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Abstract

Background: One of the most commonly performed tasks when analysing high throughput gene expression data
is to use clustering methods to classify the data into groups. There are a large number of methods available to
perform clustering, but it is often unclear which method is best suited to the data and how to quantify the quality
of the classifications produced.

Results: Here we describe an R package containing methods to analyse the consistency of clustering results from
any number of different clustering methods using resampling statistics. These methods allow the identification of
the the best supported clusters and additionally rank cluster members by their fidelity within the cluster. These
metrics allow us to compare the performance of different clustering algorithms under different experimental
conditions and to select those that produce the most reliable clustering structures. We show the application of this
method to simulated data, canonical gene expression experiments and our own novel analysis of genes involved
in the specification of the peripheral nervous system in the fruitfly, Drosophila melanogaster.

Conclusions: Our package enables users to apply the merged consensus clustering methodology conveniently
within the R programming environment, providing both analysis and graphical display functions for exploring
clustering approaches. It extends the basic principle of consensus clustering by allowing the merging of results
between different methods to provide an averaged clustering robustness. We show that this extension is useful in
correcting for the tendency of clustering algorithms to treat outliers differently within datasets. The R package,
clusterCons, is freely available at CRAN and sourceforge under the GNU public licence.

Background
The need to classify observations into groups based on
shared properties is common to the analysis of many
types of quantitative and qualitative biological data. One
of the most common applications of classification is the
segregation of high throughput gene expression mea-
surements into groups based on specific criteria (e.g. co-
expression, profile-shape over a time course, partitioning
between patient categories). This is usually achieved by
the application of clustering techniques in which the
distance between features (e.g. genes) are calculated
from the numerical data (e.g. gene expression values)
and used to partition the data into discrete groups. An
extensive range of methods have been developed for
clustering data (for reviews see [1-4]). The plethora of

both methods and parameters under which clustering
can be performed presents a significant problem in
selecting a clustering approach that is well suited to the
data type. In addition the data needs to be processed in
a way that provides the best opportunity to isolate well-
defined and meaningful clusters from the data. The
importance of being able to assess both the method and
the parameters in a systematic and comparable manner
is significant medically (e.g. patient classification, drug
efficacy testing and treatment), more generally in
bioscience research (e.g. classifying gene and protein
groupings, prioritising candidate lists, pathway and net-
work topological analysis) and in many other fields (e.g.
financial systems, network communications, demo-
graphics). When clustering we want to know how many
clusters there are and how confident we are that the
clusters and their members are those best supported by
the data.
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The clustering of biological data is most commonly
performed in an unsupervised manner since the classes
to which the features belong are not known in advance.
Many studies have focused on high throughput gene
expression data where the expression of tens of thou-
sands of genes are measured simultaneously and
compared across multiple conditions. Indeed there have
been approximately 50,000 published microarray
studies in the last decade [5]. In these cases the high-
dimensionality, noise and small condition number of the
data sets makes cluster identification problematic. To aid
in this task a range of metrics are used to assess the
results of clustering experiments, mainly based on calcu-
lations of cluster compactness (intra-cluster variation),
cluster separation (inter-cluster variation) including
external, internal and relative criteria [6] and validity
indices [7,8]. These measurements generally assess how
well defined and separated clusters are without consider-
ing their stability or the confidence with which members
can be assigned to any one cluster. A range of resampling
approaches have been developed to quantify clustering
tendency, stability and validity both for entire sets of
clusters and for members of clusters [9-20]. Of these
methods, Monti et al. [14] is the only one to develop a
generalised, model independent resampling based metho-
dology to assess cluster stability. This method, consensus
clustering, can be applied to any clustering approach that
produces a deterministic classification output.
We now report the development of an extended

implementation of consensus clustering based on the
methodology of Monti et al. [14] in the widely used sta-
tistical programming language R [21]. This extension
allows the comparison and visualisation of the results of
clustering experiments using any number of different
clustering algorithms and parameters within a unified
framework. In addition it provides methods to merge
results to improve the quality of classifications. The pre-
mise of merging clustering results is that confidence in
the classification is increased if similar results are pro-
duced using two or more methodologically different
clustering algorithms (or in fact by using the same algo-
rithm under very different conditions). We demonstrate
the use of this merge consensus clustering methodology
in simulated gene expression cases, canonical gene
expression data from the leukaemia data set of Golub et
al. [22] and temporal gene expression profiles captured
from the development of the peripheral nervous system
(PNS) of the fruitfly Drosophila melanogaster (unpub-
lished data). We show that merge consensus clustering
improves the quality of clustering results and provide
quantitative measures of cluster and cluster membership
robustness. These measures can be used to select the
best methods and parameters for clustering a data set
and allow the user to make informed decisions about

the validity and composition of the resulting clusters.
The clusterCons package has been developed to work
with the clustering methods provided by the R package
cluster, including agnes (agglomerative hierarchical),
diana (divisive hierarchical), pam (partitional) and k-
means. This is achieved via simple wrappers, which can
be extended by the user to provide access to other clus-
tering methods in R itself or in external applications
called via R. The clusterCons package is easy to use and
allows the user to perform clustering, robustness quanti-
fication and visualisation in the R environment facilitat-
ing the simple integration of analyses and exploiting the
statistical and visualisation power of R.

Implementation
The process of consensus clustering begins by randomly
selecting a proportion of rows from the data and then
clustering the subset using the currently specified clus-
tering algorithm and parameters. This sampling and
clustering is repeated many times to test the effect of
removing features on the clustering result. The clusters
produced by each iteration are stored in connectivity
and indicator matrices which are later used to calculate
a consensus clustering result. Features that are
commonly found in the same cluster are, by definition,
reliable cluster members, whereas those whose co-
clustering is less frequent or dependent on the presence
of other features are less reliable. The consensus cluster-
ing result is used to calculate cluster and membership
robustness. We extend the consensus clustering method
of Monti et al. [14] to merge consensus clustering in
which we perform consensus clustering with many differ-
ent clustering algorithms and/or parameters. The result-
ing consensus matrices are then merged by weighted
averaging to produce a merge consensus matrix. This
matrix can be used as a distance matrix in subsequent
clustering experiments and to re-calculate cluster and
membership robustness. The advantage of the merge
consensus matrix is that it mitigates for the different
classification properties of clustering algorithms, with
some being more susceptible to outliers or particular
types of data structure.

Calculating the consensus clustering result
The consensus clustering result is an (NxN) matrix of
average feature connectivities generated from the clus-
tering results of each iteration of the resampling
scheme. It is calculated by dividing the number of times
two features are found together in the same cluster by
the number of times that they have been selected
together in the sampling subsets. For each iteration, the
clustering result is represented as a list where cluster
membership is indexed against a feature identifier (e.g.
gene id). We construct an (NxN) connectivity matrix
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from this list where we enter 1 if the features are in the
the same cluster and 0 if they are not (Figure 1A). We
also construct an (NxN) indicator matrix where we
enter 1 if the features are present in the sampled subset
and 0 if they are not. We then sum all of the connectiv-
ity and indicator matrices for iterations performed
under the same conditions and divide the two to pro-
duce the consensus matrix (Figure 1B).

Calculating cluster and membership robustness
We can use the consensus matrix ℳ to generate a mea-
sure of cluster robustness m(k) for each cluster k. First
we create a set of indices Ik for each cluster k indexed
by the feature identifier and then calculate the average
connectivity within each cluster. This is done by first
summing the elements of the consensus matrix where
members i and j are in the same cluster when i <j (as
the matrix is symmetrical) and then dividing by the
total number of entries in that half of the matrix
(excluding the matrix diagonal) as given by equation 1.
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We can also calculate the membership robustness
mi(k) of each element of the data set D = {e1...eN} for
each cluster k as the average connectivity between any

one element ei and all of the other elements of the clus-
ter. First we sum the average connectivities of all of the
other members of the cluster to the current member ei
(i.e. how often the other members are found with the
current element in the current cluster) and divide by
the number of other elements in the cluster as given by
equation 2.
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It is important to note that the consensus matrix itself
is not sufficient to calculate cluster and membership
robustness. We need in addition to have Ik for all clus-
ters K where k Î K which we generate by clustering the
whole dataset under the same conditions as for the re-
sampled data. This is the reference clustering result
whose robustness we are testing in the re-sampling pro-
cedure. It is possible to use the consensus matrix itself
as a distance matrix for clustering directly which would
generate a cluster structure from which you could gen-
erate the index set Ik for all clusters. In this paper we
use the former approach as it allow us to explicitly
define the distance method and clustering conditions
used and to compare the re-sampled consensus directly
to it.

Merging consensus clustering results
Having developed methods for executing multi-algorith-
mic and multi-condition clustering for the consensus
clustering approach of Monti et al. [14] we wanted to
explore the effects of combining the consensus cluster-
ing results to see if these merged results mitigated for
problems that can be associated with some types of
clustering algorithms. For example, hierarchical cluster-
ing algorithms are highly sensitive to outliers whereas
partitional ones tend to be relatively insensitive [23]. We
implemented a straight forward approach merged con-
sensus clustering whereby we used weighted averaging to
combine the consensus matrices from clustering experi-
ments using different algorithms and/or conditions
while only merging results for experiments with the
same number of clusters. This means that we produce a
merged consensus matrix for each k value assessed dur-
ing the resampling procedure. In the absence of addi-
tional prior information, equal weighting was applied to
the combination of consensus matrices, but this can be
specified directly by the user as a vector of weight values

w


= [0 - 1] if they wish to bias the merge towards any

particular algorithm and/or parameter set. As with the
original consensus clustering approach we need to pro-
vide a clustering structure in order to calculate cluster
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Figure 1 Calculating the consensus clustering result. The results
of any discrete clustering algorithm can be represented as a
membership list in which the features are indexed by cluster. (A)
The clustering result can be readily converted into a connectivity
matrix representing the co-clustering connections of the features. In
a consensus clustering experiment the clustering process is
performed many times with sub-samples of the data rows and the
resulting partial connectivity matrices are summed. In addition, the
frequency with which pairs of features are drawn together are
counted and summed to produce an indicator matrix quantifying
the opportunity any two members have to cluster together. (B) By
dividing the connectivity and indicator matrices we produce the
final consensus matrix which measures the frequency with which
any two features cluster together.
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and membership robustness from a merged consensus
matrix. We do this explicitly because each experimental
condition can potentially produce a different clustering
structure on which to assess robustness. When compar-
ing a consensus result to a merge consensus result we
use identical reference clustering structures to allow the
effects of merging to be directly compared.

Estimating the cluster number
The true cluster number (k) of a data set can be esti-
mated by finding the value of k at which there is the
greatest change in area under the cumulative density
function (CDF) calculated from the consensus matrix
across a range of possible values of k.
If we order the unique elements of a consensus matrix

descending by value we can calculate a cumulative den-
sity function CDF (c) defined over the range c = 0[1]
using equation 3.
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We can then calculate the area under the curve, AUC
using equation 4.
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where xi is the current element of the CDF and m is
the number of elements.
If every iteration of a consensus clustering experiment

clusters the same features together (i.e. the clustering is
perfectly consistent) then the consensus matrix elements
will be either 1 or 0 and the resulting AUC = 1. By cal-
culating the AUC for each consensus matrix we can
quantitatively compare different clustering results and
benchmark them against a perfectly consistent clustering
result. We can extend this method to estimate the true
cluster number k by consensus clustering, varying only
the cluster number. We calculate the quantity ΔK,
which is the change in AUC as we vary k, and define
the optimal k value as that which coincides with a peak
in ΔK.

General procedure of a clusterCons analysis run
The clusterCons package takes as input the data to be
clustered as a numeric matrix where each row is labelled
with a unique identifier (e.g. gene id) and each column a
unique condition identifier (e.g. patient id, time-point).
The user then specifies the clustering algorithms to be
used, either from a pre-defined set (agnes, diana, k-
means, pam, hclust, apcluster) or user defined and,
optionally, customised running parameters such as

cluster number range, iteration number and sampling
proportion. The package then carries out consensus clus-
tering and returns consensus matrix objects for each
specified set of algorithms and parameters. These con-
sensus matrix objects can be used directly as distance
matrices or to quantify cluster and membership robust-
ness. The user can also specify whether they would like
to generate a merge consensus matrix for each value of
k. This merge matrix is generated by (weighted or un-
weighted) averaging of the consensus matrices by pro-

viding an optional vector of weights w


= [0 - 1] and is

designed to mitigate for extremes in consensus values
that can be created by the sensitivity of some algorithms
to particular data structures. The merge consensus
matrices can also be used as distance matrices them-
selves in new clustering experiments. They can also be
used to re-calculate cluster and membership robustness
using as reference the clustering structures produced by
the original consensus clustering experiment.
When an estimation of the true cluster number is

required, consensus clustering objects from a range of k
values are used to calculate the AUC and ΔK values.
The ΔK values are then plotted against k in a “delta-K”
plot to identify the peaks visually and estimate the true
value of k.

Results and Discussion
Implementation
clusterCons has been implemented with R version 2.10.0
as a package and successfully tested on Linux, Windows
and Mac OS workstations. Execution times are depen-
dent on the size, complexity and range of consensus
runs and the power of the computer. As a guide, an
example run with 45 clustering conditions, 100 itera-
tions and a data matrix of 500 elements executed in 30
minutes on an entry level workstation (3 GB RAM,
dual-core 1.60 GHz processors). Where faster execution
times are needed it is possible to run clusterCons from
within a batch script and each iteration farmed out as a
separate process on a multi-processor facility. We routi-
nely run larger experiments as batch arrays on the Edin-
burgh Array and Compute Data Facility (ECDF) a 1456
processor HPC compute cluster [24].

Validation
Simulated expression data
We evaluated the performance of clusterCons with both
simulated and experimental data sets. For simulated
data sets, we generated expression data with four dis-
tinct expression profiles for 120 genes over four condi-
tions (Figure 2A ‘data’ panels). Experimental gene
expression data is noisy, so to assess how well standard
and consensus clustering were able to classify the
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Figure 2 Consensus clustering with simulated gene expression profile data. (A) Simulated gene expression sets were generated randomly
from normal distributions centred around four characteristic profiles (1,0,1,1), (0,1,1,0), (1,1,0,0), (0,1,0,0) which were then spiked with expression
profiles centred on (1,1,1,1), (0,0,1,1), (1,1,0,0) and (0.5,0.5,0,0). (B) Unsupervised clustering with agnes and pam was used to partition the
expression data into four clusters. Only profiles 1 and 2 were successfully identified by agnes, profiles 3 and 4 were consolidated and the (0,0,1,1)
spike data segregated into a new profile (top row). Conversely, pam identified four expression profiles and segregated spike data into the closest
matching profiles (bottom row). (C) Clustering with agnes and pam was repeated using clusterCons and the membership robustness calculated
for each profile (’consensus’ panels). For agnes, the spike data in cluster 1 are revealed as outliers (open triangles) and the robustness for cluster
3 is noticeably lower than clusters 1-4 reflecting its heterogeneity. Clusters produced by pam showed high robustness with only the spike data
in cluster 3, observable as outliers (open triangles). Merge consensus matrices were generated from these two consensus clustering results and
cast onto the agnes and pam clustering structures (’merge’ panels) producing a more balanced view of membership (and hence cluster)
robustness. For agnes, as expected, profiles 1, 2 and 4 remain largely unaffected, but profile 3 is heavily penalised as it is inconsistent between
clustering algorithms. All pam profiles retain their high membership robustness, but now spike data are revealed for all profiles as outliers. (D)
The optimal cluster number was estimated by finding the largest change in area under the cumulative density curve (AUC) for the consensus
matrix of each clustering experiment by cluster number. Using this approach, the merge consensus matrix correctly predicted an optimal cluster
number of 4, whereas agnes predicted 5.
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simulated profiles in the presence of noise we spiked the
data with four noise profiles (Figure 2A ‘spike ‘ panels).
Clustering was then performed using the agnes (hier-
archical) and pam (partitional) algorithms provided by
the CRAN package cluster [25] using a euclidean dis-
tance metric and a fixed cluster number of four, the
known number of true expression profiles. We wanted
to determine if the algorithms could correctly identify
the four original expression profiles and segregate the
noisy data into the profiles that they most closely
matched. Classification of the spiked profiles by agnes
resulted in the fusion of profiles 3 and 4 into a new
cluster and the creation of an additional cluster com-
prising one group of spiked profiles (Figure 2B ‘agnes’
panels). In contrast, the pam clustering algorithm cor-
rectly classified all profiles including the spiked ones
(Figure 2B ‘pam’ panels). We then performed a cluster-
Cons analysis using both algorithms (resampling propor-
tion = 0.8, iterations = 100) and calculated the
membership robustness for each cluster (Figure 2C ‘con-
sensus’ panels). Membership robustness values from the
agnes clustering show cluster 3, the fused cluster, to be
the least robust, but notably the spiked data are not
revealed as outliers since the cluster itself is heteroge-
neous. In addition the spiked data in cluster 1 are
identified despite fitting the profile at 3 out of 4 posi-
tions (see Figure 2B ‘agnes’ cluster 1). This is a result
of the high sensitivity of hierarchical clustering meth-
ods to outliers when the cluster is not generally het-
erogeneous [23]. As expected, clustering with pam
produced very robust cluster membership, with only
the more divergent of the spiked profiles of cluster 3
present as outliers (open triangles). This reflects the
relative insensitivity of partitional clustering methods
to outliers [23].
These opposing observations reveal a potential for sig-

nificant errors in class discovery even with this simple
data set. If we merge the consensus matrices resulting
from the pam and agnes clusterCons runs into a single
matrix by averaging them, we can then use the merge
matrix to calculate cluster and membership robustness
using either the pam or agnes clustering structures as a
reference (Figure 2C ‘merge’ panels).
This effectively allows the user to blend the output

of the two different clustering methodologies and pro-
vide a more balanced representation of the true
robustness of the clustering schema and membership.
We can see that without significantly affecting the
membership robustness of the pam clustering (which
correctly identified the 4 profiles) we now have a
much improved estimate of membership robustness
where all of the divergent spike profiles are weighted
down (open triangles). Even more importantly, for the
agnes clustering structure, cluster 3 (the fused cluster

of profiles 3 and 4) is heavily penalised in terms of
membership robustness. The ability to identify the
minor outlier (only 1 of 4 measurements deviates from
the true profile shape) in cluster 1 is retained, but
diminished (as this is not identified by pam). This ana-
lysis shows that by applying a consensus merge metho-
dology we can isolate outliers in a quantitative manner
and assess how well different clustering algorithms
partition the data.
In addition to calculating cluster and membership

robustness, we used clusterCons to estimate the correct
number of clusters in the data, by creating a “delta-K“
plot [26] (Figure 2D). This plot was generated by run-
ning clusterCons with multiple algorithms over a range
of possible cluster number values. Perfectly robust clus-
tering generates consensus matrices with elements being
either 1 or 0 as the same feature pairs are always found
together in the same cluster. We created an empirical
cumulative density plot from the value sorted elements
of the consensus matrix and then calculated the area
under the curve (AUC) which for perfect clustering is
equal to 1. By calculating the change in the AUC as
cluster number varies we identified which cluster num-
ber coincided with the greatest improvement in AUC
and thus best estimated the cluster number. Figure 1D
shows the “delta-K“ plot of the run for each of five algo-
rithms and for the merged consensus matrix. The inabil-
ity of agnes to correctly classify the profiles is revealed
as a prediction of k = 5 for the optimal cluster number.
In contrast, all of the other matrices including the
merge (which includes the agnes consensus matrix data)
correctly predict k = 4.
We now apply our consensus clustering methodol-

ogy to two biological problems: classifying leukaemia
patients and identification of developmentally co-
regulated genes using microarray data sets.
Classification of leukaemia patients
Classification and class discovery methods are commonly
used to stratify patients into groups using either quantita-
tive measures (e.g. gene expression, protein, metabolite
levels) or indexed qualitative or semi-quantitative
measures (e.g. symptoms, severity, treatment). Identifying
disease associated genes provides an opportunity to
improve diagnosis, treatment and understanding of
the disease and has been widely used in oncology [27],
neurology [28] and cardiology [29]. To test the utility of
consensus merge clustering in patient class discovery
using gene expression data we used the leukaemia gene
expression data set of Golub et al. [22] which contains
profiles of patients suffering from either acute myeloid
leukaemia (aml) or acute lymphoblastic leukaemia
(all). This data set is publicly available and is easily
obtainable as an R data object within the CRAN hopach
package [30].
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To reduce the scale of the clustering problem and
exclude uninformative genes we selected the 200 genes
that had the highest expression variance across patients.
We performed a clusterCons run on the transposed
expression matrix with 500 iterations and default para-
meters for the agnes and pam algorithms using a eucli-
dean distance measure and with k-means using the
MacQueen method [31] with k = 2 (as there are two
clusters, aml and all) and calculated the membership
robustness from both consensus and merge consensus
matrices. Membership robustness was plotted against
patient number for both clusters to visualise how well
each algorithm segregated patients into one or other
cluster with a perfect classification for any one patient
being a membership robustness of 1 in one cluster and
0 in the other (Figure 3). The consensus clustering
results obtained from each algorithm successfully
assigned the aml patients (numbers 28-38) into the
same cluster (Figure 3 ‘consensus’ panels, cluster 2).
Only agnes correctly segregated all of the all patient
samples into the correct cluster, but highlighted patients
12 and 17 as having the lowest membership robustness
in the cluster. Class discovery by k-means correctly seg-
regated all but patients 2 and 12 into the all group. The
pam algorithm incorrectly assigned patients 2,3,6,9-
11,14 and 23 to the aml cluster. These results illustrate
the benefit of consensus clustering compared to the dis-
crete classes produced by standard clustering methods.
Consensus clustering not only highlights the quality of
the classification (i.e. the distance between membership
robustness values for each patient for each cluster), but
also allows a standardised and comparative framework
to assess the relative performance of different clustering
algorithms and conditions. In this case and for this data
set the pam algorithm would be a poor choice as it is
unable to segregate the data according to the known
classes for 8 out of 27 patients.
We next assessed the performance of merge consensus

clustering by averaging the consensus matrices produced
by each of the algorithms into a single merge consensus
matrix and then calculating the adjusted membership
robustness values for each algorithm using the corre-
sponding clustering structures from the original experi-
ments (Figure 3 ‘merge’ panels). This allows the direct
comparison of membership robustness values for each
patient between the consensus and merge consensus
values as the same clustering structure is used to make
the calculations for both. As further illustration of the
unsuitability of pam to the classification of this data set
we now see that merge consensus clustering produces
almost identical membership robustness values for both
clusters for 19 out of the 27 all patients. In contrast, the
merge robustness plots for both agnes and k-means are
almost identical and in both cases patients 2 and 12 fail

to be robustly placed into either class (i.e. their
membership robustness values for clusters 1 and 2 are
very close to each other). This is crucial for the pur-
poses of trying to determine whether the class of the
patient has been reliably determined. Comparing the
membership robustness values for patients 2 and 12
between merge and consensus plots we see that the
averaging of the consensus matrices has pulled the
values close to each other which increases our uncer-
tainty about the correct class for these patients. In the
absence of merge clustering (and in a real life situation
where the class is not known before hand) we would
have confidently assigned patients 2,12 and 17 to the all
group in the case of agnes and patients 2 and 12 to the
aml group in the case of k-means.
To assess whether the expression profiles of patients 2

and 12 are indeed unusual for all patients we plotted the
patient expression profiles grouped by class (Figure 4).
The expression profiles of both patients are atypical of
the all group; patient 2 has very high expression levels
for genes 1-50 and 130-200 and patient 12 has high
expression for genes 1-40 and 160-200 in contrast to all
other all patients. We have demonstrated the utility of
both consensus and merge consensus clustering as a way
of quantifying the robustness of patient classification,
both in terms of selecting suitable algorithms and identi-
fying patients that are atypical of their group.
Identifying expression modules during Drosophila
peripheral nervous system development
Microarray gene expression experiments are increasingly
being used to look at temporal expression patterns at the
organism, tissue and cellular level during development
[32-35] as well as other more general multi-condition
scenarios. To illustrate the utility of applying a merge
consensus clustering methodology to this type of problem
we used clusterCons to classify gene expression profiles
during the development of the peripheral nervous system
(PNS) of the fruitfly, Drosophila melanogaster. We mea-
sured gene expression using the Affymetrix GeneChip
Drosophila genome 2.0 array using mRNA isolated from
flow sorted cell populations that were highly enriched in
cells of the early PNS (TIS and APJ, data available from
the gene expression omnibus (GEO) accession
GSE21520). The data set covers four experimental condi-
tions, three stages of PNS development in wild type flies
(conditions 1-3) and one in flies mutant for the transcrip-
tion factor atonal which is required for the normal for-
mation of the PNS (condition 4) [36]. We wanted to
identify groups of genes that shared discrete expression
profiles across the four conditions as a starting point to
discovering co-regulated genes. We first selected all
probe-sets whose expression in cells of the early PNS
were highly enriched compared to control cells in any of
the conditions (fdr < = 1%, ratio > = 2).
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Figure 3 Patient class discovery using a consensus clustering approach. The leukaemia gene expression data set of Golub et al. [22] was
used to assess the utility of consensus clustering to the segregation of patients into either an all (1-27) or aml (28-38) cluster. Consensus
clustering was carried out with 500 iterations and the clustering algorithms agnes, k-means and pam and the membership robustness was
calculated and plotted against patient number for both clusters. All three algorithms correctly segregated the aml patients into the same cluster
(’consensus’ panels, cluster 2, black filled circles), but only agnes (all) and k-means (all but 2 and 12) segregated the all patients reliably, whereas
pam failed to correctly segregate 8/27 all patients. Merge consensus matrices were generated and membership robustness calculated for each of
the three clustering structures (’merge’ panels). Agnes and k-means produced almost identical results correctly segregating all patients apart from
aml patients 2 and 12. Pam correctly segregated all aml patients, but could not segregate 19/27 all patients.
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This produced a list of 526 probe-sets. This list was
further reduced to the 200 probe-sets that had the high-
est expression variance across conditions to maximise
the chance of producing discrete and informative pro-
files. The final pre-classification transformation was to
unitise the expression matrices so that the classification
was made on the basis of the shape of the expression
profile and not the magnitude.
We performed a clusterCons run on the prepared data

set with 100 iterations and the same parameters for the
agnes, k-means and pam algorithms that were used pre-
viously. The cluster number, k was varied from 2-10 and
the cluster and membership robustness, AUC and ΔK were
calculated. The “delta-K“ plot (Figure 5A) revealed a peak
where k = 4 and a smaller peak where k = 6 with both k-
means and pam and a peak only at k = 6 with the merge
matrix. This is typical of gene expression clustering where
there are often a low number of high order partitions in
the data which can be further partitioned into smaller
groups with fine underlying structure. In order to maxi-
mise the diversity of profiles and minimise the size of the
clusters we chose to continue our analyses with k = 6 using
the k-means reference clustering structure. We plotted the
averaged expression values of the probe-sets classified into
each cluster against condition (Figure 5B) revealing a set of
highly distinct and stage specific profiles. Among these are
profiles for genes expressed in early (clusters 2 and 4), mid
(cluster 5) and late (clusters 1,3 and 6) PNS development.

In addition there is differentiation between genes that are
expressed in the atonal mutant at a lower (clusters 2 and
5) or higher (cluster 4) level. We next compared the mem-
bership robustness between consensus and merge consen-
sus clustering matrices. The consensus results show that
clusters 1 and 5 are highly robust (cluster robustness cr =
0.99 and 0.97 respectively) in comparison to clusters 2-4
and 6 (cr = 0.81, 0.66, 0.76 and 0.74, respectively). The
most extreme outlier for cluster 1 has a membership
robustness mr = 0.92 (Figure 6A ‘consensus’ panel) which
is highly robust under this clustering regime. Cluster 5 has
a more pronounced outlier with mr = 0.69, whereas clus-
ters 2-4 have no outliers, but broad inter-quartile ranges
(IQR = 0.14, 0.14 and 0.13, respectively). Cluster 6 has two
definite outliers with mr = 0.54 and 0.48.
These results allow us to rank clusters based on their

stability during re-sampling, prioritise expression profiles
and rank cluster members by their robustness values.
We can prioritise genes to include for further investiga-
tion and those to eliminate based on low stability within
the cluster providing a quantitative method to remove
cluster members reducing noise within the profile. We
completed our analysis by casting the merge matrix pro-
duced from consensus clustering with all three algo-
rithms onto the k-means clustering structure and
calculating cluster and membership robustness. The
merge clustering produced an improvement in the
membership robustness of clusters 2,4 and 6 (mr = 0.87,
0.85 and 0.79) and only a small reduction in those of
clusters 1 and 5 (mr = 0.93 and 0.90), whereas cluster 3
was essentially unaffected (mr = 0.63). The refinement
of the consensus clustering results by merging results in
significant changes in the membership robustness of
several probe-sets (Figure 6B). Notably, in cluster 1
there is now an outlier with mr = 0.66 (probe-set
1638314 at, previous mr = 0.99). To determine the basis
for this change we plotted the expression profiles for all
probe-sets in cluster 1 (Figure 6B). In this plot, probe-
set 1638314-at (black line, open triangle) has a very dif-
ferent relative expression level at condition 2. Similar
analysis across the other merge clustering results
revealed that merge clustering not only identified out-
liers when single algorithm consensus clustering did
not, but also re-classified some probe-sets as not being
outliers. For example, in cluster 5 (Figure 5A) the most
extreme outlier had its membership robustness increase
from mr = 0.69, with consensus clustering, to mr =
0.77, with merge consensus clustering, despite a corre-
sponding drop in cluster robustness from cr = 0.97 to
cr = 0.90. Also for cluster 6 the two most extreme out-
liers showed decreases in membership robustness from
mr = 0.54 to mr = 0.48 and mr = 0.70 to mr = 0.59
respectively with little change in cluster robustness (cr
= 0.74 to cr = 0.79).
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Figure 4 Leukaemia patient expression profiles. The expression
profiles of all leukaemia patients were plotted against the gene
identification number grouped by patient class (’all’ and ‘aml’
panels) and the profiles of atypical all profiles for patients 2 (solid
black line) and 12 (dashed black line) highlighted.
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Figure 5 Discovering gene expression profiles with consensus clustering. A fruitfly PNS gene expression data set (TIS, APJ, data available
from the gene expression omnibus (GEO) accession GSE21520) was used to test the ability of clusterCons to identify gene expression profiles
across a developmental time-series. (A) Consensus clustering was performed with agnes, pam and k-means algorithms with 100 iterations and
cluster numbers k = {2, 3...10}. The optimal cluster number was estimated by calculating first the AUC and then the delta-K values for the
consensus and merge consensus matrices and a delta-K plot generated. The small, but consistent peak at k = 6 for k-means, pam and merge
consensus matrices was select for further study using the k-means clustering structure. (B) Relative gene expression means were plotted for all
probe-sets by cluster revealing discrete and stereotypical profiles describing stage and genotype specific features. Among these are profiles for
early (clusters 2 and 4), mid (cluster 5) and late (clusters 1,3 and 6) expressed genes as well as differentiation of genes that are expressed lower
(clusters 2 and 5) or higher (cluster 4) in the atonal mutant.

merge

m
em

be
rs

hi
p 

ro
bu

st
ne

ss

cluster
1 2 3 4 5 6

consensus

1 2 3 4 5 6

0.4

0.6

0.8

1.0

k-
m

ea
ns

median
outlier

ex
pr

es
si

on

condition
1 2 3 4

1.0

0.8

0.6

0.4

0.2

A B cluster 1 expression profile

1638314_at

Figure 6 Refining gene expression profiles with merge consensus clustering. We compared the cluster and membership robustness of
consensus and merge consensus clustering matrices using the k-means clustering structure. (A) For the consensus clustering results, clusters 1
and 5 were highly robust (cr = 0.99 and 0.97), clusters 2-4 and 6 were moderately robust (cr = 0.81, 0.66, 0.76 and 0.74) and outliers (open black
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clusters 1,2,5 and 6. For example, a striking outlier appears for the highly conserved cluster 1 as a result of merge consensus clustering (probe-
set 1638314-at, mr = 0.99 ® 0.66). (B) This outlier is confirmed by plotting the relative gene expression for all of the probe-sets in cluster 1
(probe-set 1638314-at black line, open black triangles).
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In this example we used merge consensus clustering to
refine consensus clustering results to better represent the
stability of the co-expressed gene clusters (improved
estimation of cluster robustness) and identify ill fitting
or ‘noisy’ members of the profiles (improved estimation
of membership robustness).
Together these refinements provide the opportunity to

quantify the performance of clusters and members using
a hybrid approach that takes advantage of the classifica-
tion features of different clustering algorithms. This
allows for the prioritisation of clusters (profiles) and ele-
ments (probe-sets) in a quantitative rather than qualita-
tive manner and is a framework for filtering clustering
results to maximise the signal to noise ratio.

Conclusions
We have extended the consensus clustering approach of
Monti et al. [14] to allow merge consensus clustering and
demonstrated its use with simulated and real gene
expression data sets. We find that merge consensus clus-
tering is effective in integrating consensus clustering
results in a way that helps in the refinement of data
classification and the identification of outliers. Crucially,
this approach aids the selection of appropriate clustering
algorithms and parameters and mitigates for the differ-
ential sensitivities of clustering algorithms to different
data structures. Although we have demonstrated the
benefit of merge consensus clustering for classifying gene
expression data, it can be used to classify any data that
can be represented numerically and should prove useful
in the refinement and quantitative assessment of classifi-
cation problems in general.
We have implemented merge consensus clustering as

an R package, clusterCons. The package is fully docu-
mented, simple to use, freely available from the Com-
prehensive R package Archive Network (CRAN) [37]
and easy to install using the resident package handling
tools of R. We also include the latest version of the soft-
ware and a user guide as additional files with this article
(see Additional files 1 and 2, respectively). It provides
methods to perform consensus clustering using any
number of clustering algorithms and parameters. The
resulting consensus matrices can be used as corrected
distance matrices, to calculate cluster and membership
robustness, estimate the optimal cluster number and
to generate visualisations of the clustering structures.
The merge consensus clustering approach extends the
use of consensus matrices to integrate the results of
consensus clustering experiments.

Availability and Requirements
Project name: clusterCons
Project home page: http://sourceforge.net/projects/

clustercons

Operating system(s): Platform independent
Programming language: R
License: GNU GPL
Any restrictions to use by non-academics: none

Additional material

Additional file 1: The current clusterCons R package release. The file
includes the latest clusterCons package release with example scripts and
full documentation.

Additional file 2: The clusterCons User Guide. The file is a PDF
document describing the use of clusterCons with examples for each
function.
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