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Malaria remains a serious threat to global health. Sustained malaria control and,

eventually, eradication will only be achieved with a broadly effective malaria vaccine. Yet a

fundamental lack of knowledge about how antimalarial immunity is acquired has hindered

vaccine development efforts to date. Understanding how malaria-causing parasites

modulate the host immune system, specifically dendritic cells (DCs), key initiators of

adaptive and vaccine antigen-based immune responses, is vital for effective vaccine

design. This review comprehensively summarizes how exposure to Plasmodium spp.

impacts human DC function in vivo and in vitro. We have highlighted the heterogeneity of

the data observed in these studies, compared and critiqued the models used to generate

our current understanding of DC function in malaria, and examined the mechanisms by

which Plasmodium spp. mediate these effects. This review highlights potential research

directions which could lead to improved efficacy of existing vaccines, and outlines novel

targets for next-generation vaccine strategies to target malaria.
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INTRODUCTION: MALARIA

Malaria remains one of the greatest challenges to public health in the developing world. It is
caused by infection with the Plasmodium species of Apicomplexans, which have a complex life cycle
spanning multiple organ sites (Figure 1), facilitated by multiple morphologically and antigenically
distinct life stages, and expression of multiple antigens (1–5).

The Plasmodium life cycle bridges two hosts: mosquitoes, where sexual replication occurs, and
humans, where the parasite undergoes asexual replication. The latter begins when an infected
mosquito injects sporozoite-stage parasites from mosquito salivary glands into the skin (Figure 1).
A small fraction of sporozoites will travel to the liver, where the sporozoite will traverse hepatic
tissue until it locates a suitable hepatocyte. The subsequent exoerythrocytic form will release
merozoites into the bloodstream upon rupture (6). Plasmodium vivax can also enter a dormant liver
stage known as the hypnozoite, which can mature and produce merozoites weeks to years after the
initial infection (7, 8). Despite being only 1µm in size, the merozoite expresses a range of parasite
proteins that ligate host red blood cell (RBC) ligands to drive invasion. After invasion themerozoite
forms a parasitophorous vacuole in host cells, where it begins to mature into a trophozoite (9).

From 18 to 32 h post-invasion, the trophozoite increases DNA replication and
metabolic activity. The mid-trophozoite stage exports various parasite proteins,
including those crucial to host pathology, such as the P. falciparum erythrocyte
membrane protein 1 (PfEMP1) (10). At 34 h post-invasion, the parasite becomes a
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FIGURE 1 | Dendritic cells, located throughout the body at various stages of maturity, interact with all stages of the malaria parasite life cycle within the human host.

The Plasmodium life cycle encompasses multiple life stages across a range of tissues. The asexual life cycle in the human host begins when mosquitoes inject

sporozoites, the highly motile infectious life stage, into the host’s skin. The sporozoite migrates to the liver, where it traverses multiple host cells before entering into an

exoerythrocytic form. The exoerythrocytic form matures into a multinucleate schizont, which releases merozoites into the bloodstream upon lysis. Merozoites infect

host red blood cells and mature into intraerythrocytic life stages known as trophozoites, which are highly metabolically active. After DNA replication the trophozoite will

become a blood-stage schizont, which will lyse and release daughter merozoites into the bloodstream, resuming the process. Instead of becoming trophozoites, a

fraction of merozoites will instead differentiate into sexual stages known as gametocytes, which sequester in the bone marrow. Only at the end of their maturation

process do gametocytes re-enter the bloodstream, where they are taken up by mosquito bite to commence sexual replication in the mosquito host and

continue the cycle.

multinucleate, segmented stage known as the schizont. After 48 h
of intracellular maturation and replication, the schizont ruptures,
destroying the erythrocyte and releasing parasite metabolites,

waste products, and between 16 to 32 daughter merozoites
are released into the bloodstream (9), where the cycle will
begin afresh.
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After 7–15 days in circulation, a small proportion of P.
falciparum trophozoites will commit to sexual replication,
where the process of schizogony is replaced by the formation
of sexual stages known as gametocytes (11, 12). Generation
of P. vivax gametocytes is much faster, with gametocytes
being detectable in circulation from 3 days post-infection
(13, 14). Gametocytes undergo five maturation stages: stages
I-IV preferentially sequester in the bone marrow (BM)
and spleen (15–17) while stage V gametocytes re-enter the
circulation, where they can be taken up by the bite of infected
mosquitoes (18).

The effect of each malaria life stage on host immune
function is not well understood, nor are the broader underlying
mechanisms of antimalarial immunity. It is frequently observed
that individuals living in highly endemic regions develop
clinical immunity against symptomatic disease, but generally
do not develop sterilizing immunity that completely protects
against infection. Antibodies are a crucial component of
naturally acquired clinical immunity, as passive transfer of
immunoglobulins from malaria immune to non-immune
individuals is sufficient to reduce parasitaemia and resolve
symptoms (19). Furthermore, clinical immunity appears
in most cases to be relatively short-lived and broadly
declines in the absence of boosting [reviewed in (20)]. An
improved understanding of antimalarial immunity will
enable development of future vaccines which can accelerate
acquisition of clinical immunity, or better yet, induce
sterile immunity.

Malaria Vaccines
The most advanced malaria vaccine candidate to date is
RTS,S, which targets the circumsporozoite protein (CSP) of
P. falciparum. RTS,S has shown modest efficacy in Phase III
clinical trials, with 29 and 36% efficacy in young infants and
young children, respectively over 3–4 years, with a booster
dose given at 20 months (21). The sub-optimal efficacy
of RTS,S and its failure to elicit protective immunity in
many recipients is poorly understood (21–23). To elucidate
the immunological responses that future malaria vaccines
should aim to induce or improve upon, it is vital to
understand how different parasite life stages modulate the
host immune system. This review focuses specifically on the
interactions between malaria parasites and dendritic cells (DCs),
sentinel antigen presenting cells of the immune system that
are crucial for generating effective immune responses and
immunological memory.

Dendritic Cells
DCs function as a crucial bridge between innate and adaptive
immunity. In a healthy individual, DCs constitute only 1%
of all peripheral blood mononuclear cells (PBMC) (24–26),
yet they exert potent regulatory effects on both the innate
and adaptive immune system (Figure 2). Upon encountering
foreign antigens in the presence of pathogen associatedmolecular
patterns (PAMPs), DCs undergo a process of maturation and
migrate to the spleen and draining lymph nodes where they
interact with pathogen-specific T cells. In addition to presenting

antigen via major histocompatibility complex (MHC) surface
molecules, DCs express co-stimulatory molecules required for
naïve T cell proliferation and differentiation into effector cells,
including CD40, CD80 (B7-1), and CD86 (B7-2). Through
secretion of cytokines and chemokines, DCs recruit other
immune cells and influence the nature of the adaptive T and B
cell response, ultimately leading to clearance of infected cells and
extracellular pathogens (Figure 2). Crucially, DCs are present at
all clinically relevant sites for the development of Plasmodium
life stages, namely the skin, blood, bone marrow, spleen, and
liver (Figure 1).

Based on the expression of CD11c and CD123, human
DCs can be broadly classified into plasmacytoid DCs (pDC;
Lin−HLA-DR+CD11c−CD123+) and conventional DCs (cDC;
Lin−HLA-DR+CD11c+CD123−) populations. The pDCs are the
body’s major producers of the anti-viral interferon (IFN)-α,
though they constitute only 0.35% of PBMCs (25, 26). These cells
are crucial in antiviral responses. The cDCs specialize in priming
and presenting antigen to T cells (27), and constitute 0.6% of
PBMCs (25, 26). Using the blood dendritic cell antigen (BDCA)
markers, it is possible to further differentiate cDC populations
into cDC1 (BDCA-3+/CD141+) and cDC2 (BDCA-1+/CD1c+)
subsets, while pDCs express BDCA-2 (CD303) and BDCA-4
(CD304) (28–30).

Given the central role of DCs in sensing infection and
orchestrating immune responses, it is not surprising that many
pathogens have evolved immune evasion strategies which
specifically target DCs in order to interfere with innate and
adaptive immune responses (31–34). Thus, understanding
how DCs initiate and maintain effective immune responses
against malaria parasites, whilst minimizing detrimental
and life-threatening immunopathology, is imperative for
vaccine development.

AT THE MEETING POINTS: SITES OF DC
AND PLASMODIUM SPP. INTERACTION

Interactions between DCs and Plasmodium parasites occur
at every stage of the parasite life cycle within the human
host: skin (35), liver (36), and most importantly within the
blood and spleen (37), where the majority of host pathology
occurs. Recent studies have also revealed that the bone marrow
(BM) compartment is a major tissue reservoir for gametocyte
development and proliferation of malaria parasites (38–41).
Tissue-resident DCs in each of these sites have the potential to
endocytose parasite components and initiate the development
of specific adaptive immune responses to Plasmodium infection.
Importantly, DCs in these tissues exist in different maturation
states and thus vary in their ability to influence adaptive and
innate immune responses and induce inflammatory responses.
Within the liver, DCs are thought to induce tolerogenic responses
to prevent induction of harmful immunopathology (42, 43),
whilst in spleen, DCs propagate strong immune responses,
and blood DCs have an intermediate phenotype with a lower
capacity for inducing inflammation compared to their splenic
counterparts (44).

Frontiers in Immunology | www.frontiersin.org 3 March 2019 | Volume 10 | Article 357

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Yap et al. Dendritic Cell Responses to Plasmodium

FIGURE 2 | Dendritic cells link innate and adaptive arms of the immune system. (A) Uptake of pathogens and recognition of pathogen-associated “danger signals” by

pattern recognition receptors (PRRs) triggers dramatic morphological and functional changes in DCs, termed maturation. These changes involve the formation of

dendrites, down-regulation of antigen uptake, and redistribution of major histocompatibility complex (MHC) molecules from intracellular endocytic compartments to

the cell surface. (B) Mature DCs migrate to draining lymph nodes and present information about the invading pathogen in the form of processed peptides loaded onto

MHC molecules to naïve T cells. Upregulation of MHC and co-stimulation molecules enables activated DCs to initiate adaptive T and B cell immune responses, the

nature of which are determined by the cytokine milieu. This initiates the cascade to an adaptive immune response, leading to clearance of infected cells, and

extracellular pathogens. Activated mature DCs also secrete interferons and proinflammatory cytokines that recruit circulating innate immune cells to provide rapid

defense against infection.

Skin and Liver DC Interactions With
Sporozoites: Lessons From Murine Models
The skin is the site of first contact between DCs and Plasmodium
spp. Studies in mice have demonstrated that sporozoites remain
in the skin for up to 60min prior to entering the circulation,
after which they lose motility (45). Remarkably, up to 50% of
sporozoites become trapped in the dermis, while 30% of those
that succeed in entering the circulation enter lymphatic rather
than blood vessels (45). Thus, the majority of sporozoites fail to
reach the bloodstream and are instead phagocytosed by DCs in
the skin-draining lymph nodes, which prime protective CD4+

(46–48) and CD8+ T cell responses (49, 50). It is likely that a

substantial proportion of immunity to sporozoite stages arises
predominantly in response to these “failed” sporozoites.

Interestingly, there is some evidence that sporozoites which
arrest within the liver may promote induction of limited

liver-stage immunity. A murine study demonstrated that

apoptosing hepatocytes infected by irradiated sporozoites
triggered recruitment of circulating blood DCs to the liver (51).

These DCs phagocytosed apoptotic hepatocytes and migrated to

lymph nodes, where they induced protective IFN-γ-producing
CD8+ T cell responses (50).

Importantly, in the above study, infiltrating DCs from
the cutaneous lymph nodes initiated immune responses, not
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liver-resident DCs (50). In humans (52) and mice (53), tissue-
resident liver DCs are reportedly less mature than blood DCs,
as they are poor at antigen processing and express only low
levels of costimulatory markers. While liver DCs in humans are
capable of inducing allogeneic T cell responses, they are less
effective at this than their blood counterparts, and therefore
promote a T cell phenotype that is less responsive to subsequent
stimulation (52, 54). When considered in conjunction with their
high capacity for IL-10 secretion (52), the liver DC phenotype
may be one that promotes a more tolerogenic environment,
favorable to sporozoite survival. This could partly explain
why sterile immunity rarely occurs in response to natural
infection, with tolerogenic liver-resident DCs acting to suppress
inflammatory responses which would induce protection. Studies
using mouse models with humanized livers have shown promise
for investigating Plasmodium spp. skin-to-liver transfer (55, 56).
In combination with FMS-like tyrosine kinase 3 ligand (Flt3-L)-
treated cord blood engrafted humanized mice, which produce
large quantities of human DCs similar to those seen in blood
(57), combined liver-immune system humanized mice could
be a useful avenue to investigate DC involvement in liver-
stage immunity.

The Bone Marrow As a Reservoir
for Gametocytes
A similar phenomenon of immune tolerance may occur in
the BM, which emerging evidence suggests is a privileged
developmental niche for the transmission stages of Plasmodium.
Autopsy studies have indicated that both P. vivax and P.
falciparum (15, 58–61) gametocytes sequester in the BM, the
latter of which is supported by the presence of a PfEMP1
type capable of binding BM endothelium (62). Poor immune
responses to parasites in this milieu may be due to tolerogenic
potential of the BM microenvironment. There is very little data
on BM DCs. One non-human primate study indicated that
BM-derived CD123+HLA-DR+ pDCs had a decreased capacity
to express co-stimulatory molecules in response to pathogens
relative to blood DCs (63), while CD11c+ BM cells in a murine
study had a similar capacity for T cell stimulation relative to
their blood and spleen counterparts (64). However, it is not
clear whether the CD11c+ population in the latter study was
comprised solely of DCs.

No studies to date have examined howDCs in the BM respond
to sequestered parasites, although one murine study has reported
that pDCs, present in the BM at frequencies 20 times higher than
in the blood or spleen, are the major producers of IFN-α during
P. yoelii 17X YM infection (65). If the BM is indeed a reservoir for
infection, as is suggested by recent primate studies (41), studying
whether BM DCs are capable of initiating antimalarial immune
responses will be important for achieving elimination.

Blood and Spleen DC Interactions With
Malaria Blood-Stages
Blood-stage parasitaemia provides multiple opportunities for
blood and splenic DCs to interact with parasites. The parasite
spends the majority of the asexual blood-stage cycle within

the host RBC. While P. vivax exclusively infects reticulocytes,
which express surface MHC and can therefore be cleared by
CD8+ T cells (66), P. falciparum also infects mature RBCs,
which do not express surface MHCmolecules, thus enabling host
immune evasion. Despite this, the blood-stage is an antigenically
rich phase of the Plasmodium life cycle [reviewed in (67,
68)], affecting a large proportion of host cells and triggering
potent inflammatory immune responses that cause most of the
symptoms of malaria. Maturation of parasitized RBCs (pRBCs)
culminates in lysis of the host RBC, releasing merozoites into the
circulation. Merozoites that fail to invade a new RBC will remain
in the circulation where they are directly phagocytosed (69) or
circulate to the spleen for clearance. The PfEMP1 molecule,
which is expressed on the pRBC surface, may play a dual role in
this life stage. While it is a prime target for antibodies in naturally
acquired immunity (70), one report suggests it may alsomodulate
immune function via binding to CD36 on APCs, including
DCs (71). Furthermore, PfEMP1-mediated sequestration in the
periphery is long held to be a parasite adaptation aimed at
avoiding splenic clearance (72).

DCs play a vital role in initiating and regulating adaptive
immunity to blood-stage malaria (73–75). However, there
is strong evidence that Plasmodium parasites modulate DC
maturation and function to interfere with the development
of protective immune responses. Data from mouse models
indicate that blood-stage infection suppresses both existing and
developing liver-stage immunity by inhibiting DC activation
(76), and inhibits DCs from responding to subsequently
encountered pathogens (77–79). Importantly, murine studies
suggest that DCs also play a role in the induction of immune-
mediated pathology, including the life-threatening syndrome of
cerebral malaria (80, 81). Thus, it is of vital importance that we
understand the factors governing the ability of DCs to alter the
balance between protection and pathology.

DCs, Malaria, and Unanswered Questions
The majority of DC-Plasmodium interactions in humans have
been studied in two ways: (1) studying peripheral blood
DCs from currently or previously infected individuals, or (2)
measuring DC responses to parasite stimuli in vitro. In the
first method, DCs were isolated from the blood of individuals
who were naturally or experimentally infected with malaria. The
surface phenotype and function of these DCs was compared to
uninfected controls, either the same individuals prior to or post-
infection, or a matched control group (82–102). In the second
method, DCs from malaria-naïve individuals were stimulated
with Plasmodium products to assess the resulting phenotype. The
majority of reports which used the latter generated DCs from
monocytes in vitro using GM-CSF and IL-4 (71, 103–106), while
a minority reported responses from bona fide DCs from blood
(83, 85, 107, 108).

As such, there is limited knowledge about how naïve
DC subsets resident in different human tissues and blood
respond to Plasmodium, and what factors influence this
response. This knowledge is vitally important for designing
vaccine strategies which specifically enhance the ability of
DCs to induce protective responses while limiting induction
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of immunopathology. Understanding how naïve DC function
is altered by Plasmodium exposure will provide insight into
how DCs are affected in infected individuals, and therefore
what vaccine strategies will be required to overcome this
altered phenotype.

PERIPHERAL BLOOD DC RESPONSES TO
NATURAL OR EXPERIMENTAL
PLASMODIUM INFECTION

A total of 24 ex vivo studies to date have examined how natural or
experimental exposure to Plasmodium spp. affects the activation
phenotype and function of human peripheral blood DCs, in both
acute infection and after prior exposure (summarized inTable 1).
The following sections analyse these studies in detail, according
to species infection.

DC Phenotypes and Responses During P.

falciparum Infection
Plasmodium falciparum is responsible for a high burden of
morbidity and mortality in pregnant women and children,
and can cause severe and fatal disease outcomes including
cerebral malaria, miscarriage, and multiple organ failure (110).
Infected persons typically present to hospital when blood-stage
infection becomes symptomatic, which can occur nine to 30
days after the initial infection (111). Classifying malaria cases
as mild/uncomplicated vs. severe is based on specific clinical
features, including but not limited to coma, haemoglobinuria,
vital organ dysfunction, or respiratory distress (110). The
majority of ex vivo studies have been carried out in settings
of high P. falciparum transmission, focusing on the phenotype
and function of DCs in high-risk groups including children and
pregnant women (Table 1).

DCs and P. Falciparum in Children in

High-Transmission Settings
In a DC study comparing infected children to non-infected
controls in a holoendemic setting, Kenyan children hospitalized
with mild vs. severe malaria exhibited decreased HLA-DR
expression on DCs and reduced DC numbers in circulating
blood, regardless of disease severity (82). A subsequent study
which followed children during malaria and after treatment
showed that malaria specifically decreased HLA-DR expression
on cDC but not pDC subsets, and reduced the ability of DCs
to induce allogeneic T cell proliferation in mixed leucocyte
reactions (MLR) (96). Furthermore, infection correlated to
an increase in absolute numbers of circulating BDCA-3+

cDC1s. Importantly, these effects of P. falciparum on DC
phenotype and function were still observed 14 days after hospital
discharge and curative treatment (96), suggesting that malaria-
induced immunosuppression can persist for some time after
parasite clearance.

A subsequent study was conducted in Mali, another
holoendemic setting, where DC function was compared between
infected and non-infected children from the Fulani and Dogon
ethnic groups. DCs from children aged 2–10 years displayed

reduced HLA-DR expression after malaria exposure (100).
Infection was also associated with increased proportions of
circulating BDCA-2+ pDC and BDCA-3+ cDC1 populations,
with reduced CD86 expression in the former (100). In this
study genetic differences were proposed to play a role in
clinical outcomes of P. falciparum infection due to differences in
cytokine production between the 2 ethnic groups, with PBMCs
from Dogon children displaying significantly impaired cytokine
production, correlating with more severe fever and higher
parasitaemia (100). These responses could be attributed in part
to reduced DC function, including a reduction of pDC-derived
IFN-α production in response to TLR9 ligands.

More recently, Guermonprez et al. reported that children with
malaria, regardless of disease severity, had an increased frequency
of the BDCA-3+ cDC1 population (102). This correlated with
increased serum concentrations of the DC growth factor Flt3-L
that preferentially increases pDC and cDC1 in vivo (112, 113).
During malaria, Flt3-L is produced by mast cells in response to
uric acid metabolism by Plasmodium parasites (102).

Together, these studies suggest that malaria in children in
high-transmission settings negatively impacts DC activation
marker expression and modulates DC function. The low
activation status of peripheral DCs may be due to sequestration
of activated DCs in affected tissues. Moreover, an increased
number of circulating BDCA-3+ cDC1s appears to be a common
feature of malaria in this setting. Urban et al. also showed
that DC dysfunction persisted after the resolution of malaria
(96), leaving these individuals vulnerable to co-infections. The
apparent contradiction between reduced DC numbers in the
first study (82) and elevated numbers of BDCA-3+ cDC1s in
the second study (96) is likely due to more sophisticated gating
strategies in the latter, enabling discrimination of individual DC
subsets (96), rather than classifying all HLA-DR+ cells as DCs
(82). Rigorous and well-defined flow cytometry gating strategies
that use an appropriate combination of antibodies to DC subset-
specific surface markers are imperative for DC research and
may help to resolve some of the apparent discrepancies in
the literature.

DCs and P. Falciparum in Pregnancy in

High-Transmission Settings
Four studies evaluating changes in DC populations in infection
during pregnancy have yielded conflicting results. Two studies,
one from Gabon (94) and one from Benin and Tanzania (101),
observed that overall DC numbers were decreased in pregnant
women infected with P. falciparum compared to uninfected
matched pregnant controls, while a study from Senegal (97)
reported a decrease in the pDC population only relative to non-
pregnant uninfected controls. Another study from Benin (109)
did not observe any difference in DC numbers between infected
and non-infected pregnant women. Changes in surface activation
marker expression varied across studies (Table 1).

Again, different gating strategies may underlie some of the
differences observed between these studies. Simply gating on
CD123+ or CD11c+ populations may run a risk of false positives
if isolation and lineage staining is not extensive enough. Use
of cord blood (94, 97) or placenta-derived (97) DCs may also
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contribute to phenotypic differences between these DCs and
peripheral blood DCs, due to the unique microenvironments
of these pregnancy-associated tissues. Gravidity can also be an
important contributing factor. Since primigravid women are at
the highest risk of severe inflammatory disease [reviewed in
(114)], the proportion of women in their first pregnancy should
always be accounted for in immunological studies. Inclusion of
pregnant non-infected controls is also imperative to determine
whether pregnancy itself is a confounding factor affecting DC
function during malaria.

Function of DCs From Naturally Exposed Individuals
Three studies of adults with symptomatic malaria carried
out in Thailand (98), Brazil (99), and Papua (84) provide
insights into how P. falciparum immunity develops in lower-
transmission settings. Within the Thailand cohort, activation
marker expression was not assessed, but circulating numbers
of pDCs were significantly reduced in both mild and severe
malaria compared to healthy controls. IFN-α levels in the
serum increased (83), but it was not established whether
this directly correlated with pDC function. The percentage
of immature HLA-DR+CD11c−CD123− cells in circulation
increased, while the fractions of circulating CD11c+ cDCs and
CD123+ pDCs were decreased. DCs from infected participants
were apoptotic (upregulated the apoptotic marker Annexin-V)
and were defective at antigen uptake and induction of naïve T cell
proliferation in allogeneic T cell activation assays (84). All three
cohorts were recruited via clinical admissions, which self-selects
for individuals with lower pre-existing immunity and perhaps a
more naïve phenotype.

In short, it appears that while impairment is more pronounced
in high-transmission settings due to frequent re-infection and
higher overall parasite burden, downregulation of DC function is
a common feature of malaria. Considering that malaria induces
potent inflammation, this DC phenotype may therefore be
comparable to what is seen in other inflammatory diseases such
as bacterial sepsis (115), HIV (116), or HCV (117). In these
patients it is also common to observe reductions in circulating
DC numbers (115, 116) and reduced HLA-DR (117) or CD86
(115, 117) expression. Persistent systemic inflammation may
therefore explain this reduction in DC function in naturally
malaria-infected persons. Again, more rigorous classification of
cDC1, cDC2, and pDCs may clarify some of the discrepancies
amongst different reports.

Stimulation of DCs From Naturally

Exposed Individuals
In a study examining DC responses to TLR stimulation after
natural P. falciparum infection, DCs from naturally exposed
pregnant women in Benin were collected from cord blood (109).
Whole PBMC cultures were stimulated with TLR4 ligand LPS,
TLR3 ligand polyinosinic:polycytidylic acid (polyI:C), or TLR9
ligand CpG-A ODN to stimulate BDCA-1+ cDC2, BDCA-3+

cDC1, or pDCs, respectively, due to the high expression of each
TLR on these specific DC subsets (118). Synthetic hemozoin
prepared from haemin chloride was also used for DC stimulation.
There was no difference in HLA-DR expression between infected

and non-infected women upon stimulation with either TLR
ligands or hemozoin. PBMCs from infected women produced
more TNF-α and IL-10 in response to CpG-A stimulation, more
IFN-γ in response to polyI:C, and more TNF-α in response to
hemozoin relative to non-infected women (109).

Only one study to date has stimulated DCs from naturally
exposed individuals using pRBCs (85). DCs were purified from
the blood of adults from a highly endemic region in Mali at the
end of the transmission season and DC activation was compared
to that in naïve controls. All exposed individuals were PCR-
negative for infection at the time of enrolment (85). When
stimulated with pRBCs at a ratio of 3 pRBCs per DC, DCs from
these individuals upregulated expression of HLA-DR and CD86
and expressed CCL2, CXCL9, and CXCL10, but did not produce
any IL-1β, IL-6, IL-10, or TNF-α (85). In Section 4, this review
outlines how a lack of cytokine secretion is commonly observed
in in vitro studies of bona fide DC, and therefore should not
necessarily be considered a sign of DC suppression. However,
it is interesting that when DCs isolated from malaria-exposed
individuals were stimulated with pRBCs following cessation of
high malaria transmission (85), DCs could express an activatory
surface phenotype in response to stimulation. Thus, it may be
that sustained reductions in transmission allow restoration of
DC function.

TLR Modulation in DCs by P. falciparum
Only one study to date has investigated the ability of P. falciparum
to modulate TLR expression on DCs as a potential mechanism
of immune suppression (98). In this study, individuals with
severe or mild P. falciparum infection exhibited increased TLR2
expression on cDCs but decreased TLR9 expression on pDCs,
with no observable change in TLR4 expression (98) compared to
healthy controls. The severity of infection did not impact these
changes in TLR expression.Moreover, the fraction of TLR2+ DCs
in the periphery decreased during infection (98). TLR2, TLR4,
and TLR9 have all been implicated in sensing of Plasmodium-
derived “danger signals.” Namely, TLR2 and TLR4 recognize
glycophospholipid (GPI) anchors for merozoite surface proteins
(119), and TLR9 detects Plasmodium DNA (120). As this is the
only study to assess TLR expression profiles during Plasmodium
infection, it is unclear whether this effect is a common feature of
malaria. Nevertheless, it suggests that even low-level Plasmodium
infections can modulate host responses by downregulating the
signals required for APC activation.

The Effects of Natural P. vivax Infection on
DC Phenotype and Function
Plasmodium vivax is the second major malaria pathogen. It
inhabits a broader geographical range than P. falciparum, posing
a risk to more than 3.2 billion individuals worldwide (121).
Its pathogenic potential is enhanced by its ability to become a
latent hypnozoite in the liver (7), but as it exclusively infects
reticulocytes (122), it is difficult to maintain in culture and
remains relatively understudied. Immunity to P. vivax has
primarily been studied in symptomatic persons who present
to healthcare. As the geographical ranges of P. vivax and P.
falciparum transmission overlap, it is often difficult to exclude
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the immunological impact of prior P. falciparum exposure.
Nonetheless, it is possible to describe the acute effects of P. vivax
single-species infection, even though an individual’s infection
history may be unclear, if diagnosis is sufficiently rigorous. The
gold standard for species-specific diagnosis is PCR. However, in
resource-poor settings rapid diagnostic tests are typically used.

Due to the paucity of studies from P. vivax-exposed
individuals it is difficult to conclude the effects of P. vivaxmalaria
on DC function. DC numbers decreased during infection, both as
a fraction (84, 86) and as total numbers (99). In the latter study,
the pDC fraction was increased while cDC numbers decreased
(99). Another study observed a decrease in both pDC and cDC
fractions, as well as increased DC apoptosis (84). Plasmodium
vivax malaria has also been reported to down-regulate CD86
expression on DCs (84, 99).

The Effect of Mixed Plasmodium Infections
on DC Function
Phenotypic analyses of peripheral blood DC from individuals co-
infected with two Plasmodium spp. support similar reductions in
overall DC numbers as seen in individuals experiencing single
infections (87, 88, 99). However, it is not yet known whether
this correlates to impairments in DC function. A study from
Gonçalves et al. in a mesoendemic area of Brazil found that
asymptomatic individuals infected with both P. falciparum and
P. vivax had decreased circulating cDCs but increased circulating
pDCs (99). Studies in a holoendemic region of Papua found that
pDC fractions increased during asymptomatic P. vivax but not
P. falciparum infection, with pDC and BDCA-1+ cDC2 fractions
decreasing during acute infection with either species (87, 88).
No changes were observed in the BDCA-3+ cDC1 fraction in
children or adults during acute or asymptomatic infection with
either species (87, 88), in contrast to the findings in African
cohorts (96, 100, 102). HLA-DR expression onDCs was increased
during asymptomatic P. vivax infection (87), but decreased
during acute mixed or single-species infections (87, 88).

It is interesting that HLA-DR expression on DCs was
positively correlated with parasitaemia in children with
asymptomatic P. vivax infection, but negatively correlated with
parasitaemia in adults with asymptomatic P. falciparum infection
(87). Thus, it may be that the two major pathogenic Plasmodium
species polarize the immune system in different ways. This data
also suggests fundamental differences in how childrens’ and
adults’ DCs respond to Plasmodium exposure—an important
factor to keep in mind considering the at-risk populations for
either species.

Insights From Controlled Malaria
Infection Models
Controlled Human Malaria Infection With

P. falciparum

The development of a controlled human malaria infection
model (CHMI) has produced valuable insights into antimalarial
immunity. In one CHMI model which has been used to study
DC inmalaria, healthy volunteers who are typicallymalaria-naïve
were inoculated with an ultra-low (<180) or low (1,800) dose

of P. falciparum pRBCs thawed from a pre-prepared biobank.
Atovaquone/proguanil or artemether/lumefantrine treatment
was administered 6 days post-infection (ultra-low-dose group)
or when parasitaemia reached 1,000 parasites per mL (low-
dose group). Despite the low parasite biomass of the inoculum
in the low-dose group, an estimated 20 times lower than the
number of merozoites released from an infected hepatocyte
after sporozoite replication (123), DC numbers were significantly
decreased in the low-dose group due to increased DC apoptosis
(89). Intriguingly, infection-induced apoptosis appeared to be
exclusive to HLA-DR+ cells, including DCs. Furthermore, the
decrease in DC numbers coincided with the peak of symptomatic
malaria, and while cDC numbers recovered to pre-infection
levels after drug treatment, pDC numbers remained at 47%
of baseline 60 h post-cure (89). HLA-DR expression on pDCs
was also impaired. Importantly, DCs from the low-dose group
displayed impaired phagocytosis, which persisted for 36 h after
drug cure. In contrast, the ultra-low-dose group experienced no
symptoms and no DC impairment (89). This study suggests that
a certain parasite biomass is required for functional impairment
of DCs. However, since the ultra-low-dose group were treated
prior to development of symptoms, it is unclear whether an
ultra-low dose is sufficient to induce immunity that can control
sub-symptomatic parasitaemia, or whether immune impairment
would have eventuated if parasitaemia had been allowed
to develop.

Function of pDCs and BDCA-1+ cDC2s during CHMI
A second controlled infection study from Loughland et al.
utilized a similar low- (1800 pRBCs) and ultra-low (150 pRBCs)
dose to more closely study BDCA-1+ cDC2 activation (91)
and pDC function (92) after controlled infection. Unlike
the prior study, patients were treated upon reaching a
parasitaemia of 1000 pRBCs per mL, regardless of initial
parasite inoculum. Importantly, both groups experienced
a decrease in HLA-DR expression on BDCA-1+ cDC2s
that coincided with peak parasitaemia but also persisted
24 h after drug treatment (91). However, only the high-
dose group exhibited decreased DC numbers, increased
DC apoptosis, and reduced phagocytic capacity relative to
baseline (91, 92). A positive association was also observed
between phagocytic activity and HLA-DR expression at peak
parasitaemia (91).

The ability of DCs to respond to TLR stimulation after
exposure to malaria was also evaluated in these studies (91)
by restimulating DCs taken from participants during peak
parasitaemia. Interestingly, the BDCA-1+ cDC2 from individuals
in the high-dose group were impaired in their capacity to
upregulate HLA-DR and CD86 in response to stimulation
with TLR1/2, TLR4, and TLR7 ligands or whole pRBCs.
This impairment was DC-specific, as monocytes’ capacity for
activation marker expression was unaltered by malaria exposure
(91). In contrast, pDCs restimulated with TLR7 and TLR9
ligands upregulated expression of HLA-DR, CD123, and IFN-
α, and upregulated CD86 in response to TLR7 stimulation
(92). The cDC1 subset was not examined in these studies.
These results were similar to TLR stimulations of cord blood
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DCs from pregnant women, where CpG-A stimulation of
pDCs showed enhancement of cytokine production in infected
individuals (109), though cautionmust be taken when comparing
naïve CHMI participants to naturally-exposed pregnant women
in Benin.

Together, these studies suggest that a single infection is
sufficient to impair cDC function, while pDC function is more
resilient. As discussed further on, this highlights a need to further
study pDC function during malaria and the potential role of this
subset in immunopathology.

CD16+ DC function in CHMI
The CD16+ DC subset’s status as a steady-state DC rather than
a monocyte subset that acquires DC-like characteristics during
inflammation remains unclear (27, 124, 125). Improved strategies
for distinguishing “true” CD16+ DCs from CD16+CD14−

monocytes have not yet been established, although a recent
single-cell RNAseq study highlighted a population of BDCA-
1−BDCA-3−CD16+ cDCs that is transcriptomically distinct
from monocytes (126). However, two studies have examined
the role of CD16+ “DCs” in malaria, both in CHMI. Both
studies observed that relative to pre-CHMI levels HLA-DR
and CD86 expression in these DCs increased after curative
treatment (90, 93) and 24 h prior to peak parasitaemia (93).
At peak parasitaemia CD16+ DCs had an increased ability to
spontaneously produce TNF-α, IL-10, and IL-12. CD16+ DCs
collected at peak parasitaemia and restimulated with pRBCs
expressed higher levels of IL-10 relative to baseline (93). When
restimulated with TLR1/2 or TLR4 ligands, these CD16+ DCs
produced high levels of TNF-α and moderate amounts of
IL-10 and IL-12. When restimulated with TLR7 ligands, the
CD16+ DCs produced TNF-α only (93). While caution must
be taken in ascribing bona fide DC status to the CD16+

DCs, these studies indicate that these cells are activated during
infection and in the highly inflammatory environment post-
treatment. Their high production of both TNF-α and IL-10,
which may aid in killing or suppression of DCs, respectively,
suggest that they could be major contributors to DCmodulation,
including that seen many days post-treatment and clearance of
infection (96).

CHMI With P. vivax

Due to the technical difficulty of maintaining P. vivax in
continuous culture, to date only one CHMI has been published
using P. vivax (95). In this study, peripheral DC numbers
were significantly reduced during acute infection relative to
baseline, though this was concurrent with an overall reduction
in circulating PBMC (95). All subsets (BDCA-3+ cDC1s, BDCA-
1+ cDC2s, pDCs, and CD16+ cDCs) upregulated caspase-
3 during acute infection and after treatment, suggesting that
the reductions in DC numbers in the periphery could also
be due to increased apoptosis. Overall, DC impairment by
P. vivax CHMI was largely similar to what was observed
with P. falciparum (89, 91); HLA-DR expression on BDCA-
1+ cDC was reduced during acute infection and 24 h after
treatment (95).

Ex vivo DCs in Plasmodium Infection: What
Do We Know?
In summary, Plasmodium infection can result in reduced DC
numbers in the periphery, both as an absolute number (89, 91,
94, 99) and as a proportion of total leucocytes (82, 97, 101),
reportedly due to increased DC apoptosis (84, 89, 91). DC
capacity for phagocytosing antigen is also decreased (89, 91),
which correlates with DC activation (127), yet their ability
to induce T cell proliferation in allogeneic T cell stimulation
assays is impaired (84, 89, 96). HLA-DR expression is generally
decreased (87–89, 91, 92, 95–97, 100, 101), with some variability
between DC subsets (Table 1). It is not clear whether the
reduction in HLA-DR is due to an increase in new immature DCs
in the circulation, or direct downregulation by parasites. There
is little consensus regarding other markers: reports on CD83
(84, 97) and CD86 expression are contradictory, though CD86
tends to be elevated on pDCs and decreased on DCs as a total
population (83, 84, 91, 100, 101).

It is also unclear whether the decrease in the number of
circulating DCs is due to cell death, as suggested by the
upregulation of caspase-3 (89, 91, 95) or annexin V (84), or due to
increased migration to lymphoid tissues. Decreased DC numbers
in both natural and experimental infection, however, coincided
with increased serum levels of IL-10 (82, 84, 86, 96, 97, 99) and
TNF-α (82, 84, 91, 96, 97, 99), indicating a potential cytokine-
mediated mechanism of DC loss. One subset in particular defied
this trend: proportions of BDCA-3+ cDC1s were increased
during P. falciparum infection (96, 100, 102), and remained
elevated for some time after acute infection (96). The BDCA-3+

cDC1 subset is associated with the initiation of CD8+ killer T
cell responses and the secretion of IL-12 (128). It is likely that
increases in serum Flt3-L lead to increased numbers of these
DC in the periphery during infection, but these circulating DC
do not appear to be capable of inducing functional responses.
Further complicating the matter, the BDCA-3+ cDC1 subset is
not elevated in single or mixed infections from Papua, where
transmission intensity is comparable (87, 88).

Overall, the different methods and markers that have been
used to study DCs in this variety of settings makes it difficult
to clearly define universal parameters of DC loss of function.
It is possible that the DC downregulation described in these
studies is a feedback loop promoting regulatory mechanisms in
the face of severe malaria-induced inflammation, and that DC
downregulation in malaria is not necessarily detrimental to host
survival. However, the presence of functional DCs is required
for effective vaccine responses, and it is still not clear how
malaria-induced DC downregulation affects survival to other
pathogens. There is an overall need to understand how these
DC phenotypes correlate to clinical outcomes, or at minimum,
how malaria directly affects DC function. It will be important
to clarify whether DC downregulation during natural infection
translates to suppression, namely loss of generalized immune
function against non-malaria pathogens or inflammatory stimuli.

In light of this, in vitro studies of DC function are vital for
three purposes: (1) clarifying the phenotype of DC suppression,
(2) determining precisely how malaria modulates DC function,
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and (3) identifying whether this is through direct interaction with
DCs or indirectly through soluble mediators, including cytokines
such as TNF-α.

DEFINING THE INTERACTIONS BETWEEN
DCS AND PLASMODIUM SPP. IN VITRO

To date, relatively few studies have investigated direct
interactions between Plasmodium spp. and human DCs in
vitro. The majority of these studies have examined the responses
of human monocyte-derived DCs (moDCs), since they can
be easily generated in large numbers from CD14+ PBMCs or
BM monocytes by co-culture with GM-CSF ± IL-4 (129, 130).
MoDC are themselves heterogeneous and contain cells with a
cDC-like phenotype with high expression of MHC class I and II,
BDCA-1, CD40, CD80, and CD11c (129), and macrophage-like
cells (131). Transcriptomic analysis indicates that moDC are
highly distinct from blood CD16+, cDC2 (BDCA-1+), and
cDC1 (BDCA-3+) cDC subsets and therefore do not accurately
represent the diversity of DC populations or their functions in
vivo (124). Other recent findings indicate that monocyte-derived
inflammatory DCs in humans are more similar to macrophages
than to bona fide DCs [reviewed in (27, 125)]. Thus, moDCs
may not be a representative model for investigating bona fide
human DC responses. These caveats must be considered when
interpreting the data from in vitro studies (summarized in
Table 2).

MoDCs and Intracellular P. falciparum
Blood-Stage Parasites
Initially, P. falciparum pRBCs were thought to suppress moDC
function in vitro (103) as, when co-cultured with moDCs at a
concentration of 100 parasites per DC, they impaired moDC
activation via contact-dependent CD36-mediated mechanisms
(103). In this study, DCs co-incubated with CD36-binding
parasite lines displayed decreased expression of co-stimulatory
markers CD40, CD54/ICAM-1, CD80, CD83, and CD86 in
response to LPS stimulation, and had a low capacity for inducing
allogeneic T cell proliferation (103). Co-incubation with non-
CD36 binding parasite lines did not induce the same inhibition.
However, a subsequent study found that a high ratio of pRBCs
to DCs (100:1) inhibited LPS-induced DC maturation, cytokine
production, and allogeneic T cell stimulation regardless of
whether the parasite strain had a CD36-binding phenotype, and
low doses of parasite (10:1) induced modest DC maturation
and autologous T cell proliferation (104). This inhibition of
LPS-induced DC maturation with high doses of pRBCs was
co-incident with high levels of DC death in vitro (104).

Another study reported that a ratio of 10 pRBCs per moDC
did not trigger upregulation of HLA-DR, CD83, or CCR7 on
moDCs (132), contradicting the findings of Elliott et al. (104).
However, the 100:1 ratio induced secretion of IL-1β, IL-6, IL-
10, TNF-α, and upregulation of the pro-migratory chemokine
receptor CXCR4 (132). Another report indicated that even at
a ratio of 25 pRBCs per moDC, moDCs upregulated HLA-DR,
CD40, CD80, and CD83 and secreted significantly higher levels

of TNF-α, IL-6, and IL-10 (105). At higher pRBC-to-DC ratios,
there was a corresponding increase in DC death (105).

Addition of CD40L to pRBC-stimulated moDCs enhanced
HLA-DR and CD80 expression while CD86 expression was
greatly reduced relative to CD40L alone (105). Secretion of TNF-
α, IL-12, and IL-6 was also enhanced, while IL-10 secretion was
unchanged relative to CD40L alone (105). In another study,
exposure to schizont lysate triggered moDCs to upregulate CD86
but not CD80 or HLA-DR (106). These lysate-stimulated moDCs
were capable of inducing allogeneic T cell differentiation into
TH1 and regulatory T cells (TREG), both of which secreted high
levels of IFN-γ. TREG induced in this fashion also secreted
high levels of IL-10 and TGFβ. Pre-incubating moDCs with
parasite lysate did not affect their ability to undergo LPS-
driven maturation (106). Lastly, moDCs stimulated with whole
schizonts did not upregulate HLA-DR, CD80, or CD86, nor did
they express cytokines or chemokines (Table 2) (85).

One explanation proposed by Elliott et al. (104) for the
conflicting literature on the effect of pRBCs on moDC activation
is that high ratios of pRBCs suppress DC function, while low
ratios activate DCs (104), though in a recent study moDCs
were not activated by stimulation with 3 pRBCs per DC (85).
Alternately, variations in methodology are likely to contribute
to some of the differences observed: different parasite strains
and co-culture periods were used across all studies (Table 2).
Moreover, the heterogeneity of moDC preparations can vary
widely amongst different laboratories. Schizont lysate is also
not a proxy for pRBCs as the lytic process produces a mixture
of parasite membrane proteins, metabolites, and merozoites
(107). The matter is further complicated by the multiple
ways of defining “inhibition”: whether pRBCs truly block DC
activation in response to an external stimulus, and which
stimuli in particular are susceptible to this manner of inhibition.
Alternatively, it must be clarified whether pRBCs induce higher
levels of DC death.

In summary, while a dose-dependent relationship between
pRBC dose and moDC inhibition is suggested, this relationship
must be substantiated by further studies examining the individual
roles that different parasite stimuli, strains, and methodological
factors have on the final DC phenotype, preferably focusing on
bona fide DCs in future studies. A more rigorous definition
of moDCs and how “activation” and “inhibition” are defined
in these cells, particularly given how different groups have
used different activatory cytokine stimulation methods to drive
DC-like cells to begin with, will be imperative to resolve
existing conflicts.

Monocyte-Derived DCs and Other
Plasmodium Life Stages
Human DC responses to other Plasmodium life stages have
been poorly investigated. Only one study has investigated
moDC responses to P. falciparum merozoites (105). In
this study, co-incubation with merozoites resulted in moDC
secretion of TNF-α, IL-16, and large amounts of IL-10,
despite no changes in costimulatory marker expression (105).
Co-incubating merozoites with moDCs in the presence of
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CD40L induced high CD86 expression but no increase in
other costimulatory surface markers (105). CD40L also induced
merozoite-stimulated moDCs to produce high levels of IL-
10 (105).

Likewise, only a single study to date has assessed moDC
responses to P. vivax sporozoites (36). Prior to co-culture,
moDCs were matured with TNF-α and LPS and primed, or
not, with sporozoite extract. Primed moDC were more efficient
than their unprimed counterparts at eliciting IFN-γ secretion
and autologous T cell proliferation in DC-T cell co-cultures,
and CD8+ T cells stimulated by primed moDCs had greater
cytotoxic effector activity against infected HC04 hepatocyte lines
(36). It is not yet known how DCs respond to other liver-
stage parasites such as hypnozoites, exo-erythrocytic forms, or
sexual-stage gametocytes.

Interactions Between Bona fide Human
DCs and P. falciparum
Due to the technical challenges in obtaining large numbers of
viable bona fide human DCs from peripheral blood, relatively
few studies have investigated direct interactions between ex vivo
blood DCs from healthy donors and P. falciparum merozoites
or pRBCs (Table 2). To date, studies have focused on BDCA-1+

cDC2 and pDC populations. None have examined the BDCA-3+

cDC1 subset, likely owing to the rarity of this population. Both
merozoites and pRBCs have been shown to induce blood DCs to
upregulate CD40, CD80, and CD86 (83, 85), and to secrete IFN-α
(83, 85, 107), indicating that P. falciparum is capable of activating
naïve DCs. Merozoites also triggered production of IL-12p40 and
TNF-α (107). Additionally, a ratio of 3 pRBCs per DC resulted
in upregulation of HLA-DR and increased expression of the
chemokines CCL2, CXCL9, and CXCL10 (IP-10) (85), but did not
trigger production of IL-1β, IL-6, IL-10, or TNF-α. Contrary to
findings in moDCs, pRBCs did not suppress cytokine responses
to LPS in bona fide DC, although this may be attributable to
the lower pRBC-to-DC ratio used in this study (85). While the
authors did not assess whether high doses of pRBCs modulated
the ability of bona fide DCs to prime naïve T cells, as was shown
for moDCs, bona fide DCs exposed to low doses of pRBCs were
fully functional in their antigen presenting ability, inducing naive
T cell proliferation and polarization toward an IFN-γ-producing
TH1 phenotype (85). This does suggest, congruent with moDC
studies (104, 106) and some CHMI studies (89, 91), that single,
low-parasitaemia blood-stage infections of 10 pRBCs per DC
or fewer, equivalent to 200 pRBCs/µL, may induce beneficial
DC activation.

It is likely that cross-talk between different DC subsets plays
an important role in immune responses to P. falciparum. Two
studies that have examined this process indicate that DC cross-
talk is required for production of TNF-α, IL-12p40 (107), IFN-α,
CXCL9, and CXCL10 (also known as IP-10) (85) in response to
pRBCs. In the context of antimalarial responses, DC activation
appears to be contact-mediated and independent of IFN-α,
although partially mediated by the TLR9 pathway (85, 107),
expressed by just the pDC subset of human DCs. While cDCs
alone are sufficient for inducing T cell activation to pRBCs,

the presence of pDCs affects the ability of activated T cells to
proliferate and produce cytokines (85). When a mixed culture
of pDC and cDC was used in pRBC-primed autologous T cell
stimulations, T cells trended toward reduced proliferation and
production of IL-10, TNF-α, IFN-γ, and IL-5, but increased IL-
2 secretion (85). It is possible that since the overall number of
DCs for T cell stimulations was kept constant, reduced T cell
activation was a consequence of the reduced proportion of cDCs.

These data highlight a need for future studies to investigate
not only the individual roles of bona fideDC subsets in immunity
to malaria, but also to consider the complexity of the immune
response and the influence of cell-to-cell interactions. This
should be reflected in the establishment of better in vitro models
and cell-based systems that more realistically mimic the dynamic
interactions and cell behaviors that occur over the course of an
immune response in vivo.

DC Interactions With Parasite by-Products
The cycle of parasite reproduction is fuelled by a range of host
nutrients, not least of which is intraerythrocytic hemoglobin.
Hemoglobin breakdown causes accumulation of toxic heme,
which the parasite neutralizes by aggregating heme crystals into
hemozoin (133). Hemozoin has been proposed to have both
suppressive and activatory effects on DCs.

Initial studies reported that purified hemozoin induced CD1a,
CD80, and CD83 upregulation and IL-12 secretion frommoDCs,
whereas monomeric heme and synthetic hemozoin (β-hematin)
did not (134). However, these results were contradicted by a
subsequent study demonstrating impaired upregulation of HLA-
DR, CD40, CD80, CD83, ICAM-1, and CD1a in moDCs pre-
incubated with P. falciparum hemozoin (135). These conflicting
results may be due to the use of different hemozoin sources.
Depending on the method of purification, parasite hemozoin
can be contaminated with parasite proteins, nucleic acids, and
other by-products that can activate alternate pathways. It is
possible for even purified hemozoin to adhere to environmental
contaminants after purification (133). The altered activity of
hemozoin on treatment with phospholipase D (135) and DNAse
(136) indicate that contamination with nucleic acids or other
parasite metabolites is a likely explanation for the observed
variations, particularly since hemozoin has been shown to be a
carrier for Plasmodium DNA (136).

Murine models have been vital in establishing how hemozoin-
malaria DNA complexes activate DCs. Murine Flt3-ligand-
induced DCs (137) stimulated with hemozoin chelated to P.
falciparum DNA secreted high levels of RANTES, IL-12, and
TNF-α. In this system, hemozoin assisted in trafficking parasite
DNA to intracellular endosomes, and activated DCs via a TLR9-
and MyD88-dependent signaling pathway (136). Hemozoin
in isolation bound strongly to the murine TLR9 ectodomain
while β-hematin, a synthetic form of hemozoin, was unable
to activate DCs in this study (136). A subsequent study in
humans did observe CD80, CD83, and CXCR4 upregulation on
human moDCs after β-hematin stimulation (132), but the β-
hematin-induced DCs were unable to induce allogeneic T cell
proliferation (132).
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Uric acid, another toxic product of P. falciparummetabolism,
has also been found to upregulate expression of CD80, CD86,
and CD11c and to downregulate HLA-DR on purified human
blood DCs (138). Uric acid also reportedly stimulated mast
cells to produce high levels of the DC growth factor Flt3-
L in mice (102). Interestingly, DNAse treatment of uric acid
abrogated its activatory effects on DCs (138), similar to what
is seen with hemozoin. While uric acid is known to drive
inflammation during Plasmodium infection through activation
of the inflammasome [reviewed in (139)], the role of the
inflammasome in anti-malaria DC responses and activation has
not been investigated.

Together these studies highlight an important role for P.
falciparumDNA as an activatory ligand, particularly in activating
pDCs and driving production of IFN-α (107). Since only the
pDC subset in humans expresses TLR9 [reviewed in (140)],
ligation of TLR9 by P. falciparum DNA and subsequent cytokine
production by pDCs may be one of the primary mechanisms
by which human DCs are activated by Plasmodium (107, 136).
Cytoplasmic pattern recognition receptors for PlasmodiumDNA,
which are expressed in all DC subsets, may also play a prominent
role in anti-Plasmodium interferon responses (141, 142). Of
particular interest are the role of STING-dependent responses
in DCs and their role in anti-malaria responses. Considering
the wide distribution of Plasmodium DNA throughout the host
during infection (143), the human DC response to malarial DNA
ex vivo and in vitro is one of the key gaps in knowledge that
remains unaddressed.

Murine studies have identified a number of other
immunostimulatory Plasmodium products, but their
role in DC activation has not yet been investigated.
Glycosylphosphatidylinositol (GPI) molecules, membrane
anchors for Plasmodium surface proteins, are known ligands
for TLR2 (144), expressed on human cDCs (118). Parasite RNA
is known to induce type I IFN via TLR7/MyD88-dependent
signaling (145), and TLR7 is highly expressed on human pDCs
(118), the major producers of type I IFN. Finally, microvesicles
are small organelles of 1µm of less in size, derived by blebbing
of the plasma membrane, which are generated in high volumes
during Plasmodium infection (146, 147). They can contain
a range of parasite material, and are able to induce cytokine
secretion from murine (148) and human (149) macrophages. In
summary, considering the wide range of immunostimulatory
molecules produced by Plasmodium spp., it remains interesting
that the DC response to malaria is not always activatory. While
further studies should continue to identify Plasmodium ligands
that drive DC activation, this must be studied in combination
with the factors that underlie DC suppression in malaria.

DCS AND PLASMODIUM: OUTSTANDING
QUESTIONS AND FUTURE DIRECTIONS

Immunity to Plasmodium is complex, and many aspects of
cellular immunity remain poorly understood, particularly the
impact of malaria on DC function. A better understanding
of DC responses to Plasmodium will provide insight into the

low efficacy and relative short duration of protection of the
current malaria vaccine RTS,S, as well as the slow acquisition
of natural immunity in malaria-exposed individuals. One of the
most important unresolved questions is one of DC “suppression”:
namely, whether exposure to Plasmodium spp., particularly P.
falciparum, inhibits the ability of DCs to initiate and orchestrate
effective immune responses. Determining precisely how DCs
are modulated by P. falciparum is crucial for understanding the
development of immunity to malaria.

Some of the most interesting insights into the effects
of malaria-induced DC impairment come from field studies
that stratified patients by severity of infection. Studies that
analyzed mild vs. severe malaria cases separately did not observe
significant differences in DC phenotype between the groups
(82, 102), suggesting that there may be a “tipping point” beyond
which DC dysfunction is altered regardless of the severity of
clinical presentation. This is underscored by the similarities
in DC phenotype between natural exposure and CHMI. The
latter are a naïve population, but during acute infection
and for at least 24 h after treatment they exhibited similar
DC phenotypes to those seen in naturally infected cohorts.
Repeated infections could lead to sustained downregulation of
DC function. Considering that successful induction of vaccine
responses requires DC involvement, the failure of multiple
malaria vaccines when transitioning from naïve populations to
endemic populations (21, 150) may be due to impaired DC
function in these endemic populations prior to vaccination.

Some valuable insights could be obtained by investigating
differences in DC impairment between asymptomatic and
symptomatic malaria cases. The systemic inflammation
characteristic of symptomatic malaria undoubtedly contributes
to DC dysfunction. While asymptomatic cases seem to
experience similar loss of DC function short-term (87, 88, 99),
it may be that they exhibit better recovery of DC function long-
term. The phenotypic differences between high- and low-dose
inoculation cohorts in CHMI studies (89, 91, 92) suggest that
administering curative treatment while parasitaemia is still very
low is also effective at limiting DC impairment. The similarities
between naturally infected cohorts (Figure 3) also suggest that
transmission intensity does not have a major impact on DC
dysfunction beyond a certain threshold. Studies that follow the
long-term effects of malaria exposure on DC function will be
essential to clarify whether DC impairment persists after malaria
elimination, especially in unstable transmission settings.

Variations in methodology have made it difficult to ascertain
the effects Plasmodium parasites have on DCs in vitro.
Particularly, care must be taken when stating that P. falciparum
“suppresses” DC function in vitro: levels of activation lower
than that seen in response to positive controls is not necessarily
indicative of suppression. True suppression should be defined
by an inability of DCs to become activated by known
activatory stimuli, particularly pattern recognition receptor
ligands. Analyses should also always account for increased
cell death, which may result in false reports of suppression.
Overall, the data indicates that DC function is not universally
suppressed (Figure 3). Rather, Plasmodium appears to target
specific pathways, among them the ones crucial for inducing
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FIGURE 3 | A summary of dendritic cell responses to Plasmodium. While the dendritic cell response is heterogeneous, certain trends are evident when examining the

entirety of the current literature. Downregulation of dendritic cell function is commonly observed in field studies of infected humans. In vitro studies have yielded insight

into the complexities of dendritic cell activation by Plasmodium, particularly the types of ligands that can trigger an inflammatory response.

naïve T cell proliferation (82, 103, 104), while still allowing DCs
to polarize responses toward a TH1-like phenotype (85, 106).
Research into whether the functionality of these T cells is affected
relative to other pathogens which induce TH1 polarization will be
important to understand the uniquely Plasmodium factors that
delay the development of antimalarial immunity.

There also appears to be an important role for DC cross-talk
between pDC and cDC subsets (85, 107). This has two crucial
implications: first, it warrants further study of how individual
DC subsets respond to Plasmodium spp. without grouping them
into a monolithic conglomeration of HLA-DRhiLin− cells. In
particular, elevation of the circulating BDCA-3+ cDC1 subset
is a commonly reported phenomenon in field studies but, due
to the low frequencies of this rare population, its function in
malaria has not been extensively investigated. More rigorous
strategies, including cell sorting, should be employed to study
how purified subsets respond to malaria. Secondly, pDC cross-
talk is essential for production of cytokines such as CXCL10 and
IFN-α. CXCL10, also known as IP-10, is majorly implicated in
malaria pathogenesis (151–153), and IFN-α has recently been
shown to downregulate antimalarial immunity (154, 155). As
pDC help is required for production of both of these cytokines,
and pDCs are the major producers of IFN-α in malaria (65, 155),
strategies to reduce pDC activation in malaria might be beneficial
for the longevity of antimalarial immunity. Moreover, malarial
DNA has proven to be a potent inflammatory ligand (107, 136),
and since only pDCs express TLR9 in humans (118), detection of
malarial DNA by pDCs may play a significant role in detrimental
cytokine responses, making pDCs an ideal target for strategies to
reduce pathogenicity.

Moreover, ex vivo and in vitro studies depict a complex
effect of malaria on the pDC subset. Numbers of circulating
pDCs were reduced during natural infection (83, 84, 86, 97, 99)

and CHMI (92, 95), though it is unclear whether this is due
to pDC death or sequestration. One murine study indicated
that pDC could be infected with or endocytose parasites (156).
Whether a similar situation exists for human pDC is not known,
but it is plausible that large numbers of parasites within pDC
could kill these cells, leading to lower circulating numbers.
Malaria infection also triggers the upregulation of CCR7 on
pDCs (83), suggesting that homing to lymphoid tissues is
enhanced during infection. Thus, circulating pDCs may not be
the subsets responding to infection, which could explain why
pDC activation has not been reported in most field studies.
Multiple other factors could also contribute to this perceived
lack of pDC activation. Firstly, sustained parasitaemia inmalaria-
endemic regions may downregulate expression of activatory
ligands on circulating pDCs. Secondly, non-conservative gating
of pDCs may misrepresent the activation state of this DC
population. Thirdly, no field studies to date have measured IFN-
α production, which is a direct and functional read-out of pDC
activation. In vitro studies have observed IFN-α production when
pDCs were directly stimulated with parasite products (83, 85,
107). This reinforces the need to study pDC function during
malaria to understand whether a loss of pDC numbers in the
periphery is associated with a concomitant loss of function.

When interpreting existing literature, it must be kept in mind
that the majority of studies have focused on pRBCs and only
a minority have examined responses to extracellular forms of
the parasite such as merozoites. Considering that DC responses
change depending on the parasite life stage (85, 105, 107), even
within the relatively limited scope of the blood stages, it will
be vital to study the differences between responses to each life
stage. Since it is unlikely that a single vaccine will be able to
target the entire Plasmodium life cycle, understanding the type of
responses induced by each life stage is essential for designing new
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TABLE 3 | Research priorities in DCs and malaria.

Priority Approach

Understanding DC functionality to

improve malaria vaccines

In vitro assays to understand which DC signaling pathways are activated or unaffected by malaria and exploit adjuvant

technologies that target these pathways

Incorporating DC functional assays into vaccine trials as a measure of vaccine relevance and functionality

Correlating DC function in malaria to

protection

Controlled human malaria infection studies in naïve and previously exposed cohorts to understand how DC responses are

altered by prior exposure and how this correlates with clinical immunity

In-depth data analyses of how changes in DC phenotypes correlate with protective immune responses and/or overall

clinical immunity

Understanding the mechanism of DC

modulation by Plasmodium spp.

Development of small animal or in vitro models to assess human DC responses

Thorough mapping of the functional and transcriptional changes that DC undergo upon encountering Plasmodium spp.

Measuring DC responses to different Plasmodium life stages and determining which life stages have the greatest

immunostimulatory potential to facilitate vaccine development

therapeutic interventions to protect the host against damaging
immunopathology. A two-pronged “big data” approach could be
particularly informative, with the use of RNAseq or proteomics
on the DC side to examine immune pathways induced by
each parasite life stage, and conversely a proteomics or other—
omics-based approach examining the potential immunogens
expressed by each parasite life stage. In particular, understanding
the pattern recognition receptor signaling pathways which are
inhibited or activated by pRBCs would enable more targeted
therapies to reverse their suppressive effects. This would inform
functional studies, and therefore form a roadmap for vaccine
strategies or other therapeutic approaches that could induce
potent, long-lasting antimalarial immunity.

A primary caveat of the current literature on human DC
responses to malaria, particularly in field studies of infected
individuals, is that all studies have looked at circulating blood
DCs. It may be that mature DCs migrate into the tissues while
immature DCs remain in circulation. Therefore, care should
be taken not to generalize the phenotype of these circulating
DCs to the responses of liver, spleen or bone marrow tissue-
resident DCs, which may have greater functional relevance.
Understandably, obtaining tissue-resident cells directly from
humans is difficult and ethically challenging. Thus, models such
as humanized mice, which produce DCs functionally similar to
those found in humans (57, 157), are a promising system to
study DCs with a tissue-resident phenotype. While a humanized
mouse that is able to support the entire Plasmodium life cycle
is still out of reach, recent technological improvements have
enabled development of models that allow study of immunity to
specific life stages [reviewed in (158)]. For example, humanized
liver mice could shed light on the elusive phenomenon of liver-
stage immunity, while mice with humanized immune systems
could provide better insight into cell-mediated mechanisms of
protection against the blood stage. Development of a complete
humanized mouse model for Plasmodium would be invaluable
for human immunological research and vaccine development.

Organoids, miniature models of organ function, have proven
useful in studying tissues such as the liver (159) and intestine
(160). An intestinal organoid model has already been used to
study transcriptomic regulation of another Apicomplexan with

a complex life cycle, Cryptosporidium (161). Development of a
splenic organoid could be used for development of functional
tissue DCs and enable further study of blood-stage malaria,
as well as other blood-borne diseases (162). Liver and skin
organoids would also be invaluable for studying the pre-
symptomatic phase of the life cycle, and aid development of a
vaccine that confers sterile immunity.

Finally, data from in vitro studies using moDCs as a
model may not be representative of the interactions between
Plasmodium and steady-state DCs. Both moDCs and bona
fide DCs show pro- and non-inflammatory responses to
Plasmodium stimulation, but phenotypic and transcriptomic
differences between them highlight that the moDC phenotype is
pronouncedly different and may not necessarily be generalizable
(125). It was previously thought that moDCs might be
analogous to CD16+ DCs. However, recent findings outline
that moDCs and CD16+ DCs exist as separate populations
in the steady-state (124, 125), and while they may have
convergent functions during inflammation, this has not
yet been conclusively shown. Therefore, caution should be
taken when describing DC-parasite interactions using results
generated with moDCs: while it is likely that moDC-like APCs
are generated during the course of Plasmodium infection,
moDCs may not accurately reflect the behavior of steady-state
DC populations.

This review has outlined many facets of DC function in
malaria that are not well understood (Table 3). Firstly, DCs from
naïve individuals appear to respond differently to each malaria
life stage. These responses should be compared to those seen in
exposed individuals for a better understanding of how prolonged
malaria exposure affects immune recognition. Secondly, we must
further develop an understanding of how the DC phenotypes we
observe ex vivo and in vitro translate into effectiveness, duration,
and quality of antimalarial responses. Including DC studies in
vaccine trials would help to address which elements best describe
a beneficial DC response. This should be supplemented by more
studies of DCs in natural infection against comparable non-
exposed donors. Thirdly, there is a need for better models to
examine DC function in malaria. DC studies of the future should
focus as much as possible upon bona fide DCs, and seek to
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develop new models that will permit a more in-depth study of
how DC function is altered by the malaria parasite.

To conclude, the complexities of DCs make them a relatively
understudied cell type in the context of malaria, where they
have a potentially pivotal role in the regulation of antimalarial
immunity. Many gaps in knowledge remain to be addressed,
and there is a prominent need for novel technologies to bridge
the gap. A deeper, more rigorous understanding of how ex
vivo and in vitro Plasmodium-exposed DC phenotypes correlate
with effective immunity, and the mechanisms that regulate DC
interactions with Plasmodium will grant valuable insight into the
acquisition of immunity, and form a basis for the development of
better vaccines.
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