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Described as the “proteasome of the membrane” or the “scissors in the membrane,” γ-
secretase has notoriously complicated biology, and even after decades of research, the
full extent of its regulatory mechanism remains unclear. γ-Secretase is an intramembrane
aspartyl protease complex composed of four obligatory subunits: Nicastrin (NCT),
Presenilin (PS), Presenilin Enhancer-2 (Pen-2), and Anterior pharynx-defective-1 (Aph-
1). γ-Secretase cleaves numerous type 1 transmembrane substrates, with no apparent
homology, and plays major roles in broad biological pathways such as development,
neurogenesis, and cancer. Notch and the amyloid precursor protein (APP) and are
undoubtedly the best-studied γ-secretase substrates because of their role in cancer
and Alzheimer’s disease (AD) and therefore became the focus of increasing studies as
an attractive therapeutic target. The regulation of γ-secretase is intricate and involves
the function of multiple cellular entities. Recently, γ-secretase modulatory proteins
(GSMPs), which are non-essential subunits and yet modulate γ-secretase activity and
specificity, have emerged as an important component in guiding γ-secretase. GSMPs
are responsive to cellular and environmental changes and therefore, provide another
layer of regulation of γ-secretase. This type of enzymatic regulation allows for a rapid and
fine-tuning of γ-secretase activity when appropriate signals appear enabling a temporal
level of regulation. In this review article, we discuss the latest developments on GSMPs
and implications on the development of effective therapeutics for γ-secretase-associated
diseases such as AD and cancer.

Keywords: IFITM, hypoxia, neuroinflammation, neurodegeneration, enzyme

γ-SECRETASE AND ALZHEIMER DISEASE (AD)

Alzheimer’s disease (AD) is the most common neurodegenerative disease manifested in dementia
symptoms that gradually worsen with age. AD pathology is characterized by the presence of
extracellular plaques and intracellular neurofibrillary tangles in the brain. According to the
amyloid cascade hypothesis (Hardy and Higgins, 1992; Hardy and Selkoe, 2002), β-amyloid
peptide (Aβ), the major constituent of plaques, is the causative mediator driving the deterioration
and neuropathology of AD. The Aβ peptides are derived from amyloid precursor protein
(APP) after processing by two proteases, first, β-secretase (BACE1) producing the β-C-terminal
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fragment (βCTF), and second, γ-secretase cleavage, creating an
amyloid intracellular domain (AICD) and Aβ of different lengths
(Crump et al., 2013).

AD can be classified into two major types: familial AD
(FAD) and sporadic AD (SAD; Bateman et al., 2011). The
pathological features and functional connectivity of both forms
of AD are similar (Bateman et al., 2013; Thomas et al., 2014),
suggesting that FAD can be an effective model to study the
pathogenic mechanism of SAD. Mutations in one of three
genes, APP, presenilin-1 (PSEN1), and presenilin-2 (PSEN2),
or duplication of APP cause FAD (Goate et al., 1991; Levy-
Lahad et al., 1995; Sherrington et al., 1995). Presenilin-1 (PS1)
and presenilin-2 (PS2) are polytopic membrane proteins with
nine transmembrane domains that are synthesized as a single
polypeptide (Spasic et al., 2006). Both the PS1 and PS2 proteins
are endoproteolyzed, whereby the N- and C-terminal cleavage
products (NTF and CTF) remain associated in the heterodimeric
form (Thinakaran et al., 1996).

The discovery of PS has provided critical insight into the
identity of γ-secretase. (1) FAD mutations in PSEN1 and PSEN2
increase in the ratio of Aβ42 to Aβ40 in transfected cells and in
transgenic mice (Borchelt et al., 1996; Duff et al., 1996; Scheuner
et al., 1996; De Strooper, 2007; Wolfe, 2007). (2) Cultured
neurons isolated from PS1-deficient mice produce significantly
less Aβ and APP fragments that are not processed by γ-secretase
is being accumulated (Naruse et al., 1998; De Strooper et al.,
1998). (3) γ-Secretase activity is abolished in cells cultured from
PS1 and PS2 deficient mice (Herreman et al., 2000; Zhang et al.,
2000). (4) γ-Secretase activity is reduced by mutagenesis of two
conserved aspartate residues in the transmembrane regions of
PS1 (Wolfe et al., 1999). (5) γ-Secretase activity is connected
to PS-containing macromolecular complexes (Li et al., 2000a).
(6) Active-site directed γ-secretase inhibitors directly bind to
PS1 or PS2 (Esler et al., 2000; Li et al., 2000b; Xu et al., 2002). (7) A
recombinant PS1 variant alone in the purified reconstitution
system has γ-secretase activity, offering the final proof that PS
is γ-secretase (Ahn et al., 2010).

γ-SECRETASE ESSENTIAL SUBUNITS
AND BASIC REGULATION

A broad range of γ-secretase substrates has been identified
(Haapasalo and Kovacs, 2011), indicating the diverse biological
functions of this protease. The most notable substrate of γ-
secretase is APP, the precursor for Aβ peptides, which aggregates
to form the core of senile plaque in AD patients (Guo et al.,
2020). Another critical substrate which has been extensively
investigated is Notch, a cell surface protein, which participates
in cell-cell contact signaling and is essential for propriate
embryonic development (De Strooper et al., 1999). Notch plays
an important role in different types of cancer (Lobry et al., 2011),
therefore, γ-secretase is an appealing drug target in both AD and
cancer. However, because of the wide spectrum of γ-secretase
substrates, it is extremely difficult to develop selective inhibitors,
as evidenced by the failure of γ-secretase inhibitors in clinical
trials due to side effects from non-selective inhibition (Haapasalo
and Kovacs, 2011).

It is known that γ-secretase is an intramembrane protease
dependent on the assembly of four subunits: Nicastrin (NCT),
PS, Presenilin Enhancer-2 (Pen-2), and Anterior pharynx-
defective-1 (Aph-1; De Strooper et al., 2012; Crump et al.,
2013). Structures of human γ-secretase complex alone or with
substrates obtained by cryo-electron microscopy (cryo-EM),
have offered novel insights into the structural basis of function
and recognition as well as the flexibility and complexity of this
enzyme (Lu et al., 2014; Sun et al., 2015; Yang et al., 2019; Zhou
et al., 2019). Also, the endogenous γ-secretase complexes appear
to range in size with different levels of activity (Gu et al., 2004;
Evin et al., 2005), suggesting that different subunit stoichiometry
and cofactors composition might contribute to activity and
substrate specificity (Placanica et al., 2010). The mechanisms by
which γ-secretase is being regulated at the cellular level have
been the focus of extensive studies that uncover in part its
intricate biology.

The regulation of γ-secretase starts with the synthesis and
assembly of the complex. The correct assembly of the γ-secretase
complex is tightly regulated and requires multiple cellular events
to generate the mature and active form (Takasugi et al., 2003;
Kim et al., 2004). While the basic functional γ-secretase complex
requires at least one of each of its essential subunits (Sato et al.,
2007), the existence of PS and Aph-1 isoforms (PS1/PS2 and
Aph-1a/Aph-1b), as well as splice variants (Aph-1aS and Aph-
1aL), introduces further permutations to the basic complex
(Lai et al., 2003; Shirotani et al., 2004). Furthermore, different
variations of the γ-secretase complex can exist in the same tissue
and even in the same cells (Placanica et al., 2009a,b).

Compartmentalization between γ-secretase and its different
substrates in distinct cellular domains likely plays a role in
γ-secretase substrate availability. Rather than altering γ-secretase
activity to favor one substrate over another, spatial separation
offers a post-translational regulation mechanism. For example,
APP is processed by intracellular γ-secretase, while notch, which
functions in the plasma membrane, is processed at the cell
surface (Tarassishin et al., 2004). Multiple lines of evidence also
suggest that lipid composition and lipid rafts which simulate
the different cellular compartments directly affect the cleavage
and distribution of γ-secretase. Changes to lipid composition
in the membrane also impact substrate processing (Osenkowski
et al., 2008) and in particular cholesterol-rich membranes
are the major site of Aβ production (Wahrle et al., 2002;
Marquer et al., 2014). Interestingly, a recent report suggests
that not only are APP and Notch processing modulated by
membrane lateral organization but also that γ-secretase can
actively recruit specific membrane components that create a
lipid environment favorable for substrate recognition and activity
(Barros et al., 2020).

THE CONTEXT-DEPENDENT
γ-SECRETASE MODULATORY PROTEINS
(GSMPs)

The regulation of γ-secretase has been and continues to
be, a major question in the field because of its numerous
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substrates that regulate many biological processes ranging from
neuronal development, angiogenesis to tumorigenesis (Jurisch-
Yaksi et al., 2013). While the expression of the essential γ-
secretase components is ubiquitous in all tissues, only a small
percentage of γ-secretase complexes are catalytically active (Lai
et al., 2003). The existence of the inactive complex raises three
critical questions: (1) Why does the inactive complex exist?
(2) Can the inactive complex be activated? and (3) Does the
activation play a role in AD and cancer? Furthermore, since the
gene expression and the protein level of PS are not correlated
with enzymatic activity in cells, it is challenging to assess the
active γ-secretase complex (Lai et al., 2003; Placanica et al.,
2009a). Therefore, the development of accurate γ-secretase
activity assays (Shelton et al., 2009a,b), as well as photoaffinity
labeling using a transition state inhibitor, are valuable tools to
study γ-secretase (Crump et al., 2013; Nie et al., 2020).

The notion that an abundant protease like γ-secretase must
respond to changes in the environment has led to the hypothesis
that a fraction of the γ-secretase complexes exist in a partially
dormant state and can be activated and attenuated by binding of
γ-secretase modulatory proteins (GSMPs; Figure 1). Numerous
proteins had been identified to interact with the core complex
and impact γ-secretase activity (Chen et al., 2006; Vetrivel et al.,
2007; Gertsik et al., 2014; Villa et al., 2014; Wong et al., 2019; Hur
et al., 2020; Jung et al., 2020). In this review article, we will focus
on the recent progress GSMPs and their regulation.

THE MISSING LINK BETWEEN
NEUROINFLAMMATION AND
γ-SECRETASE IN AD

Although genetic and animal studies support that Aβ peptides
play a causative role in AD, the physiological role of Aβ is not
clear. Recent studies suggest that Aβ peptides have antimicrobial
and antiviral properties and function as part of the innate
immune response of the brain (Vijaya Kumar et al., 2016;
Eimer et al., 2018). Also, neuroinflammation has been established
as a critical component of AD pathogenesis (Heneka et al.,
2015), therefore, a connection between the two elements is
under active investigation. Recently, a molecular link between
innate immunity and AD was reported, interferon-induced
transmembrane protein 3 (IFITM3) binds to γ-secretase and
intensifies Aβ plaque formation (Hur et al., 2020).

IFITM3 is an innate immune response protein known
to be involved in the cellular response to viral infections
(Bailey et al., 2014) by inhibiting the entry of viruses to
the host cells (Amini-Bavil-Olyaee et al., 2013). IFITM3 is
highly upregulated by pro-inflammatory cytokines including
both types I and II Interferon. Although IFITM3 was suggested
to be a binding partner for γ-secretase, the underlying
mechanism of interaction remained unclear (Wakabayashi
et al., 2009). Recently, it was demonstrated that not only
does IFITM3 directly bind to the γ-secretase complex, but
it also upregulates γ-secretase activity for Aβ production.
This means that IFITM3, in addition to its role in viral
entry restriction, may trigger the production of anti-microbial

peptide Aβ as an innate immune response by increasing γ-
secretase activity. Interestingly, the binding of IFTIM3 to γ-
secretase reduces Notch cleavage. This unprecedented property
of IFITM3 to upregulated Aβ as an innate immune response
may be a double-edged sword as it also contributes to
the accumulation of Aβ in the brain. IFITM3 knockout in
the AD mouse model (5XFAD) significantly reduces plaque
deposition (Hur et al., 2020). This finding provides mechanistic
evidence that immune activation contributes to the production
of Aβ by increasing γ-secretase activity during infection
and inflammation.

RISK FACTORS AND SPORADIC AD (SAD)

Though rare, FAD mutations have provided critical insights into
the underlying mechanisms of AD through the involvement
of APP and γ-secretase, however, the causes for SAD are
poorly understood. SAD is a complex and heterogeneous
neurodegenerative disease attributed to multiple factors
including genetics, aging, lifestyle, and environment.
Apolipoprotein E4 (APOE4) is a major risk factor for SAD
in an isoform-dependent manner influencing susceptibility for
∼50% of cases (Corder et al., 1993; Bu, 2009). A recent study
shows that Apoe−/− transgenic mice recapitulate transcriptomic
signatures of human SAD samples (Pandey et al., 2019). Gender
impacts the APOE effect, as females have almost a 2-fold greater
risk of AD compared to males (Chene et al., 2015), which might
be associated with the gut microbiome (Maldonado Weng et al.,
2019). It is thought that APOE influences AD risk through
regulating the inflammatory response and Aβ aggregation and
clearance (Bales et al., 2009; Keren-Shaul et al., 2017; Krasemann
et al., 2017; Liu et al., 2017). However, recent studies have
shown that peripheral APOE has no apparent effect on Aβ

accumulation in APP/PS1 transgenic AD mouse model (Huynh
et al., 2019). Furthermore, APOE isoforms affect the expression
of APP and the production of Aβ in neuronal cells (Huang et al.,
2017; Wang et al., 2018). Whether APOE regulates γ-secretase
in neurons remains to be investigated. Also, it has been reported
that APOE4 affects Tau-mediated neurodegeneration (Shi
et al., 2017). APOE4 contributes to the pathogenesis of AD
through multiple pathways and is an appareling target for drug
development (Liu et al., 2013).

Genome-wide association studies and identification of rare
variants associated with AD have highlighted genes that are
potential risk factors for AD (Karch and Goate, 2015). Triggering
receptor expressed on myeloid cells 2 (TREM2) and CD33 are
both expressed in myeloid-linage cells including microglia are
associated with AD (Bertram et al., 2008; Guerreiro et al., 2013;
Jonsson et al., 2013). Both TREM2 and CD33 regulate microglia-
mediated uptake and clearance of Aβ (Griciuc et al., 2013;
Wang et al., 2015; Ulrich and Holtzman, 2016). TREM2 was
shown to directly bind to Aβ oligomers, activating the
TREM2-dependent signaling pathway, and promotes microglial
migration in vitro and clustering in vivo (Zhao et al., 2018;
Zhong et al., 2018). While a loss of function variant of TREM2
(R47H), which is linked with a high risk of SAD, exhibits
impairment in microglia associated plaque in an AD mouse
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FIGURE 1 | γ-Secretase complex activation in response to cellular environmental changes. Schematic representation of inactive/active γ-secretase equilibrium.
γ-Secretase obligatory subunits are abundantly expressed in all tissues and cells, however, most of the γ-secretase complexes are not catalytically active (left, the
two blades of scissors are not at correct position). To adapt cellular changes, γ-secretase can be activated by turning the inactive complexes to active ones (right,
functional scissors) that selectively promote the cleavage of a specific substrate. The implication is 2-fold: first, inactive γ-secretase complexes are physiologically
important, and second, γ-secretase can be temporally regulated.

model with knock-in TREM2 (R47H; Cheng-Hathaway et al.,
2018). The role of TREM2 which is strongly associated with
the risk of developing AD, confirms the important part of
microglia and innate immune system in AD pathogenesis
(Gratuze et al., 2018).

The identification and profiling of Disease-Associated
Microglia (DAM) have further deepened our understanding
of the contribution of innate immunity to AD (Keren-Shaul
et al., 2017). Markers of inflammation are upregulated in AD
mouse models and AD patients (Patel et al., 2005; Taylor et al.,
2014) and peripheral myeloid cells in patients of different AD
stages have increased pro-inflammatory profile correlated with
disease progression (Thome et al., 2018). Proteomic profiling
of microglia from the AD mouse model (5×FAD) identified
similar pro-inflammatory changes as have been observed
in LPS-treated mice (Rangaraju et al., 2018). Collectively,
this suggests that AD pathology presents characteristics
of chronic inflammatory disease. Interestingly, aging, the
biggest risk factor for AD, has been shown to induce type
I IFNs that modulate brain function (Baruch et al., 2014)
and IFITM3 was found to be increased in a subset of SAD
patients postmortem samples and in aged mice (Hur et al.,
2020). Additionally, the strong correlation between the amount
IFITM3 associated with γ-secretase and enzymatic activity
for Aβ cleavage indicates that IFITM3 protein could be a
marker of γ-secretase activity in SAD (Hur et al., 2020).
Moreover, TREM2 is a substrate of γ-secretase (Wunderlich
et al., 2013) and how GMSPs, such as IFITM3, affect the
processing of TREM2 and the function of microglia remains to
be investigated.

THE MODULATION OF γ-SECRETASE
UNDER HYPOXIC CONDITION

Hypoxia is a condition in which cells or tissues are deprived
of adequate oxygen supply which triggers a cellular response
orchestrated by the master transcriptional regulator Hypoxia-
inducible factor 1-α (Hif-1α; Mukherjee et al., 2011). Hif-
1α is continuously expressed but rapidly degrades in normal
oxygen conditions (Jaakkola et al., 2001), whereas in hypoxic
conditions Hif-1α is stabilized and translocates to the nucleus.
In the nucleus, Hif-1α binds to and activates genes that are
involved with vasomotor control, cell proliferation, angiogenesis,
and cell metabolism (Maxwell et al., 1999). Surprisingly, a
non-canonical role of Hif-1α was revealed as a GMSP. Under
hypoxic conditions, Hif-1α can directly bind to the γ-secretase
complex and upregulates Notch cleavage activity (Villa et al.,
2014). It was shown that hypoxia increases γ-secretase cleavage
of Notch, and this is dependent on Hif-1α. Interestingly,
in a breast cancer model, the primary tumor grows into a
proportion which generates hypoxic regions that stabilize Hif-
1α. In turn, Hif-1α binds to and modulates γ-secretase activity
which promotes migration and metastasis through activation of
Notch downstream genes. It was suggested that Hif-1α can shift
the equilibrium from inactive to active γ-secretase complexes, in
response to low oxygen (Villa et al., 2014). Thus, increased γ-
secretase activity and Notch signaling are essential for hypoxia-
induced cell migration, invasion, and metastasis of breast cancer.
This study provided the first evidence for temporal activation
of γ-secretase complexes caused by changes in the cellular
environment. This type of enzymatic regulation allows for a rapid
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switch from ‘‘off’’ state to ‘‘on’’ state when an appropriate signal
appears enabling a temporal level of regulation.

γ-SECRETASE ACTIVATING PROTEIN
(GSAP)

Imatinib (Gleevec), a drug for cancer treatment, was found
to be selectively inhibiting Aβ secretion with no effect on
Notch processing (Netzer et al., 2003). To identify Imatinib
target protein, a photoactivatable form was synthesized and
was found to specifically label an orphan protein, namely γ-
secretase activating protein (GSAP; He et al., 2010). Knockdown
of GSAP in an AD model transgenic mice (APPsweXPS1∆E9)
reduces Aβ burden (He et al., 2010) and treatment with

imatinib, which binds to GSAP, reduces GSAP expression,
Aβ levels, and tau phosphorylation in another AD mouse
model (3xTg; Chu et al., 2014). It was hypothesized that
GSAP simultaneously interacts with APP βCTF and γ-secretase,
increasing Aβ generation (He et al., 2010). However, the
following study brought the mechanism of GSAP in γ-secretase
regulation into question, reporting that while knockdown of
GSAP reduces Aβ production in cells, it is not through the
interaction with βCTF (Hussain et al., 2013). A later study
revealed that GSAP modulates γ-secretase activity by altering
the active site and subsequently enhancing APP processing while
not affecting Notch processing (Wong et al., 2019). In the case
of GSAP, the precise cellular cue that is responsible for its
interaction with γ-secretase is unclear, but there is an SNP in

FIGURE 2 | Modulation of γ-secretase by γ-secretase modulatory proteins (GSMPs). Schematic representation of the conditions in which GSMP triggers the
attenuation of γ-secretase activity and selectivity. Cells possess a different type of γ-secretase complexes with variable levels of activities (PDB structure: 6IDF),
which under certain cellular circumstances GSMP can bind and modify its activity and selectivity (clockwise): endoplasmic reticulum (ER) stress upregulate
stress-associated ER protein 1 (SERP1) expression which binds and localize the γ-secretase complex to lipid rafts where amyloid precursor protein (APP) resides
thus increasing APP cleavage but not Notch processing (Jung et al., 2020), hypoxic conditions stabilize Hif-1α which in turn binds to γ-secretase and increase its
activity for Notch substrates (Villa et al., 2014), innate immune response and aging triggers the binding of interferon-induced transmembrane protein 3 (IFITM3) thus
enhancing γ-secretase for APP but reducing Notch processing (Hur et al., 2020) and under unknown conditions GSAP attenuates γ-secretase activity solely towards
APP but not Notch (Wong et al., 2019; Magenta—Nicastrin, Green—Presenilin, Blue—Aph-1 and Red—Pen-2).

Frontiers in Aging Neuroscience | www.frontiersin.org 5 December 2020 | Volume 12 | Article 614690

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Wong et al. γ-Secretase Regulatory Subunits

FIGURE 3 | GSMPs pull the strings of γ-secretase activity. GSMPs act as a
guiding hand to modulate γ-secretase activity in response to cellular and
environmental cues such as hypoxia, inflammation, ER stress, and aging.

GSAP that is associated with AD, which might associate GSAP
as a disease-related risk factor (Zhu et al., 2014; Perez et al.,
2017). This was the first study that demonstrated the extent
to which GSMPs attenuate γ-secretase activity by interacting
with the enzyme in the allosteric site and changing its active
site conformation.

SERP1 FUNCTIONS AS THE GSMP IN
METABOLIC STRESS CONDITIONS

Diabetes is one of many risk factors associated with a greater
risk of dementia diseases including AD (Ninomiya, 2014). High
glucose levels, like in diabetes, induce endoplasmic reticulum
(ER) stress and directly enhance Aβ production both in vitro
and in vivo (Zhong et al., 2012; Nagai et al., 2016; Tharp
et al., 2016). Stress-associated ER protein 1 (SERP1) is a small
protein that interacts with and protects unfolded target proteins
against degradation and is upregulated during ER stress. It was
found that SERP1 stabilizes the APH1A/NCT subcomplex and
promotes the localization of the γ-secretase complex in lipid raft
(Jung et al., 2020). Subsequently, SERP1 facilitates the spatial
distribution of γ-secretase resulting in increased APP processing
in lipid rafts, the suggested site for APP cleavage (Wahrle et al.,
2002; Osenkowski et al., 2008), while having virtually no impact
on Notch cleavage. Postmortem AD samples have increased
SERP1 expression and knocking down SERP1 in cells and mouse
hippocampus decreases Aβ production. This study reveals the

modulation of γ-secretase activity under ER stress enabled by the
SERP1 acting as GSMP.

CONCLUSIONS

From the initial discoveries that mutations in PS1 and PS2 cause
FAD and that PS1 and PS2 are the catalytic subunit of
γ-secretase, extensive research on γ-secretase has revealed
an overwhelming number of substrates of this protease and
its involvement in broad aspects of biological processes. At
first glance, γ-secretase may seem like a promiscuous enzyme
earning its moniker as the ‘‘scissors in the membrane’’ its
regulation is as complex and as variable as its involvement
in multiple signaling pathways. The scientific community has
come a long way in understanding these regulatory mechanisms
from the assembly of essential subunits, complex formation to
lipid composition. Yet, the discoveries of GMSPs present an
interesting mode of regulation, adding another layer to the
already complicated biology of γ-secretase. These nonessential
subunits can fine-tune γ-secretase activity and specificity upon
the appropriate cellular signal. It makes intuitive sense that
an omnipresence protease like γ-secretase, which participates
in numerous pathways, requires a quick attenuation when a
signal appears to trigger the proper cellular response. Cells
possess multiple γ-secretase complexes with different levels of
activities, in which the majority are inactive and can serve as
a pool by which a GSMP can bind and rapidly ‘‘activate’’.
Recent studies demonstrate that multiple GSMP can be recruited
to modify γ-secretase activity and specificity under certain
circumstances: IFITM3 induced by innate immune response
and aging, Hif-1α stabilized by hypoxic condition, GSAP
supposedly elevated in aging and AD and SERP1 under ER
stress (Figure 2). Interestingly, each modulator has a different
effect on γ-secretase substrates selectivity, indicating the wide
range of impact on γ-secretase by GSMPs. The multiple
γ-secretase-dependent signaling pathways suggest that more
GMSPs might exist which modulates γ-secretase in response
to other environmental changes. Thus, metaphorically, GMSPs
may be the guiding hands behind ‘‘the running scissors’’
(Figure 3).

The molecular understanding of this type of regulation
can be harnessed for therapeutic intervention. Although small-
molecule γ-secretase modulators are still being developed to
selectively inhibit γ-secretase activity for APP, while sparing
Notch, as potential treatment (Mekala et al., 2020), it is
worthwhile to also explore this new avenue and target GSMPs.
Developing therapeutics to prevent the engagement of transient
and context-dependent interactions with GSMP, instead of
directly targeting γ-secretase, could reduce potential side effects.
Thus, this emerging level of γ-secretase regulation may enable
the development of targeted therapies for AD and cancer.
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