Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Benzyl(methyl)phosphinic acid

Cécile Fougère, ${ }^{\mathrm{a}}$ Erwann Guénin, ${ }^{\text {a }}$ Pascal Retailleau ${ }^{\mathrm{b}}$ and Carole Barbey ${ }^{\text {a* }}$

${ }^{\text {a }}$ Université Paris-Nord, UFR-SMBH, Laboratoire de Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques, (FRE 3043 CNRS), 74 rue M. Cachin, 93017 Bobigny Cedex, France, and ${ }^{\text {b }}$ Service de Cristallochimie, Institut de Chimie des Substances Naturelles, CNRS, 1 Av. de la Terrasse, 91198 Gif sur-Yvette cedex, France
Correspondence e-mail: carole.barbey@smbh.univ-paris13.fr

Received 28 May 2010; accepted 21 June 2010
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.038 ; w R$ factor $=0.096$; data-to-parameter ratio $=17.7$.

The title compound, $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{P}$, is a phosphinic compound with a tetracoordinate pentavalent P atom. The phosphinic function plays a predominant role in the cohesion of the crystal structure, both by forming chains along the b axis via strong intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and by cross-linking these chains perpendicularly via weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, generating a twodimensional network parallel to (001).

Related literature

For general background to phosphinic compounds and their biological applications, see: Ye et al. (2007); AbrunhosaThomas et al. (2007); Wang et al. (2009). For their inhibitor properties and use as antibacterial agents, see: Boyd et al. (1994); Matziari et al. (2004); Ryglowski \& Kafarski (1996). For the preparation of phosphinic acid, see: Montchamp (2005); Dingwall et al. (1989); Fougère et al. (2009). For related structures, see: Frantz et al. (2003); Langley et al. (1996); Cai et al. (2003); Meyer et al. (2003).

Experimental

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{P}$
$M_{r}=170.14$
Monoclinic, $P 2_{1} / c$
$a=9.3075$ (4) A
$b=8.2526$ (4) \AA
$c=11.8890$ (4) \AA
$\beta=108.657$ (3) ${ }^{\circ}$
$V=865.22(6) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.27 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.60 \times 0.25 \times 0.06 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer 1320 reflections with $I>2 \sigma(I)$
10548 measured reflections
1767 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038 \quad 100$ parameters
$w R\left(F^{2}\right)=0.096 \quad$ H-atom parameters constrained
$S=1.05$
1767 reflections

$$
R_{\mathrm{int}}=0.050
$$

$$
\begin{aligned}
& \text { H-atom parameters co } \\
& \Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}
\end{aligned}
$$

$$
\Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}
$$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{2}$	0.82	1.70	$2.493(2)$	162
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 7 \cdots \mathrm{O}^{2 i}$	0.93	2.54	$3.377(3)$	151

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x-1, y, z$.
Data collection: COLLECT (Hooft, 1998); cell refinement: $H K L$ (Otwinowski \& Minor, 1997); data reduction: COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and CrystalBuilder (Welter, 2006).

The authors thank Dr Nathalie Dupont and Professor Marc Lecouvey for advice.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2573).

References

Abrunhosa-Thomas, I., Sellers, C. E. \& Montchamp, J.-L. (2007). J. Org. Chem. 72, 2851-2856.
Boyd, E. A., Regan, A. C. \& James, K. (1994). Tetrahedron Lett. 35, 4223-4226.
Cai, J., Zhou, Z., Zhao, G. \& Tang, C. (2003). Heteroat. Chem. 14, 312-315.
Dingwall, J. G., Ehrenfreund, J. \& Hall, R. G. (1989). Tetrahedron, 45, 37873808.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Fougère, C., Guénin, E., Hardouin, J. \& Lecouvey, M. (2009). Eur. J. Org. Chem. 34, 6048-6054.
Frantz, R., Durand, J. O., Carré, F., Lanneau, G., Le Bideau, J., Alonso, B. \& Massiot, D. (2003). Chem. Eur. J. 9, 770-775.
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Langley, K. J., Squattrito, P., Adani, F. \& Montoneri, E. (1996). Inorg. Chim. Acta, 253, 77-85.
Matziari, M., Beau, F., Cuniasse, P., Dive, V. \& Yiotakis, A. (2004). J. Med. Chem. 47, 325-336.
Meyer, E. A., Castellano, R. K. \& Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210-1250.
Montchamp, J. L. (2005). J. Organomet. Chem. 690, 2388-2406.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Ryglowski, A. \& Kafarski, P. (1996). Tetrahedron, 52, 10685-10692.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Wang, Y., Wang, Y., Yu, J., Miao, Z. \& Chen, R. (2009). Chem. Eur. J. 15, 92909293.

Welter, R. (2006). Acta Cryst. A62, s252.
Ye, Y., Liu, M., Kao, J. L.-F. \& Marshall, G. R. (2007). Biopolymers, 89, 72-85.

supplementary materials

Benzyl(methyl)phosphinic acid

C. Fougère, E. Guénin, P. Retailleau and C. Barbey

Comment

The title compound, $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{P}$, belongs to the phosphinic acid family ($\left.R^{\prime} \mathrm{P}(\mathrm{O}) \mathrm{OHR}{ }^{\prime \prime}\right)$. These compounds are important substrates in the study of biochemical processes, and those comprising tetracoordinate pentavalent phosphorus are widely used as biologically active compounds. Mimics of amino acids in which the carboxylic function is replaced by phosphorus analogues have attracted particular interest. Among these phosphorus functions, phosphinic acid moiety is an excellent mimic of the tetrahedral transition state of amid bond hydrolysis and is more stable than phosphonic or phosphonamidic isosters. Thus, phosphinic compounds occupy an important place and reveal diverse and interesting biological and biochemical properties (Ye et al., 2007; Abrunhosa-Thomas et al., 2007; Wang et al., 2009): phosphinic peptides have been reported to be potent inhibitors of several matrixins (MMPs) (Matziari et al., 2004) and are widely studied as antibacterial agents, enzyme inhibitors, haptens for catalytic antibodies, or anti HIV agents (Boyd et al., 1994; Ryglowski \& Kafarski, 1996).

The development of methods for the preparation of phosphinic acids is so important and currently attracting growing interest (Montchamp, 2005; Dingwall et al., 1989). The most commonly employed methods to prepare phosphinic acids suffer from several limitations: large excess of reagents, difficulties to avoid formation of symmetrically disubstituted phosphinic acids, handling difficulties of some starting materials. A new synthesis of unsymmetrical phosphinic acids $R^{\prime} \mathrm{P}(\mathrm{O}) \mathrm{OHR}{ }^{\prime \prime}$ was performed. The first $\mathrm{P}-\mathrm{C}$ bond formation was achieved using a base-promoted H -phosphinate alkylation from a protected H-phosphinate, easier and safer to handle. A one pot methodology was developed for the second $\mathrm{P}-\mathrm{C}$ bond formation involving sila-Arbuzov reaction (Fougère et al., 2009).

An ORTEP plot of the molecule is given in Fig. 1. Geometric parameters are in the usual ranges, e.g.; typical $\mathrm{P}=\mathrm{O}$, $\mathrm{P}-\mathrm{O}$ and $\mathrm{P}-\mathrm{C}$ bonds as it was found earlier in phosphonic acid crystal structures (Langley et al., 1996; Frantz et al., 2003; Meyer et al., 2003; Cai et al., 2003).

In the crystal packing, one molecule is linked to two adjacent symmetric molecules via strong intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}==\mathrm{P}$ hydrogen bonds (Table 1). These hydrogen bonds between phosphinic groups built an infinite intermolecular hydrogen-bond network along the b direction (Fig. 2), forming chains of molecules. These chains are perpendicularly cross-linked via weak hydrogen bonds between $\mathrm{C}-\mathrm{H}$ from the aromatic ring and O from the phosphinic group (Table 1, Fig 2), that give rise to a bidimensionnal organization parallel to the (001) plane. The packing of the structure can also be described as a bidimensionnal organization piled up to the third direction with hydrophobic functions face to face.

Experimental

To benzyl phosphinate (20 mmol) in acetonitrile (20 ml), bromotrimethylsilane (7 equiv) was added under argon bubbling. The triethylamine (2 equiv) was added, followed 5 minutes later by the bromide derivatives (1 equiv). The mixture was cooled to $0^{\circ} \mathrm{C}$ and absolute ethanol was added to quench the reaction. After 30 min ., the solvent was removed and the residue was taken up in distilled water and extracted with ethyl acetate. The organic layer was dried under MgSO_{4}; filtrated and evaporated under reduced pressure to give the crude product. This product was taken up in water (20 ml) and washed with

supplementary materials

ether ($3 x 20 \mathrm{ml}$), followed by a reversed phase column chromatography (water/methanol 1:1) to give a white solid with high yield (76\%). Single crystals suitable for X-ray structure analysis could be obtained by slow evaporation of a concentrated water/methanol (1/1) solution at room temperature.

Refinement

All Hydrogen atoms attached to C atoms were fixed geometrically and treated as riding with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic), $0.96 \AA$ (methylene) or $0.97 \AA$ (secondary CH 2 group) with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ (aromatic) or $1.5 U_{\text {eq }}(\mathrm{C})$ for others. H atom of the hydroxyl was located in difference Fourier syntheses and was treated in the last stage of refinement as riding on it parent O atom with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$.

Figures

Fig. 1. Molecular View of the title compound. Displacement ellipsoids are drawn at the 30\% probability level.

Fig. 2. Molecular packing view with intermolecular hydrogen bonds drawn as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) $-x+1, y+1 / 2,-z+1 / 2$; (ii) $x-1, y, z]$

Benzyl(methyl)phosphinic acid

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{P}$
$F(000)=360$
$M_{r}=170.14$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.3075$ (4) \AA
$b=8.2526$ (4) \AA
$c=11.8890(4) \AA$
$\beta=108.657(3)^{\circ}$
$V=865.22(6) \AA^{3}$
$D_{\mathrm{x}}=1.306 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71070 \AA$
Cell parameters from 1896 reflections
$\theta=0.4-26.4^{\circ}$
$\mu=0.27 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Parallelepipedic, colourless
$0.60 \times 0.25 \times 0.06 \mathrm{~mm}$
$Z=4$

Data collection

Nonius KappaCCD diffractometer
Radiation source: fine-focus sealed tube graphite

$$
\begin{aligned}
& 1320 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.050 \\
& \theta_{\max }=26.3^{\circ}, \theta_{\min }=2.3^{\circ}
\end{aligned}
$$

Detector resolution: 9 pixels mm^{-1}
φ and ω scans
10548 measured reflections
1767 independent reflections
$h=-11 \rightarrow 11$
$k=-10 \rightarrow 10$
$l=-14 \rightarrow 14$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0381 P)^{2}+0.2898 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.18$ e \AA^{-3}
$\Delta \rho_{\min }=-0.29$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
P1	$0.37056(5)$	$0.18896(6)$	$0.22698(4)$	$0.03697(18)$
C1	$0.3422(3)$	$0.2500(3)$	$0.36151(18)$	$0.0574(6)$
H11	0.3450	0.1566	0.4103	0.086^{*}
H12	0.2454	0.3023	0.3441	0.086^{*}
H13	0.4209	0.3241	0.4029	0.086^{*}
O1	$0.36315(16)$	$0.34293(17)$	$0.15063(12)$	$0.0487(4)$
H1	0.4189	0.4128	0.1909	0.058^{*}
O2	$0.51352(16)$	$0.09571(18)$	$0.24906(16)$	$0.0606(4)$
C2	$0.2113(2)$	$0.0707(2)$	$0.14174(19)$	$0.0440(5)$
H21	0.2228	0.0488	0.0649	0.066^{*}
H22	0.2144	-0.0326	0.1814	0.066^{*}
C3	$0.0567(2)$	$0.1455(2)$	$0.12169(17)$	$0.0376(5)$
C4	$-0.0016(3)$	$0.2590(3)$	$0.03332(17)$	$0.0485(5)$
H4	0.0557	0.2914	-0.0140	0.058^{*}

C5	$-0.1435(3)$	$0.3248(3)$	$0.0144(2)$	$0.0618(7)$
H5	-0.1812	0.4011	-0.0454	0.074^{*}
C6	$-0.2295(3)$	$0.2779(3)$	$0.0838(2)$	$0.0640(7)$
H6	-0.3255	0.3218	0.0709	0.077^{*}
C7	$-0.1734(3)$	$0.1669(3)$	$0.1716(2)$	$0.0613(7)$
H7	-0.2312	0.1352	0.2187	0.074^{*}
C8	$-0.0310(2)$	$0.1011(3)$	$0.19124(19)$	$0.0509(6)$
H8	0.0064	0.0260	0.2519	0.061^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	$0.0327(3)$	$0.0317(3)$	$0.0455(3)$	$0.0038(2)$	$0.0113(2)$	$0.0036(2)$
C1	$0.0587(14)$	$0.0668(16)$	$0.0453(12)$	$-0.0012(12)$	$0.0147(10)$	$0.0005(12)$
O1	$0.0563(9)$	$0.0378(9)$	$0.0471(8)$	$-0.0077(7)$	$0.0097(6)$	$0.0053(6)$
O2	$0.0367(8)$	$0.0452(9)$	$0.0993(12)$	$0.0114(7)$	$0.0209(8)$	$0.0051(9)$
C2	$0.0418(11)$	$0.0336(11)$	$0.0557(12)$	$-0.0018(9)$	$0.0143(9)$	$-0.0032(9)$
C3	$0.0343(10)$	$0.0351(11)$	$0.0406(10)$	$-0.0066(8)$	$0.0081(8)$	$-0.0062(8)$
C4	$0.0508(12)$	$0.0475(13)$	$0.0442(11)$	$-0.0013(11)$	$0.0111(10)$	$0.0027(10)$
C5	$0.0581(15)$	$0.0499(15)$	$0.0602(14)$	$0.0081(12)$	$-0.0050(11)$	$-0.0017(12)$
C6	$0.0364(12)$	$0.0625(17)$	$0.0836(17)$	$0.0008(12)$	$0.0061(12)$	$-0.0282(15)$
C7	$0.0463(13)$	$0.0689(17)$	$0.0751(16)$	$-0.0124(13)$	$0.0284(12)$	$-0.0164(14)$
C8	$0.0471(13)$	$0.0531(14)$	$0.0525(12)$	$-0.0080(11)$	$0.0159(10)$	$0.0034(11)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{P} 1-\mathrm{O} 2$	1.4859 (14)	C3-C4	1.382 (3)
P1-O1	1.5502 (14)	C3-C8	1.384 (3)
P1-C1	1.775 (2)	C4-C5	1.378 (3)
P1-C2	1.793 (2)	C4-H4	0.9300
C1-H11	0.9600	C5-C6	1.377 (4)
C1-H12	0.9600	C5-H5	0.9300
C1-H13	0.9600	C6-C7	1.361 (4)
$\mathrm{O} 1-\mathrm{H} 1$	0.8200	C6-H6	0.9300
C2-C3	1.514 (3)	C7- C 8	1.381 (3)
$\mathrm{C} 2-\mathrm{H} 21$	0.9700	C7-H7	0.9300
$\mathrm{C} 2-\mathrm{H} 22$	0.9700	C8-H8	0.9300
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$	113.42 (9)	C4-C3-C8	118.07 (19)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{C} 1$	111.74 (11)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	121.23 (18)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 1$	107.66 (10)	C8-C3-C2	120.70 (18)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{C} 2$	110.46 (9)	C5-C4-C3	120.9 (2)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 2$	103.96 (9)	C5-C4-H4	119.5
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 2$	109.24 (10)	C3-C4-H4	119.5
$\mathrm{P} 1-\mathrm{C} 1-\mathrm{H} 11$	109.5	C6-C5-C4	120.1 (2)
$\mathrm{P} 1-\mathrm{C} 1-\mathrm{H} 12$	109.5	C6-C5-H5	119.9
$\mathrm{H} 11-\mathrm{C} 1-\mathrm{H} 12$	109.5	C4-C5-H5	119.9
P1-C1-H13	109.5	C7-C6-C5	119.6 (2)
H11-C1-H13	109.5	C7-C6-H6	120.2

sup-4

$\mathrm{H} 12-\mathrm{C} 1-\mathrm{H} 13$	109.5
$\mathrm{P} 1-\mathrm{O} 1-\mathrm{H} 1$	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{P} 1$	$116.08(14)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 21$	108.3
$\mathrm{P} 1-\mathrm{C} 2-\mathrm{H} 21$	108.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 22$	108.3
$\mathrm{P} 1-\mathrm{C} 2-\mathrm{H} 22$	108.3
$\mathrm{H} 21-\mathrm{C} 2-\mathrm{H} 22$	107.4
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{C} 2-\mathrm{C} 3$	$174.91(15)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 2-\mathrm{C} 3$	$-63.09(17)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 2-\mathrm{C} 3$	$51.61(18)$
$\mathrm{P} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$81.4(2)$
$\mathrm{P} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$-99.0(2)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.6(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$179.01(19)$

Hydrogen-bond geometry ($\AA,^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.82	1.70	$2.493(2)$	162
$\mathrm{C} 7 — \mathrm{H} 7 \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.93	2.54	$3.377(3)$	151

Symmetry codes: (i) $-x+1, y+1 / 2,-z+1 / 2$; (ii) $x-1, y, z$.

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	120.2
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$120.5(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	119.8
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	119.8
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3$	$120.8(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	119.6
$\mathrm{C} 3-\mathrm{C} 8-\mathrm{H} 8$	119.6
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.0(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$0.3(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-0.1(4)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3$	$-0.5(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$0.8(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$-178.8(2)$

supplementary materials

Fig. 1

Fig. 2

