•	 Distance between measurements of the time series, paying special at­
tention to whether or not there is a pattern. This was 10 milliseconds 
in  the  time  series used in this research.  

•	 Possible noise in the series. Noise may be caused by many factors. The 
identification of noise and the respective factors will help to correct or 
minimize noise. As discussed in Section 4.3, most noise is caused by 
the patient and the expert supervising the test being out of phase. 

Interaction with experts would appear to be crucial for dealing with 
the above questions, etc. Experience suggests that it is highly advisable 
to consult a group or panel of experts for multiple gold-standard anno­
tation rather than relying on a single expert [61–68]. The premises of 
this panel-based approach are as follows: 

1. There are two or more individuals, each characterized by his or her 
own perceptions, attitudes, motivations, and personalities, 

2. who recognize the existence of a common problem, and 
3. attempt to reach a collective decision. 

A panel of experts often participates in different decision-making 
rounds. The decisions made by each particular member are used as 
input for new decision-making rounds involving the whole panel. The 
Delphi method is an example of an expert panel technique. Using 
techniques like this, experts have access to the decisions of their 
peers. This can lead them to change or add to the decisions that they 
Fig. 3. Fall event taken from a stabilometric time series. 
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made based on the viewpoints of other experts [69]. In this research, the 
Delphi method was used for all expert consultations (the panel was 
composed of five experts), and consensus was reached in two or three 
rounds depending on the task in question. 

4.1.1. Conceptual modelling 
Apart from the above, the domain and data may be easier to 

understand using conceptual modelling mechanisms. The conceptual 
modelling of a dataset has many benefits: 

■	 It is useful for clearly establishing relationships among different 
dataset entities, especially when the dataset contains different levels 
or hierarchies. 

■	 It is useful for representing the entity attributes, as well as the 
possible attribute value types. 

■	 A visual data representation is useful for giving a rapid and intuitive 
overview of the dataset. 

■	 Conceptual modelling is often the basis for later data storage in 
databases. 

■	 Additionally, conceptual modelling is the potential starting point for 
automating other tasks such as the comparison of individuals or the 
generation of reference models. 

■	 Modelling specifies and standardizes data and is the starting point 
for their transformation to other models of different levels of 
abstraction [70]. 

When conceptually modelling the reference domains (and other 
areas), it was found that, in all the studied cases, there is a central entity 
or register that represents the analysed object (in this case, a patient). 
Other lower-level data entities including different measurements of the 
object under analysis (for example, a patient EEG) usually depend on 
the central entity. Some conditions are usually altered when these 
measurements are taken in order to check the behaviour with different 
parameters (for example, an EEG of an epileptic patient could be repeated 
immediately after a seizure or a long time after the last seizure). The data 
collected from each of the measurements under each particular condition 
may be single valued or adopt more complex structures, like, for example, 
time series. Data engineers that undertake a project in the field of medi­
cine must be aware that they will come across large volumes of complex, 
high-dimensional data types. For example, patient stabilometric data are 
composed of several tens of time series and several tens of single-valued 
attributes, and a patient's stabilometric data total around three megabytes 
of information. 

Following the above structure, common to any branch of medicine, a 
general-purpose procedure was proposed for conceptually modelling 
data in UML2, as illustrated in Fig. 4. This generic model is able to auto­
mate the medical data preprocessing phase. The proposed model 
includes stereotypes, a mechanism for extending UML2 whereby it is 
endowed with more meaningful conceptual representations using 
icons and constraints based on a UML mechanism called profile. For  an  
exhaustive description of the above stereotypes, see [65]. 

Fig. 4 highlights the above concepts of register, measurement and 
condition. It also shows all the possible data types that may condition 
the data mining techniques: time series are processed differently to 
single-valued data, which are, in turn, often processed differently 
depending on whether they are quantitative or qualitative. Note that 
the above concepts are organized hierarchically in the form of a tree, 
where register is the root and the times series and single-valued data 
(represented by data) are  the  leaves.  

The above generic notation has to be tailored to each domain of 
experimentation. For example, Fig. 5 shows the model tailored for 
stabilometry domain data. 

The proposed notation has been used as a major support tool for 
understanding the analysed data and domains, as well as reducing the 
workload necessary for developing the other tasks. As reported by 
Lara et al. [65], the domain and data understanding phase can be 
performed about 1.6 times faster using the proposed notation in the 
studied domains. 

Apart from this advantage, the data gathered from each subject have 
been stored according to this conceptual model. Additionally, each 
individual data model is later used in data mining techniques to provide 
the structure guiding the different algorithms. 

4.2. Data selection 

Several electroencephalographic and stabilometric data sources 
were used throughout this research. 

With respect to the electroencephalographic domain, the publicly 
available data described by Andrzejak et al. [71] were used. They include 
data from real patients. The complete dataset consists of five sets 
(denoted A–E), each containing 100 single-channel EEG segments. 
These segments were selected and cut out from continuous multi­
channel EEG recordings after visual inspection for artefacts, e.g., due to 
muscle activity or eye movements. Sets A and B consisted of segments 
taken from surface EEG recordings that were carried out on five healthy 
volunteers. Volunteers were relaxed in an awake state with eyes open 
(A) and eyes closed (B), respectively. Sets C, D, and E originated from 
an EEG archive of presurgical diagnosis. The case study reported in 
this paper focused on sets A and E. The data source only reports patient 
examinations and does not include any demographic information about 
the subjects. Note that the patient partitioning into the subsets was de­
termined by the original dataset, and this division was not performed 
for the purposes of cross-validating the potential classification methods 
to be applied. 

As regards the stabilometry domain, we used data from real top 
athletes, including professional basketball players and elite ice-skaters. 
The study was conducted on young, white males (practising professional 
athletes). 

The input data associated with subjects were, in both cases, first and 
foremost time series generated after medical examinations. These time 
series were composed of numerical values generated on the spot during 
medical check-ups and stored in plain text files. As illustrated in 
Section 4.3, these files are converted into XML documents which can 
then be automatically preprocessed. In both reference domains, time 
series size is defined by the number of observations. This value is 
equal to 1000 in the stabilometric domain and 4000 in the EEG domain. 
The sampling period was 10 milliseconds. Fig. 6 shows a time series 
snippet for the stabilometry domain. 

These data have to be stored in a repository. Since this was a small 
project, XML documents were used to store the time series in conven­
tional databases. Fig. 7 shows a snippet of an XML document generated 
from a patient profile in the field of stabilometry, one of the reference 
domains used in this research. This and other similar documents were 
used as a data source from which to extract useful knowledge. 

Clearly, this is a pseudo ad hoc extract, transform and load (ETL) pro­
cess, whereby information from medical tests are dumped, offline, in an 
information repository based on standard XML. The schema of these 
XML documents does in fact conform to the conceptual modelling 
pattern (for example, Fig. 5). 

However, this proposal was found to have some weaknesses with 
respect to flexibility and efficiency as bigger data were processed. In 
this respect, the use of big data methods (based on efficient distributed 
information storage frameworks) and open standards (such as HL7 [72] 
or i2b2 [73]) could be a major advantage. 

4.3. Data preprocessing 

At this stage it is crucial to address noise and missing values. In this 
case, both circumstances were found to be the result of the patient and 
the test supervisor being out of phase with respect to the start and end 
of the test. This meant that there was noise and missing data at the start 
and end of the time series. These fragments were eliminated so that the 



190 A. Anguera et al. / Computational and Structural Biotechnology Journal 14 (2016) 185–199 

Fig. 4. Generic UML model. 
time series only contained the parts that were really consistent with the 
examination. In actual fact, the physician supervising the test is respon­
sible for cancelling the test if time series noise is not only confined to the 
beginning and end of the times series but also affects a considerable part 
of the remainder of the series. As a result, the first filter is applied 
manually. 

Additionally, the same automatic strategy was enacted with respect 
to noise management and missing values: 

1. Omit the missing values (pressure equal to 0 recorded by the respec­
tive sensor) or inconsistent values (according to established domain-
dependent thresholds). 

2. If at least 70% of the values can be retrieved after step 1 above, the 
time series is considered to be valid. 

3. Otherwise, the time series is omitted from the respective data model­
ling tree and is not considered for comparison and conceptual 
modelling. 

Apart from the above, a mechanism, based on the generic conceptual 
model common to both analysed fields (Fig. 4), was devised for auto­
matically transforming the data of any medical field to an equivalent 
format on which data mining techniques can operate directly. To be 
precise, a standard and well-known target XML schema definition 
(XSD) was defined, in conjunction with an automatic mechanism for 
transforming an XML that does not fully conform to the above schema 
into another equivalent and fully compliant XML, applying for this pur­
pose finite and non-ambiguous XSLT transformations [36]. As discussed 
in Section 4.2, the availability of XML data sources (see example in 
Fig. 7) is useful for quickly inferring the domain data structure and 
using automated mechanisms such as this during the data processing 
phase. 

The architecture supporting this automatic data preparation mecha­
nism uses the proposed UML2 model, which is mapped to description 
logic by means of a series of XSLT-based transformations, a target XSD 
and a source XML schema. A tool called eMOFLON [76] is used to auto­
matically build a rule box called ABox, “AssertionComponent”, from the 
output description logic. The description logic is also used to build a 
terms box called TBox, “TerminologicalComponent”, which contains a 
description of the terms used (register, measurement, condition, etc.). 
In this manner, the eMOFLON tool is capable of mathematically describ­
ing the domain schema and XML format used in the data from the user-
defined descriptive logic. The outputs of executing this tool (the above 
ABox and TBox) feed another tool, called RACER, whose input is the 
XML data of any domain and their respective XSD. RACER outputs two 
Boolean values: subsumption and instance. Subsumption indicates 
whether the input component model is a subsumption of the generic 
model, and instance indicates whether the component syntax is an in­
stance of the generic model and a new ABox’ component that contains 
a series of XSLT mappings. The XSLT mappings are applied to the source 
XML data and XSD and transform the data into other equivalent data 
structured to conform to the proposed generic UML2 model. In other 
words, RACER is capable of calculating a set of XSLT mappings that can 
modify an XML whose structure does not conform to a XSD in order to 
make an equivalent XSD-compliant XML for the above descriptive logic. 

The automatic data preprocessing mechanism is capable, according 
to experiments, of reducing the error rate in the preprocessing phase 
to at most 2%. Besides the low error rate, automatic preprocessing 
saves time and effort. In any case, the time taken to apply the proposed 
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Fig. 5. Part of the conceptual model of the stabilometry domain [65]. 
mechanism is, according to the results, linearly correlated to the size 
(number of lines) of the generated XML and XSD data files of 0.99 and 
0.56, respectively. This linear behaviour evidences the scalability of 
our proposal. 
Fig. 6. Stabilometric time series snippet. 
4.4. Data transformation and reduction 

After preprocessing the data automatically, it is necessary in this pro­
posal to apply filters in order, for example, to reduce data dimensionality. 

The main filter for reducing data applied in this proposal is time 
series event identification, applicable if only some parts rather than 
the whole time series are of interest. The identification of events in 
times series is a complex task and requires costly ad hoc methods for 
each domain. Therefore, we proposed the time series event definition 
language [67]. This language enables domain experts to simply and nat­
urally define any events appearing in the time series of each domain. 

For example, Fig. 8 shows an excerpt from the event definition 
process for one of the stabilometric domain tests. The notation proposed 
by time series event definition language was used for this purpose. 

After applying the event identification technique, each series was 
mapped to a set of events, each characterized by a series of all numerical 
characteristics. These are the event-related features that were described 
in Sections 3.1 and 3.2 (see Figs. 1 and 3). They will be the input data 
source for the data mining algorithms. 

The results of applying the above technique are reported below. 

• EEG 

This experiment focused on sets A (healthy patients with open eyes) 
and E (epileptic patients during an episode). It is precisely the wealth of 
these data and their availability that led us to explore this medical do­
main in order to validate the proposed model. First, we applied the 
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Fig. 7. XML snippet containing patient stabilometric data. 
event definition language in order to discover events from a total of 
more than 200 time series. In order to evaluate the accuracy of our 
event identification proposal, a number of EEG domain experts were 
asked to identify the events in the above 200 time series. The proposed 
technique was then applied to do the same thing. The accuracy of the 
proposal was calculated according to Eq. (1) which measures the 
match between the events specified by the experts and identified by 
the proposed language for all time series. In Eq. (1), #EvLang stands for 
the number of events identified by the language, #EvExp is the number 
of events specified by the experts and #EvLang-Exp stands for the number 
of events detected by the experts that were also identified by the 
language (match). Note that this formula offers a normalized result in 
Fig. 8. Definition of events for
the interval [0,1], where 1 indicates a perfect match between the num­
ber of events identified by the experts and by the language. 

2 * #EvLang−Exp¼ ð1ÞSIMExpLang #EvExp þ #EvLang 

Looking at all 200 time series, there is found to be a close match 
between the experts and proposed language, as shown by the mean 
similarity (close to 96%) between the experts and language (Table 1). 

The aim of the validation reported in Table 1 was to illustrate the 
match between events identified by the proposed technique and speci­
fied by the domain experts. With regard to language expressiveness, the 
 the US stabilometric test. 
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Table 2 
Statistical analysis of the events identified in the EEG domain. 

Class Avg(#Events) Avg(Duration) (ms) Avg(Amplitude) 

Epileptic 9.47 195 78 
Healthy 5.49 56 54 

 

 

experts who used the language did not pinpoint any weaknesses at all 
regarding missing elements or it being hard to use, etc. 

Having validated the event identification procedure, the events were 
analysed statistically, taking into account the number of events of each 
class in the time series and the mean values of their attributes (Table 2). 

Note that the above data are taken from a preliminary descriptive 
study and should not be construed as being illustrative of the final 
model, which is much more representative of the data sets and is, as 
explained in Section 4.5, output according to a much more sophisticated 
logic. 

• Stabilometry 

The stabilometric data used were from a total of 33 elite sportspeople, 
of which 15 were professional basketball players and 18 were elite 
ice-skaters. The studies focused on the US test, a test that provides 
interesting balance-related information. The events of interest occur 
when patients lose their balance and step on the platform (see 
Section 3.2). This test has four trials that are each repeated three 
times during a stabilometric examination. Therefore, we had access to 
a total of 33(subjects)*4(trials)*3(repetitions) = 396 time series. 

We repeated the validation procedure on the 33 sportspeople. First, 
we applied the time series event identification method and compared 
the results with the events discovered by the experts using Eq. (1). 
The results are shown in Table 3, revealing a match greater than 98%. 

Having validated the event identification procedure, the events were 
analysed statistically, taking into account the number events of each 
class in the time series and the mean values of their attributes (Table 4). 

4.5. Data mining 

The next step after transforming and reducing data is to apply data 
mining techniques to discover useful models. There are a great many 
possible time series data mining tasks, ranging from time series value 
prediction to time series classification. In the event of domains without 
special events (where, in principle, the whole time series is of equal in­
terest), more conventional techniques based on feature set processing 
(k-means, K-NN, neural networks, etc.) can be applied. However, 
when time series contain events (as is the case of the research described 
in this paper), more made-to-measure alternatives have to be found. In 
this case, the techniques proposed for this purpose were: 

■	 A method for comparing two patients in order to output a measure 
of similarity between the two [68]. This similarity measure indicates 
how alike patients are or how a patient evolves over time. It is the 
baseline for solving other problems like outlier detection or refer­
ence model generation. The proposed method for comparing indi­
viduals is based on a comparison of the conceptual data models of 
the two subjects. This method is an algorithm for comparing two 
time series [62] based on the similarity of the events identified 
and characterized in both series. 

■	 The above comparison method as the starting point for a method for 
generating reference models from two or more patients [68]. The  
structure of the resulting reference model is again specified by the 
respective domain conceptual model. The resulting model should 
identify the elements common to all the subjects at each level of 
the conceptual model. Note that the algorithm for generating refer­
ence models for time series based on the cluster analysis of events 
[63,64] using clustering techniques is the main part of this method. 
This method aims to pinpoint the events that are often found in the 
time series of the respective patients. These frequent events are the 
Table 1 
Overall results of applying the event definition language to the EEG domain. 

#Series #EvExp #EvLang #EvLang−Exp SIMExpLang 

200 1446 1496 1412 0.959 
ones that best characterize the group of time series and, therefore, 
are built into the final reference model. 
In order to assure that outliers do not distort the resulting reference 
models, the reference model generation method also includes an 
outlier detection and filtering algorithm [68]. The outlier detection 
method is based on four criteria. These criteria are designed to 
emulate how human beings analysing clusters of objects identify 
outliers within a set of objects. This has an advantage over other 
clustering-based outlier detection techniques that are founded on a 
purely numerical analysis of clusters. 

All the proposed algorithms were devised such that experts had to 
define the least possible number of input parameters, as physicians 
are not at all happy about rating these parameters with which they 
are mostly unfamiliar. 

The above contributions are combined to solve the problem of 
classification of individuals (represented by their time series). Classifi­
cation can be considered as a tool with many potential uses in the 
medical domain: diagnosis, early-age sports talent recruitment, study 
of patient evolution, etc. 

The process of classifying individuals is based on a strategy combining 
the use of the method of comparing two patients and a method for 
generating reference models from a set of patients. The strategy followed 
to classify patients is as follows: 

I: Generate, for each class Ci (i =1,  2,…, K), a reference model (Mi) 
from a training set of individuals. 

II: Compare the new patient to be classified (PNEW) with each 
previously generated reference model Mi (i = 1,  2,…, K). 

III: Select the class Cj whose reference model Mj is most similar to the 
new patient PNEW such that Cj = Ci | similarity(PNEW,Mj) =
max(similarity(PNEW,Mi)) ∀ i = 1, 2,…, K. 

The entire process described above is illustrated in the sequence 
diagram shown in Fig. 9, highlighting the different techniques applied 
in each phase of the process. Fig. 9 shows the original data source, the 
different intermediate products and steps of the process, and the discov­
ered knowledge (valid model output after the interpretation/evaluation 
phase described in Section 4.6). The data mining phase enacts the above 
strategy consisting of: i) creating reference models, ii) comparing the 
element to be classified with each model, and iii) outputting the class 
depending on its similarities to each model. 

The results of applying the proposed techniques in order to classify 
individuals have been satisfactory, as shown in Section 4.6. Before
classification, it is necessary, as mentioned above, to filter out outliers. 
The outlier detection process is reported below. 

• EEG 

The outlier detection method was applied and evaluated based on 
the events identified previously using the event definition language. 
The time series comparison technique was applied to perform pairwise 
Table 3 
Overall results of the application of the event definition language to the stabilometric 
domain. 

#Series #EvExp #EvLang #EvLang−Exp SIMExpLang 

396 942 954 931 0.982 
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Table 4 
Statistical analysis of events identified in the stabilometric domain. 

Class Avg(#Events) Avg(Duration) (ms) Avg(Intensity) 

Basketball 3.37 754 107 
Skating 1.45 346 83 

Table 5 
Confusion matrix for the application of the outlier detection method to the EEG domain. 

Outlier 

Language 

Yes No 

Experts Yes 
No 

11 
3 

1 
185 
comparison on data from different patients This produced a similarity 
matrix for each pair of individuals. The outlier detection algorithm 
was then run on this matrix. This algorithm returns a list of the outlier 
individuals from the input matrix. On the other hand, the experts 
consulted in our research were asked to use conventional techniques 
to identify the individuals that they considered to be outliers. Table 5 
shows the confusion matrix comparing the method and expert criteria. 

Different indicators (precision, recall, specificity and accuracy) 
were calculated based on the above confusion matrix according to the 
formulae specified below. 
K

Predicted Label 
Positive 
Negative 
Fig. 9. Overview of
nown label 
Positive 
True Positive (TP) 
False Negative (FN) 

Negative 
False Positive (FP) 
True Negative (TN) 
Precision = TP / (TP + FP) 
Recall = TP / (TP + FN) 
Specificity = TN / (TN + FP) 
Accuracy = (TP + TN) / (TP + TN + FP + FN) 
 the process enacted in the c
The values of the above indicators for the confusion matrix reported 
in Table 5 are shown in Table 6. In particular, the accuracy of the above 
results for the outlier detection method that we propose is 98%. 

• Stabilometry 

The time series outlier detection method was again applied as 
explained above. Table 7 illustrates the confusion matrix highlighting 
the comparison between the method and the experts. 

The outlier detection performance indicators calculated based on 
this matrix are shown in Table 8. Worthy of special note is the overall 
accuracy value of 98.5%. 

4.6. Evaluation/interpretation of discovered knowledge 

4.6.1. Evaluation 
Domain experts were used to evaluate most of the proposed data 

mining techniques. In this case, the models yielded by applying the pro­
posed techniques were compared against those generated by experts 
for validation purposes. This poses problems of differing criteria and 
ase study (aligned with the KDD process). 
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Table 6 Table 8 
Overall results for the application of the outlier Overall results for the application of the outlier de-
detection method to the EEG domain. tection method to the stabilometric domain. 

Indicator Value Indicator Value 

Precision 78.6 Precision 76.5 
Recall 91.7 Recall 86.7 
Specificity 98.4 Specificity 99 
Accuracy 98.0 Accuracy 98.5 
subjectivity because it requires the participation of more than one 
expert. 

• EEG 

After filtering out the outliers, the remainder (individuals) were used 
to evaluate the classification method based on the generation of reference 
models against which the individuals to be classified are compared. To 
evaluate the mechanism, a series of experiments were run using the 10­
fold cross-validation technique. This is a particular case of k-fold cross-
validation, a clearly defined standard technique for validating classifica­
tion techniques. The goal of this evaluation is to determine the quality 
of the classifications using the proposed techniques in terms of accuracy. 
The accuracy of a classifier CF is its probability of correctly classifying a 
randomly selected instance bPNEW,Ci N, i.e., accuracy = Pr (CF(PNEW) =  
Ci) [74]. 

First, we generated two reference models, one for each class (Mhealthy 

and Mepileptic). In this field, healthy patients could be viewed as a control 
group. The first model (Mhealthy) was created from a training set 
composed of 90% of time series of the set of healthy patients (A). The 
other 10% of healthy patients were part of the test set. The second 
model (Mepileptic) was generated from a training set composed of 90% 
of the time series in the epileptic patient set (E). The other 10% of 
patients were part of the test set. The patients in the test sets were 
chosen randomly. 

Both generated models were evaluated to check whether Mhealthy 

properly represents the group of healthy patients and Mepileptic is repre­
sentative of the group of epileptic patients. To do this, we classified the 
individuals in the test sets according to their similarity to the two 
generated models (this similarity value was determined using the 
time series comparison method). This entire process was repeated 10 
times, varying the training and test sets. 

Table 9 reports a comparison of the results of classifying individuals 
from sets A (healthy) and E (epileptics) using the proposed knowledge 
discovery techniques, the AFINN system (a fuzzy neural network) and a 
multilayer perceptron. The best result for the above neural networks 
was using three layers, with three neurons in the input layer, one in 
the output layer and two in the middle layer. We used a classical sig­
moid activation function and conducted backpropagation learning 
using the mean square error as a measure of total cost. The proposed 
approach was compared with these neural networks because they 
were familiar to us, as members of a research consortium partnered 
by other institutions that is applying and evaluating traditional neural 
network classification techniques on different data sets. The proposal 
was found to outperform neural network techniques. 

Table 10 shows the events present in the two models built using the 
proposed techniques and their characteristics. 
Table 7 
Confusion matrix for the application of the outlier detection method to the stabilometric 
domain. 

Outlier 

Language 

Yes No 

Experts Yes 
No 

13 
4 

2 
377 
From the medical viewpoint, the reference models output by our 
proposal are, according to the above results, a promising option for 
epilepsy diagnosis from electroencephalographic examinations. With a 
classification accuracy greater than 99.8%, the proposed method is capa­
ble of correctly classifying patients suffering from epilepsy based on 
their EEG time series. Note that the proposed method and the resulting 
models are designed not as a medical diagnosis tool but rather as a med­
ical decision-making aid. 

• Stabilometry 

After filtering out the outlier elements, a classification process was 
again enacted with the two problem classes (Mbasketball and Mskating). 
This process was performed using the same validation technique 
(10-fold cross validation). The results are shown in Table 11, where  
the classification accuracy for our method is greater than 99%, illustrat­
ing that our method outperforms the other analysed methods. 

Table 12 shows the events present in the two models built using the 
proposed techniques and their characteristics. 

From the medical viewpoint, these models reveal that balance is a 
variable related to the practised sport. In this case, there is a 99% likeli­
hood of sportspeople being classified in their respective sport. These 
and other possible models for other sports have potential in the field 
of sports medicine, as balance (especially of young athletes) can help 
to classify sportspeople within the discipline for which they are best 
suited according to their postural control. This would help to point 
young sportspeople in the direction of the disciplines at which they 
are most likely to be proficient during early-age sports talent recruit­
ment and possibly increase their future success as professional athletes. 

In actual fact, both models in this classification problem represent 
sports disciplines, and there is no control group of non-athletes. This 
approach was taken because the key applicability of this method is to 
select the sports discipline for which each talented young athlete is 
best suited (the individuals are presumed and known to have potential 
as elite athletes). 

4.6.2. Interpretation 
A fundamental design premise of the proposed techniques was that 

the resulting models should be easily interpretable by the respective 
type of expert user. Additionally, it was decided to use graphical 
elements (especially time series and their events) at all times for the 
purpose of ease of interpretation by specialists. 

The stereotyped conceptual data model shown in Fig. 5 was a great 
help in this respect. For example, the result of the comparison of the 
stabilometric data of two individuals is a tree with the same structure 
as illustrated in Fig. 5. The tree is annotated with the similarity among 
Table 9 
Comparison of the classification of patients by different methods in the EEG domain 
(accuracy) 

Patient type Knowledge discovery 
in time series 

AFINN Multilayer 
perceptron 

Epileptic 
Healthy 

99.86% 
98.11% 

96.26% 
95.12% 

96.61% 
93% 



196 A. Anguera et al. / Computational and Structural Biotechnology Journal 14 (2016) 185–199 

Table 10 
Reference models built by our proposal for EEG. 

Model #Event Duration (ms) Amplitude #Timestamp 

Epileptic 1 56 74 345 
2 321 81 1022 
3 68 73 3429 
4 167 87 2879 
5 189 83 1758 
6 245 92 895 
7 76 101 2210 

Healthy 1 89 45 1355 
2 145 32 3652 
3 110 37 345 
4 57 21 1384 

Table 12 
Reference models built by the proposed method for stabilometry. 

Model #Event Duration (ms) Intensity #Timestamp 

Basketball 1 854 103 345 
2 723 96 783 
3 1099 117 267 

Skating 1 234 73 211 
the individuals at each level of the tree. The physician can browse the 
tree to study the similarities and differences between the two individ­
uals under comparison. The result of the outlier detection process was 
a list of outlying values, sorted in top-down order. 

On the other hand, the generation of reference models results in an 
archetypal patient that represents a patient group. Using the proposed 
standard notation (see Fig. 5 for the stabilometric domain), the arche­
type has the same structure as any patient. This makes the model a lot 
easier for the medical expert to understand. Fig. 10 includes a sample 
screenshot of the application developed for this purpose, where the 
user can select the model (top), navigate the tree (left) and visualize 
the models as both a data table and chart (centre). 

Medical experts are dynamic professionals who are always on the 
go. They have to travel from one institution to another, visit patients 
at home or athletes at training facilities, etc. Therefore, not only do the 
models have to be displayed by the application, but they also have to 
be exportable to manageable and printable formats (models displayed 
in Fig. 10 can also be exported to PDF). 

5. Case Study Discussion 

This section aims to discuss the different issues related to the reported 
case study and the techniques used. These issues are as follows. 

5.1. a) General comments and lessons learned 

The design of the proposed techniques was a troublesome process 
beset with complications that had to be addressed. One of the main 
handicaps was the shortage or temporary unavailability of experts in 
the reference domains, especially stabilometry, which is a relatively 
new discipline. The project would have failed if it had had a demanding 
schedule for deliverables and milestones. Therefore, one lesson learned 
is that, when dealing with medical specialists, the schedule has to be 
flexible. 

Despite the difficulties, the medical specialists participated actively 
in the case study and took a lot of interest in the final results. It is true 
that, in many cases, physicians are not happy with the resulting models, 
when they are based only on historical cases. This case study, however, 
relied on expert knowledge (in order to define the events, which are the 
basis of the subsequent analysis), as well as on historical cases,. 

We soon learned that medical data are very sensitive data whose ac­
quisition is governed by sometimes very slow protocols. Additionally, 
Table 11 
Comparison of the classification of patients by different methods in stabilometric domain 
(accuracy) 

Patient type Knowledge discovery in time series AFINN Multilayer perceptron 

Basketball 99.4 98.8 97.7
 
Skating 99.1 98.1 97.1
 
there were very often not enough samples because of the complexity 
of the medical tests and the need to gain the patients' consent to use 
the medical data. 

5.2. b) Comparison with other techniques 

The case study found that the proposed approach outperforms other 
(neural network-based) methods that had been used with the respec­
tive test data in previous projects. Apart from improved predictability, 
the proposal has a sizeable added value compared to neural networks, 
as it shows the resulting models in a manner that is easy to interpret 
and justify. 

As mentioned in Section 2, apart from the neural network-based ap­
proaches, the literature also describes special-purpose techniques for 
classifying time series. They include techniques based on the k-nearest 
neighbour algorithm. It is usual practice in this approach to use a mea­
sure of distance based on end-to-end differences among the series. 
The experiments described in the case study were repeated using this 
approach, and resulting accuracy rates were close to 50%. This algorithm 
behaves like a random classification system. This is because the analysis 
covers parts of the time series that are potentially of no interest to experts 
which are not filtered out. On the other hand, the Shapelets-based tech­
nique has the drawback of generating a single segment representing 
each class. This segment does not necessarily match any fragment of 
interest to the expert. Additionally, a reference model is generally 
composed of several representative segments (events) that are not nec­
essarily adjacent. On this ground, the average accuracy of this proposal 
in the experiments conducted on our data was at most 62%. 

It is true that, in all the above cases, the final result of our case study 
(an end-to-end process) was compared with the results of specific 
(independent) classification techniques because literature review failed 
to show up any proposals applying an end-to-end process (from the 
raw data to knowledge) on data from time series with events. 

5.3. c) Proposal applicability 

This paper described a case study applying data mining with time 
series containing events. Of course, this is a case study confined to two 
domains. However, the positive results hold out some promise for 
applying this proposal to other branches of medicine. 

The only technique applicability condition is that the information of 
interest should be concentrated in certain regions of interest (events) of 
the time series to be analysed. 

Event definition is the only part of the proposal that is domain 
dependent and requires expert participation. Event definition is easy 
to perform thanks to the proposed language, which is very like natural 
language and is very intuitive for experts, as evidenced by the experi­
ence of the medical experts that participated in this research. The 
other techniques are completely domain independent. 

As regards the number of events, the applied techniques appear to 
work well irrespective of the number of events (the analysed data 
contain some series with few or no events and others with a sizeable 
number of events). For the purposes of applying this proposal, there is 
no limitation with respect to time series periodicity. The proposed ap­
proach identifies the events, irrespective of their periodicity, according 
to the conditions defined by experts for the purposes of characteriza­
tion. A characteristic indicating the number of times that each event 
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Fig. 10. Model interpretation interface. 
occurs in a periodic time series might be added in order to supplement 
the events. 

Accordingly, our proposal is applicable to many areas, both inside and 
outside the field of medicine. In the medical domain, it could be applied 
to another type of times series like, for example, electrocardiograms, 
which contain periodic events. 

5.4. d) Deployment of described techniques 

As mentioned above, the proposal applied to this case study can be 
extended to other branches of medicine where time series with events 
are of special importance. The procedure would be as follows: 

1. Thoroughly research the domain and data (especially the time series 
and their events) by means of interviews with experts and based on 
conceptual data modelling. 

2. Select the data set to be used and arrange the data in XML files. 
3. Reduce any noise and deal with missing values as explained in order 

to then automatically convert the specified XML data into XML data 
that conform to the standard UML pattern defined here. 

4. Define the event types using the language designed for the purpose. 
5. Apply the data mining techniques to output reference models of the 

classes to be studied (after removing outliers using the proposed 
method). 

6. Compare the element to be classified with existing models to deter­
mine its class. 

7. Based on the above results (repeated for each element), output 
model quality indicators (evaluation). 

8. If the model quality indicators are good (typically accuracy is above a 
particular threshold), interpret and apply the above models. 

Of course, the last step will involve implementing the respective 
techniques separately, in principle, albeit with the ultimate aim of 
building more comprehensive medical decision support system that in­
tegrates all the techniques. C# and the NetBeans 8.1 development 
environment were used in the reported the case study. Future integra­
tion requires exploration of which would be the best strategy to follow, 
that is, whether to use these or other technologies to further the above 
integration. 

6. Conclusions and Future Lines 

Iconographic time series, like electroencephalographic, stabilometric, 
electrocardiographic, etc., are increasingly common in medicine. This 
paper presented a number of specific knowledge discovery techniques 
applied on this type of time series from patient EHRs. Throughout this 
paper, we reported two empirical applications of the proposed tech­
niques on data from the stabilometry and EEG domains throughout the 
different stages of the KDD process: from data comprehension, through 
data mining, to discovered knowledge interpretation and evaluation. 

This paper, which reports the results and experience gained as a re­
sult of these case studies, aims to convey this knowledge to other re­
searchers planning to use temporal data in the respective branches of 
medicine. 

The experiments revealed that a surprising amount of useful knowl­
edge can be gathered from this type of structures. The two specific exam­
ples reported in this paper show that is possible to discover knowledge 
from EHR-derived time series that is useful for medical experts. While 
medicine is possibly one of the richest domains for data mining 
engineers, it is definitely the toughest. To overcome this, we think that 
the scientific community needs to address the following challenges: 

1. The design of tools to automate some resource-consuming time 
series analysis tasks, such as preparation. 

2. The proposal of representation models capable of capturing all the 
singularities, heterogeneity and structural complexity of medical 
time series. 

3. The specification of secure models for medical time series storage 
and publication with the aim of increasing efficient data reuse and 
processing. 
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4. The implementation of time series visual support tools for medical 
specialists. 

The main future lines that we intend to address are as follows: 

1. A tool for visually defining events in time series which is currently a 
text-based process 
Research is now centring on a visual tool to enable experts to identify 
events in time series. This tool is composed of an interface that 
displays graphs of different time series for experts. Experts can use 
the mouse to point to the regions that they consider of interest 
(events). This proposal infers the conditions that the identified 
regions meet (analyses aspects such as time series maximums or 
minimums, changes of trend, etc.), which it maps to the event 
definition language code. Clearly, this tool acts an intermediary be­
tween the experts and the event definition language (which is rather 
complex for experts who have no experience in using programming 
languages or similar). 

2. A visual tool for managing panels of experts and applying the Delphi 
method [69,75] 
The tool described above is rounded out by another tool that 
considers the opinion of several rather than just one medical expert. 
Expert collaboration via the Delphi method renders the gold-
standard annotation scheme more objective, and the events more 
accurate. However, expert availability is low, for which reason we are 
working on a tool capable of applying the Delphi method remotely 
and asynchronously. It is actually a web application that manages the 
different rounds of the Delphi method by sending out warnings and re­
minders to the email addresses of the participating experts according 
to an established schedule. The preliminary results are satisfactory 
with respect to both lines of research. 

3. Extend the comparison beyond neural networks 
The possibility of examining whether the results of applying the 
techniques described in this case study are better than other data 
mining techniques that were not devised for purely classification 
purposes, like, for example, logistic regression is worth considering. 

4. Study data computing performance 
This paper reported an evaluation of the proposed techniques in 
terms of effectiveness and usefulness (in this case, by means of clas­
sification accuracy). Although the response times of the techniques 
applied are viewed by the experts as being acceptable, future 
research should specifically examine the computational complexity 
of the above techniques depending on data characteristics (time 
series size and dimensionality, number of subjects, etc.). Public gold 
standard datasets should be used for this purpose. 
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