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Abstract: In order to improve the poor film-forming ability of polymeric ladderphane, di-block
copolymers containing perylene diimide (PDI)-linked double-stranded poly(1,6–heptadiyne)
ladderphane and branched alkyl side chains modified single-stranded poly(1,6–heptadiyne) were
synthesized by metathesis cyclopolymerization (MCP) using Grubbs third-generation catalyst
(Ru–III) in tetrahydrofuran solvent. The first block containing the ladderphane structure leads to
higher thermal-stability, wider UV–vis absorption, lower LUMO level and ladderphane-induced
rigidity and poor film-forming ability. The second block containing long alkyl chains is crucial
for the guarantee of excellent film-forming ability. By comparing the effect of ladderphane
structure on the resulted copolymers, single-stranded poly(1,6–heptadiyne) derivatives with PDI
pedant were also processed. The structures of copolymers were proved by 1H NMR and gel
permeation chromatography, electrochemical, photophysical, and thermal-stability performance
were achieved by cyclic voltammetry (CV), UV-visible spectroscopy and thermogravimetric analysis
(TGA) measurements. According to the experiment results, both copolymers possessed outstanding
film-forming ability, which cannot be realized by small PDI molecules and oligomers. And they can
serve as a superior candidate as for n-type materials, especially for their relatively wide range of light
absorption (λ = 200~800 nm), and lower LUMO level (−4.3 and −4.0 eV).

Keywords: metathesis cyclopolymerization; spectroscopy; ladderphane; perylene diimide

1. Introduction

It is well-known that perylene diimide (PDI) chromophores are widely used for constructing n-type
organic semiconductors, as PDI derivatives generally show high thermal and chemical stabilities, good
electron-accepting abilities, and excellent electron mobilities [1–5]. Compared to fullerene derivatives,
the superior light-absorbing strength of PDIs in the visible range can be extended to 400-600 nm,
depending on the electron-donating or electron-accepting substitutes on the bay positions. However,
most PDI molecules possess strong crystallizability, which will lead to wide phase separations, reduced
exciton diffusion/separation efficiencies, and finally, low power conversion efficiency of the organic
solar cells [6].

Great progress has been made on a new class of polymers, which was defined as polymeric
ladderphane comprising of double stranded polymeric skeleton with multilayer planar oligoaryl
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linkers. More precisely, a linear array of co-facially oriented arenes with polymeric backbones as
the tethers [7–10]. In addition, the space between neighboring linkers is nearly 0.4 nm, similar to
the distance of π–π stacking, which will facilitate electron-delocalization and enhance conjugation
degree [11]. Along with these fast advances in polybinorbornene-based ladderphanes, many efforts
have also been devoted to exploring the ladderphanes consisting of non-polybinorbornene skeletons.
A novel double-stranded polyacetylene ladderphane with a PDI bridge has been efficiently synthesized
by metathesis cyclopolymerization (MCP) of bis(1,6–heptadiyne) derivatives, and exhibited highly
thermal and oxidative stability, low levels of lowest unoccupied molecular orbital (LUMO) energy
levels (−4.3 ev), narrow band-gaps (1.70 ev), and regular ladder-like architecture [12]. However,
it has poor solution processability and film-forming ability, because of the rigid PDI linkers,
conjugated polyacetylene backbones, and strong aggregation, which severely restricted its application
in photoelectric devices.

Investigations on PDI derivatives showed that increasing steric hindrance of 1,6,7,12-substitutes
lead to more twisted perylene core and further reduced aggregation size [6,13]. This result suggested
that breaking the coplanarity of the PDI core can improve the solution processability of organic
molecules with a large π system [6]. Nevertheless, it is the prerequisite to the successful synthesis
of polyacetylene-based ladderphanes, the spacing occupied by each of the poly(1,6–heptadiyne)
unit (0.43 nm) would fit nicely into the PDI linker. Beyond traditional “twisting” methods, another
effective strategy to achieve the polymeric ladderphanes with desired solution processability and
film-forming ability is introducing aliphatic alkyl side chain. Hence, 1,6–heptadiyne monomer
DDDPM with two long alkyl tails was synthesized, and then was copolymerized with PDI bridged
bifunctionalized 1,6–heptadiyne monomer 1 (Scheme S1) and mono-functionalized 1,6–heptadiyne
monomer 2 (Scheme S2), respectively, not only for improving the solution processability but also
for tailoring the film morphology. Once synthesized, the expected copolymers (Scheme 1) should
overcome the above mentioned two drawbacks and broaden the visible absorption region.
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and Table 1) was carried out in THF at 30 ◦C with a lower [1]/[DDDPM]/[I] ratio of 10:80:1, yielding
Poly(1)–b–Poly(DDDPM) with a narrow molecular weight distribution (PDI = 1.3) in 98% yield (Run 1).
At a higher monomer loading, the higher [1]/[DDDPM]/[I] ratios of 20:80:1 and 40:80:1 (Runs 2~3) were
attempted and expected to obtain higher molecular weight polymers, whereas the isolated polymer
yields reduced to 76%, but there were two molecular weight values showing that some propagating
carbenes discomposed when the polymer backbone increased to a certain size [14,15]. Similar results
were found in the synthesis of Poly(2)–b–Poly(DDDPM), the optimal [2]/[DDDPM]/[I] ratio of 40:80:1,
produced the polymer with a little wider PDI values (1.5) in 70% yield.

Table 1. Gel permeation chromatography (GPC) data and photophysical properties of the
resulted polymers.

Run Sample [M]/[I] a Mn
c

(kDa) PDI d Yield e

(%)
λabs

f

(nm)
Eg

g

(eV)
LUMO h

(eV)

1 Poly(1)-b-Poly(DDDM) 10:80:1 39.5 1.3 98 / /
2 Poly(1)-b-Poly(DDDM) 20:80:1 48.8 1.5 95 800 1.55 −4.3
3 Poly(1)-b-Poly(DDDM) 40:80:1 34.6/72.5 1.4/1.5 76 / /
4 Poly(2)-b-Poly(DDDM) 20:80:1 52.1 1.6 85 / /
5 Poly(2)-b-Poly(DDDM) 40:80:1 66.0 1.5 70 800 1.55 −4.0
6 Poly(2)-b-Poly(DDDM) 60:80:1 40.2/83.4 1.5/1.6 41 / / /

Polymerization conditions: 30 ◦C, 3 h, THF, [M] = 1 × 10−3 mol/L. a The molar ratio of monomer to initiator.
c Determined by GPC in THF relative to monodispersed polystyrene standards. d Degree of polymerization. e In
chloroform solution. f In film state. g Bandgap of the film, Eg = 1240/λabs. h Calculated from the onset reduction
potentials of the polymers, ELUMO = −(4.65 + Eonset

red ).

Both the resultant copolymers were easily soluble in common organic solvents (such as CHCl3,
CH2Cl2, THF, chlorobenzene, and xylene), and had good film-forming properties. For example, when
solutions of the copolymers in CH2Cl2 were added dropwise onto a slice of glass, and then after
solvent evaporation, a black-green shiny film (Figure 1) were obtained, this observation illustrates the
importance of introducing the soluble and flexible poly(DDDPM) block to poly(1), which indicating
its great potential for solution processed organic devices and circuits. Similar results were also found
for Poly(2)–b–Poly(DDDPM).
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Figure 1. Picture of Poly(1)–b–Poly(DDDPM) and Poly(2)–b–Poly(DDDPM).

1H NMR spectroscopy confirmed the expected structure of the diblock polymers, primarily
displaying the characteristic signals regarding the ArHs and CH3. After copolymerization, the complete
disappearance of the acetylenic proton at 2.02 ppm, and the emergence of symmetric broad peak at
6.5–7.0 ppm corresponding to the conjugated polyacetylene backbone indicate that a MCP reaction has
occurred [16]. Moreover, two sets of new peaks at 8.65 and 0.90 ppm appeared (Figure 2A), which
are exactly the characteristic peaks of perylene core on Poly(1) and terminal alkyl group on DDDPM
(Figure S1). Coincidently, ratio of integral area of 8.65 and 0.90 ppm was 3:8, which matched ideally
with the feeding ratio of [1]/[DDDPM]/[Ru–III] (20/80/1). Thus, this result confirmed the successful
attachment of poly(DDDPM) to the poly (1) block, while, as can be seen from Figure 2B, the peaks
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at 8.65 and 4.56 ppm of Poly(2)-b-Poly(DDDPM) were derived from perylene core and methylene
protons adjacent to nitrogen. There is no unique peak attributed to Poly(DDDPM). However, the
integral ratio of methylene group and methyl groups on Poly(2)–b–Poly(DDDPM) changed from 4:3 to
8:3. This obvious increase was caused by the introduction of the second block Poly(DDDPM). Because
there are two dodecyl groups on the DDDPM molecule, which contain many methylene group, thus,
the increase of methylene group content in the copolymer is due to the introduction of DDDPM
segments. The two blocks contain multiple methylene and methyl groups simultaneously, the content
of the two blocks cannot be calculated by 1H NMR data. Meanwhile, it was found that GPC curves
showed only one peak, and the molecular weight distributions of the diblock polymers were narrow,
hence there were no homopolymer mixtures in the block polymer by GPC characterization (Figure S3).
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CDCl3.

To elucidate the influence of the conjugated poly(1,6–heptadiyne) backbone on the energy
levels of the molecular orbitials, CV were applied to investigate the electrochemical performance of
these copolymers (Figure 3), and the LUMO energy levels were calculated according to the onset
reduction potentials (Eonset

red ): ELUMO = −(4.65 + Eonset
red ) [17]. The LUMO values are −4.3 eV for

Poly(1)–b–Poly(DDDPM), −4.0 eV for Poly(2)–b–Poly(DDDPM), lower than the well-studied PDI
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derivative (−3.8 eV) [18], and even comparable to that of fullerene derivatives (PCBM: −3.7 eV and
C60: −4.5 eV) [19,20], indicating the higher electron-affinity and ambient stability [12].
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Photophysical studies were characterized by UV–vis spectroscopy. CH2Cl2 was used as the
solvent. Figure 4A shows characteristic absorption (400–600 nm) of PBI core, the PBI chromophore
absorption maximum at 523 nm with a strongly pronounced vibronic fine structure is observed, which
belongs to the electronic S0–S1 transition, with a transition dipole moment along molecular axis,
and a second absorption band evolves at lower wavelengths (400–460 nm), which is attributed
to the electronic S0–S2 with a transition dipole moment perpendicular to the long molecular
axis [12]. Similar to other poly(1,6–heptadiyne) derivatives [21,22], Poly(2)–b–Poly(DDDPM)
with flexible side chains also exhibiting relatively wide absorption with peaks in the range of
300–625 nm. While, Poly(1)–b–Poly(DDDPM) absorb above 550 nm with tailing near 700 nm.
The peaks of Poly(1)–b–Poly(DDDPM) are red-shifted by about 75 nm in comparison with those of
Poly(2)–b–Poly(DDDPM), owing to the rigidly ladderphane structure. This phenomenon suggested that
distortion of the main chain happened which further caused the effective conjugated length decreased
in Poly(2)–b–Poly(DDDPM). The optical properties of these copolymers were further characterized as
thin film (Figure 4B), Relatively red-shifted (nearly 60 nm) were observed when compared with those
in solution and the overall intensity are enhanced, indicated that there was π–π aggregation in film
state, which is a necessary criterion for ensuring high electron mobilities [23]. According to the starting
absorption wave-length of film state absorption, the values of Eg are calculated to be 1.55 eV for both
of the copolymers.
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Double-stranded poly(1,6–heptadiyne) ladderphane are known to assemble nicely on copper
mesh to give highly ordered two-dimensional patterns, presumably due to π–π attractions between
terminal groups (vinyl and styryl groups) along the longitudinal axis of the polymers and van der Waals
interactions between polymeric backbones. In a similar manner, Poly(1)–b–Poly(DDDPM) shows to
be a layered polymer assembled on the copper mesh surface to form a ladderphane as revealed by its
transmission electron microscopy (TEM) image (Figure 5A,B). The black strips aligned parallel to each
other, suggesting that there is a strong interaction between molecules. In addition, the width for each
strip was nearly 0.3 nm, indicating the aromatic PDI core would align perpendicular to the substrate
orientation with respect to substrate surface, which would give layered structures. The relative selected
area electron diffraction (SAED) pattern (Figure 5C) of Poly(1)–b–Poly(DDDPM) acquired during the
TEM analysis further confirmed the highly ordered ladderphane structure. As expected, the structure
of single-stranded Poly(2)–b–Poly(DDDPM) (Figure S4) was amorphous.
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The effect of ladderphane structure on thermal degradation of the obtained diblock copolymers was
studied by TGA. Figure 6 demonstrated that the weight loss of the copolymers had two interval steps,
which mainly caused by the decomposition of diblock composition. When the temperature is higher
than 325 ◦C for Poly(1)–b–Poly(DDDPM), the decrement just occurs mainly due to the decomposition
of the side chains belonging to the copolymers, which is also important for the practical application of
the polymers in devices and circuits, especially when they are used under high temperature. With the
further increasing temperature, the main skeleton broke, resulting in a loss of nitrogen and hydrogen.
Poly(2)–b–Poly(DDDPM) had poorer thermostability. The decomposition started at 235 ◦C, due to the
single-stranded structure.
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3. Materials and Methods

[1,3–Bis(2,4,6–trimethylphenyl)–2–imidazolidinylidene]dichloro(benzylidene)bis(3–
bromopyridine)ruthenium(ii) (Grubbs third generation catalyst, Ru–III) and 1–dodecanol
were obtained from Aldrich. Ethyl vinyl ether (stabilized with 0.1% N, N–diethylaniline) was
purchased from Acros. 1–(3–dimethylaminopropyl)–3–ethylcarbodiimidehydrochloride(EDCI·HCl)
and 4–Dimethylaminopyridine (DMAP) were purchased from Energy Chemical.
Compound 2,2–bis(prop–2–yn–1–yl)malonic acid was synthesized according to the literature [24].
All reactions were carried out under dry nitrogen atmosphere using standard Schlenk-line techniques.
Solvents were distilled over drying agents under nitrogen prior to use: dichloromethane (CH2Cl2)
from calcium hydride, tetrahydrofuran (THF) from sodium. Polymerizations were carried out in
Schlenk tubes. 1H (500 MHz) and 13C (125 MHz) NMR spectra were recorded using tetramethylsilane
as an internal standard in CDCl3 on a Bruker DPX spectrometer. The HR–ESIMS was measured
by a Bruker QTOF micromass spectrometer. UV–vis absorption spectra were measured on a Cary
60 spectrometer. Gel permeation chromatography (GPC) was used to calculate relative number
average molecular weights (Mn and Mw) and polydispersity index (PDI) equipped with a Waters 1515
Isocratic HPLC pump, a Waters 2414 refractive index detector, and a set of Waters Styragel columns
(7.8 × 300 mm, 5 mm bead size; 103, 104, and 105 Å pore size).Thermal gravimetric analysis (TGA)
was performed using a SDTA851e/SF/1100 TGA Instrument under nitrogen flow at a heating rate of
10 ◦C /min from 50 to 800 ◦C. Cyclic voltammetry (CV) was carried out with an Autolab PGSTAT12
potentiostat from Eco Chemie coupled to an electrochemical cell with three electrodes. The scan rate
was 100 mV/s. A glassy carbon electrode was used as a working electrode, a Pt wire as a counter
electrode, and Ag/AgCl was used as the reference electrode. 0.1 M Bu4NPF6 of CH3CN solution was
used as the supporting electrolyte, and Fc+/Fc was used as the reference.

3.1. Synthesis of Didodecydipropargylmalonate (DDDPM)

2,2–bis(prop–2–yn–1–yl)malonic acid (1.80 g, 10 mmol) was firstly dissolved in 50 mL of anhydrous
CH2Cl2. To this solution, 1–dodecanol (4.10 g, 22 mmol), EDCI·HCl (4.20 g, 22 mmol) and DMAP (0.54 g,
4.4 mmol) were added under nitrogen atmosphere in ice-water bath and stirred for 2 h, then the reaction
progress proceeded at room temperature and was monitored by TLC. After 6 days, the mixture was
washed by dilute hydrochloric acid (5 × 30 mL), followed by water, and dried with anhydrous MgSO4.
After filtration and removing the solvent, the crude product was purified by column chromatography
on silica gel using 1:20 CH2Cl2/petroleum ether as eluent. DDDPM was obtained as a white waxy solid
(4.03 g, yield 78%). 1H NMR (CDCl3, ppm): δ 4.20–4.12 (t, 4H, COOCH2), 2.65 (s, 4H, CHCCH2), 2.02
(s, 2H, CHCCH2), 1.45–1.7 (m, 40H, residual CH2), 0.94–0.80 (t, 6H, CH2CH3); 13C NMR (125 MHz,
CDCl3, ppm): δ 178.28, 80.2, 70.5, 64.58, 50.6, 31.7, 29.6, 29.3,29.1, 25.8, 22.9, 22.4, 14.3; ESI–MS: Calcd.
For C33H56O4Na [M + Na]+: 539.4176, Found: 539.4169.

3.2. Block Copolymerization

Typically, polymerization was carried out in a Schlenk tube under dry nitrogen atmosphere at
30 ◦C in THF for a preset time. Monomer 1 (100 mg, 0.08 mmol) and Ru–III (3.5 mg, 4 µmol) were
stirred in 80 mL of THF at 30 ◦C. After it had been confirmed that 1 had disappeared by TLC (nearly
20 min), the 1 mL solution of the second block (DDDPM, 165 mg, 0.32 mmol) was added to the Schlenk
tube, the reaction mixture was stirred at 30 ◦C for another 3 h. After being quenched by adding excess
ethyl vinyl ether, the concentrated reaction mixture of Poly(1)–b–Poly(DDDPM) was precipitated to
acetone, and the purple–black solid was washed with acetone till the filtrate was colorless, and then
was dried in a vacuum oven at 40 ◦C to a constant weight.
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The preparation of Poly(2)–b–Poly(DDDPM) was similar to that of Poly(1)–b–Poly(DDDPM),
except for the initial concentration of monomer 2. Monomer 2 (100 mg, 0.12 mmol) and Ru–III (5.3 mg,
6 µmol) were stirred in 1 mL of THF at 30 ◦C. After it had been confirmed that 2 had disappeared by
TLC (nearly 2 h), the 1 mL solution of the second block (DDDPM, 247 mg, 0.48 mmol) was added to
the Schlenk tube, and the reaction mixture was stirred at 30 ◦C for another 3 h.

4. Conclusions

In this study, diblock copolymer ladderphane containing PDI group was successfully synthesized
via MCP reaction. By tailoring the proportion of the two blocks, novel poly(1,6–heptadiyne) derivatives
with satisfactory solution processability and film-forming ability can be readily achieved without
complicated and high-cost post-processing film formation techniques. This cannot be realized by small
PDI compounds or oligomers. The Eg of Poly(1)–b–Poly(DDDPM) and Poly(2)–b–Poly(DDDPM) can
even narrowed to 1.55 eV, and the LUMO energy lowered to−4.3 and−4.0 eV, respectively, which shows
prospective application in solar cell and other devices. Based upon this study, further investigation of
the application in photoelectric devices is still under way.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/20/
5166/s1.
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PDI Perylene diimide
MCP Metathesis cyclopolymerization
Ru-III Grubbs third-generation catalyst
GPC Gel Permeation Chromatography
CV Cyclic voltammetry
TGA Thermogravimetric analysis
LUMO Lower unoccupied molecular orbital
DDDPM Dipropargylmalonate
EDCI·HCl 1-(3-dimethylaminoprop-yl)-3-ethylcarbodiimidehydrochloride
DMAP 4-dimethylaminopyridine
GPC Gel permeation chromatography
PCBM [6,6]-phenyl-C61-butyric acid methyl ester
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