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High resolution behavioral and 
neural activity representation using 
a geometrical approach
Zev Brand & Avi Avital ✉

Available tools for recording neuronal activity are limited and reductive due to massive data arising 
from high-frequency measurements. We have developed a method that utilizes variance within the 
physiological activity and includes all data points per measurement. Data is expressed geometrically in 
a physiologically meaningful manner, to represent a precise and detailed view of the recorded neural 
activity. The recorded raw data from any pair of electrodes was plotted and following a covariance 
calculation, an eigenvalues and chi-square distribution were used to define the ellipse which bounds 
95% of the raw data. We validated our method by correlating specific behavioral observation and 
physiological activity with behavioral tasks that require similar body movement but potentially 
involve significantly different neuronal activity. Graphical representation of telemetrically recorded 
data generates a scatter plot with distinct elliptic geometrical properties that clearly and significantly 
correlated with behavior. Our reproducible approach improves on existing methods by allowing a 
dynamic, accurate and comprehensive correlate using an intuitive output. Long-term, it may serve as 
the basis for advanced machine learning applications and animal-based artificial intelligence models 
aimed at predicting or characterizing behavior.

Available tools for recording neural activity are limited by the large amount of data arising from high frequency 
(20 kHz) measurements. As a result, current approaches are bound to be reductive in essence and capture mostly 
significant, robust events within the data (e.g. spikes), most likely losing resolution, or neglecting potentially 
important events. Traditionally, a single-channel analog signal is separately recorded and subsequently processed 
and analyzed1,2. Recent advancements include a multichannel system, where analog-to-digital signals are done 
on the animal’s head stage. The digital signal is then relayed using radiofrequency for further analysis (e.g. spike 
sorting). There are few methods to display a group of neurons starting from the classic spike raster plot which 
displays only the spiking of each neuron and not the whole activity3,4. Additionally, decoding the raster plot to 
depict synchronized spiking and the quantification of the synchrony level are not intuitive nor measurable. The 
peristimulus time histograms (PSTHs) method has better resolution by relating to the firing rate of each neuron3. 
However, it doesn’t offer better quantification or synchrony of all the recorded neurons. Most recent studies by 
Doya and others, have dramatically improved the way we capture and analyze the signal by using spectrograms 
that are created based on high/low frequency5,6. Nevertheless, the spectrogram approach is representing each 
neuron separately and thus missing the inter-neuron-correlation. Another limitation of current approaches is 
the lack of live synchronization - the ability to synchronize the entirely recorded neural activity with behavior 
as it occurs. To achieve that, data collection needs to be inclusive and there should be a method that allows such 
comprehensive recording and analysis, that is also physiologically meaningful.

In the current study, we have developed a method that overcomes computational challenges encountered by 
current approaches. This method avoids data filtration or spike sorting, comprises all data points for each meas-
urement and relies on the variance observed within the physiological activity. Data are then expressed geometri-
cally in a statistically- and physiologically-meaningful manner to depict a precise, detailed and holistic view of the 
recorded neural activity. We validated our method by investigating the neuronal striatal mechanisms of attention.

The striatum is known to manage executive functions by integrating sensorimotor, emotional and cogni-
tive information; mainly action selection7. It has been reported that striatal malfunctioning impaired the abil-
ity to filter stimuli, therefore, the striatal pre-attentive role appears to be highly important8. Nevertheless, the 
intra-striatal mechanisms that govern the pre-attentive behaviors are yet to be investigated. Two brain regions, 
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the Motor Cortex and the Putamen (resides in the striatum) are reported to be involved in motor function and 
attention-induced decision making9,10. Together, the main aim of our study is to seek the correlation between 
these two regions while performing ‘low’ vs. ‘high’ selective attention tasks.

Results neural activity analysis and characterization.  We examined the possible association between 
the neural activity recorded from any pair of electrodes within the Putamen and the Motor cortex, pustulating 
they reflect both reward processing and the motor actuation, respectively11. To achieve that, we plotted the raw 
data recordings coming from any two linear multielectrode (eight contacts in each multielectrode). Specifically, 
while recording in 20 kHz, we plotted the raw data scatter of any two contacts coming from two out of four 
different regions (right/left Motor cortex or right/left Putamen) (Fig. 1a). Examining 64 scatter plots for every 
second of recording during the abovementioned behavioral phases, we observed an elliptic-like dynamics for 
any pair of electrodes from all regions we plotted. We further characterized the geometrical properties of the 
observed ellipse-like shapes. We calculated the covariance matrix of the raw data from each pair of electrodes, 
second-by-second and found the Eigen values and vectors of the covariance matrixes. The Eigen values represent 
the variance of the data in the direction of the Eigen vectors. The arc tangent of the x and y axes of the ellipse’s 
larger Eigen vector is considered as the ellipse orientation (see online methods for detailed explanation and an 
example). We used the chi-square distribution table to meet a 95% confidence interval and multiplied the Eigen 
values by the square root of 5.99. The outcome was the ellipse’ various parameters (Fig. 1b).

Synchronization of neural activity with behavioral performance.  We have investigated a possible 
functional correlation between neural activity and behavioral performance by synchronizing the geometrical 
features of the ellipses with the behavioral performance of the rats. To achieve that, we produced an ellipse shape 
for every second during the behavioral trial. Behavioral performance was divided into three phases: before, during 
and after turning from the main arm into the perpendicular arm(s). For any two sub-regions, we calculated the 
covariance between 8 × 8 of electrodes, yielding 64 ellipses at each time point (Fig. 1c). We quantified the differ-
ences between the ellipses along the before, during and after phases of the ‘low’ versus ‘high’ attention conditions. 
Per each ellipse, we characterized A and B axes, Theta – ellipse orientation, X and Y projections, and the ellipse 
area.

Validation of the geometrical approach.  We examined whether any of the geometrical features con-
sistently and significantly reflected the electrophysiological recordings as a function of the rat’s behavior. We 
measured the two selective attention conditions (‘low’ vs. ‘high’) in three different phases of the activity (before, 
during and after) per each. Initial statistical analyses (using Two-way ANOVA followed by Post-hoc Tukey tests) 
of the contralateral signals of the putamen (Right putamen (PR) vs left putamen (PL)) revealed that all geometri-
cal features significantly discriminated between the before - during and the during - after phases, but not between 
the before - after phases within each attention condition. Interestingly, at this point we could not discriminate 
between ‘high’ and ‘low’ attention conditions using our geometrical approach (Table 1).

Post-hoc Tukey test was used to investigate whether the B feature can differentiate between the three phases 
within a task (Fig. 2). In agreement with our initial findings, the B geometrical feature of the ellipses reflected the 
behavioral differences observed in the maze. We found a consistent and statistically significant difference in the B 

Figure 1.  Neural activity recording and analysis. (a) Scattered plots of 1 second of neural activity recording. 
The x- and y- axes display a representative recorded raw data in millivolts coming from the following electrode 
combinations: i) Putamen right (PR) vs Putamen left (PL); ii) PR vs Motor cortex right (MCR); iii) MCR vs 
Motor cortex left (MCL). (b) Statistical and geometrical characterization of recoreded data. Ellipse shape with 
95% confidence level is represented by the red line. In magenta, ellipse major axis A; in green elipse minor 
axis B. i) PR vs PL; ii) PR vs MCR; iii) MCR vs MCL. (c) A comparison of data recorded from eight electrodes 
located at the PR and the PL, yielding 64 ellipses for each phase of the task (before,during and after) in ‘high’ or 
‘low’ attention conditions.
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feature when we compared the before-during and after-during phases regardless of ‘high’ and ‘low’ attention con-
ditions (P < 0.0001 for all comparisons of any two brain regions) and when comparing any two contralateral or 
ipsilateral examined brain regions. Consistently with our initial observation (Table 1), there were no statistically 
significant differences between the before-after phases (Fig. 2; Supp Table 1).

We investigated whether there is a specific geometrical feature that discriminates between the ‘low’ vs. ‘high’ 
attention conditions. We found that the Theta geometrical (the ellipse’s rotation angel) feature successfully dis-
criminated between those two attention conditions. This also explains the rotary presentation observed in the 
during phase of the ‘high’-attention task. Additionally, the Theta feature discriminated between the before-during 
and the during-after phases when comparing contralateral regions of the brain (e.g., PL vs PR) (Fig. 3).

As can be observed in Fig. 3, the Theta value for the after phase in the ‘high’ attention condition was signifi-
cantly higher than that of the after phase in the ‘low’ attention task (Fig. 1c illustrates these findings). This can be 
explained by our observation that the rat is aware there is also food in the familiar ‘low’ attention arm. Indeed, in 
the ‘high’ attention trials, after consuming the food in the new arm, the rat went back to the familiar arm 100% of 
the times and consumed the food that was there.

Discussion
Our newly developed method uses geometrical analysis of neural activity to successfully discriminate between the 
contingent different behaviors and examine them in a meaningful, reproducible manner.

Our approach is unique as, in contrast to other available methods, it uses all, unfiltered recorded neural sig-
nals. Current methods such as raster plot3,4, PTSH3 and frequency transformation spectrograms12 share a lack of 
synchronization between all recorded neurons. To that end, we synchronized all recorded neurons (20 kHz) from 
different brain areas and different phases of the behavioral conditions. Comparing any two brain areas for any 
given examined time point produced an ellipse-shaped scatter plot with distinct geometrical features that con-
sistently and differentially represent electrophysiology and behavior synchronization. We have validated the use 
of this approach, comparing ‘low’ and ‘high’ attention conditions. For each condition, we investigated behavior 
in distinct phases of activity and successfully attributed geometrical features to different behaviors. We found 
that when we compare the contralateral signals of the putamen (PL-PR), all geometrical features discriminated 
between the different phases of a given behavior but did not discriminate between ‘high’ versus ‘low’ attention 
behaviors. The B parameter reliably discriminated between the two attention conditions and the three phases 
within each task. It is important to note however, that the interaction was not ordinal. This may reflect a possible 
interchangeable equilibrium between the recordings that follows either the attention condition or the perfor-
mance phase. Supportive of this is the consistency of the results from both ipsilateral and contralateral signals 
(e.g., PR-MR, ML-PL). Furthermore, the Theta feature distinctively discriminated between the ‘high’ and ‘low’ 
attention conditions and the different phases within the task when we compared contralateral regions. We noted 
that in ‘low’ attention condition, the Theta value in the during phase was lower than its value in ‘high’ attention 
condition, which means a smaller rotation of the ellipse. We postulate that the rotation indicated by Theta reflects 
the modulated equilibrium of the neural activity between each pair of electrodes from the two brain regions. 
This change in equilibrium involves relevant brain regions: the putamen for attentional processing and the motor 
cortex as an executer. The contralateral effect as well as the specific rotation effect reflected by the Theta feature 
may be viewed as a functional reconfiguration of the neural networks. This notion is supported by Sauvage et al.13 
who showed that a differential and coupled recruitment of cognitive networks can constitute a neural marker 
of training effects, based on shift of activity between brain regions. Specifically, we suggest that the activity shift 
represented geometrically by Theta reflects the shift from ipsi- to contra-lateral when there is a need for increased 
attention and information integration. In our model, those are characteristics of the during phase.

In conclusion, our newly developed and validated method represents an improved and reproducible way to 
neurally represent behavior. Our method is not reductive but rather intuitive and with validated physiological 
relevance. It can be expanded and investigated for any neurophysiological research that uses neural recording 
at high temporal and spatial resolution imaging aimed also to be functionally correlated with behavior. A limi-
tation of our method is the need to acquire tremendous number of neural recordings with synchronization to a 
well-defined behavioral task. More research, in complex learning settings, is required to generalize our method’s 

Phases

Geometrical features

A B THETA X Y AREA

Before vs 
During P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001

Before vs 
After P > 0.135 P > 0.455 P > 0.185 P > 0.537 P > 0.834 P > 0.963

After vs 
During P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001

Table 1.  Comparison of geometrical features of contralateral electrophysiological signals (PR vs PL) in different 
phases of the task (before, during, after). A statistical analysis (Two-way ANOVA followed by Post-hoc Tukey 
test; Sig. level <0.05) of the differences observed in the geometrical representation of the electrophysiological 
signals in different phases of a task. Each row represents a comparison between 2 different phases within the 
activity.
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reproducibility. Specifically, our method is limited by the restriction of examining two regions each time, and thus 
undermining the complexity of neural representation of behavior.

Our method summarizes significant amount of neural data into an ellipse’s geometrical features. Due to its 
high reproducibility, unbiased collection of data points and allowing the expression of behavior-physiological 
variance, the method may serve as the basis for advanced machine learning applications and animal-based artifi-
cial intelligence models aimed at predicting or characterizing behavior. Moreover, the clinical translation-related 
aspects of our research may be viewed in two levels: First, to give rise to the understanding of major psycho-
pathologies (e.g. major depression, schizophrenia), our method can be implemented while examining animal 
models to better clarify the hypothesized dysregulated equilibrium of neural activity of relevant brain regions. 
Secondly, referring to human subjects, Electroencephalogram (EEG) that is commonly used, may also implement 
our geometrical representation.

In sum, our suggested method may serve to better understand the concurrent of covert neural activity and 
overt behavior, in both health and disease.

Materials and Methods
Animals.  Five male Wistar rats (weighing between 300–350 g) at the age of 3 months were purchased from 
Harlan laboratories (Jerusalem, Israel) and reared in the institutional animal housing facility (Technion, Israel). 
Rats were housed 2 per cage (30 L × 30 W × 18 H cm) in a 23 ± 1 °C room temperature and ~67% humidity and 
acclimated to the housing facility for one week before experiments were started. A 12:12 day/night cycle (lights 
on at 6:00 am) and ad-libitum access to water were kept, and all manipulations and behavioral testing were held 
between 7:00 am and 5:00 pm.

Figure 2.  The B geometrical feature significantly discriminates between the before-during and the during-after 
phases of the task, regardless of ‘high’ vs ‘low’ attention conditions. A graphical representation of the means of 
the B feature in the these phases of the task. Putamen right (PR); Putamen left (PL); Motor cortex (MCR) right; 
Motor cortex left (MCL). One-way ANOVA followed by Tukey test revealed a consistent difference between the 
during phase and the before/after phases (*** P<0.0001).

Figure 3.  The Theta geometrical feature significantly discriminates between the high vs low attention condition 
and the before-during and the during-after phases of a task when recording contralaterally. A graphical 
representation of the marginal means of the Theta feature in the ‘high’ (red) and ‘low’ (blue) attention conditions 
during the three phases of the task. PR, Putamen right; PL, Putamen left; MCR, Motor cortex right; MCL, Motor 
cortex left. (Tukey tests: ***P < 0.0001; **P < 0.004; *P < 0.009; #P < 0.01).
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All experimental procedures and protocols were approved by the Technion’s Institutional Animal Care and 
Use Committee (IL-028-02-2015; February 2015). All methods were carried out in accordance with the recom-
mendations of the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, and all 
efforts made to minimize animal suffering. All five rats that were approved for the experiments participated with 
no special medical conditions nor mortality during the experiments.

Electrode array implantation.  Rats were anesthetized using Ketamine (90 mg/ kg) - Xylazine (10 mg/ kg), 
lidocaine (2%) was administered 20 minutes before a sagittal incision toward the skull and fur was removed using 
clippers. Rats were restrained in a stereotactic apparatus (Stoelting, IL, USA) and their body temperature of 37 °C 
was maintained using a heating pad. Bi-lateral opening was made in the skull with a trephine and microelectrodes 
were lowered through the Dura-matter and the brain at a rate of 1 mm per minute in order to minimize tissue 
damage.

Simultaneous bi-lateral recording was conducted from the Putamen and the Motor cortex, using a 
custom-made multi-layer linear electrode array comprised of 32 single unit recordings (i.e. 10 μm contacts).

The electrode array is lowered to the following coordinates: MC: AP: +1.08 mm, LM: ±2.2 mm, VD: −4.6 mm 
(see Fig. 1a). Dental cement was used to fix the electrodes on the head of the rat. Three stainless screws, each with 
a diameter of 1 mm were used to keep the installation fixed.

Rats were treated subcutanously with Buprenorphine (0.03 mg/kg) for two consecutive days for pain relief and 
were allowed 1 week to recuperate before being subjected to experimental procedures.

Neural recording.  We used a custom-made multilayer linear microelectrode array comprised of 32 
Platinum/Iridium 12.5 μm diameter for single unit recordings, equally distributed between the two regions 
in both hemispheres, 100 μm apart (Alpha Omega, Israel, LTD). The multichannel communication system 
(Multichannel Systems Germany, LTD) transforms analog to digital signals on the head stage and sends the data 
(20 KHz) via radiofrequency (at 2.4 GHz) to the main computer, that telemetrically records it using the multi-
channel experimenter software.

Behavioral task: ‘low’ vs. ‘high’ selective attention conditions.  Examining a behavior in distinct 
phases is common in studies of selective attention and specifically in object recognition studies14.

Following the implantation of microelectrodes bilaterally into the Motor Cortex and the Putamen (Fig. 4a), 
we have used a T-maze and selected a relatively simple behavioral task with either ‘low’ or ‘high’ attention condi-
tions. While both conditions require similar body movements (which was the rationale for using a T-maze rather 
than an open box), they are assumed to involve dramatically different neural activity related to selective attention 
(Fig. 4b). A ‘low’ attention condition is defined as when the rat has only one turning option available (from the 
main arm to either zone C or D, see Fig. 4b) in the T-maze while the other arm is blocked. Rats were randomly 
assigned to right or left arms. The rat turning to the target arm is rewarded with 100 mg of cornflake. Rats are 
trained to perform the ‘low’ attention task for five consecutive days (6 trials per day). Thereafter, ‘high’ attention 
condition is introduced: the blockage of the second arm is removed which motivates (i.e. novelty exploration) the 
rat to pay attention to the additional and unfamiliar arm and choose between the familiar versus unfamiliar arms. 
Both arms were equally baited to exclude appetitive motivational imbalance. We have recorded the neural activity 
in both ‘low’ and ‘high’ attention conditions and in synchronization with three behavioral phases: (i) before a 
turn is made into the target arm; (ii) during the turn into the target; and (iii) after the decision has been made to 
choose the familiar or unfamiliar arm. All experiments were videotaped throughout the task, which allowed us to 
synchronize the behavioral performance with neural activity recordings at any chosen timepoint (Supplementary 

Figure 4.  Experimental Setting. (a) A multi-layer electrode array located at: AP: +1.08 mm, LM: ± 2.2 mm, 
VD: −4.6 mm. (b) T-Maze setting. The rat is placed into the main arm (A) of the maze and the video recording 
begins by Ethovision. Next, Ethovision detects entrance to B zone and activates the Multichannel system via 
a costume-made device, to start neural recording. Neural recording system and video are still active as the rat 
turns into one of the two arms of the maze. They remain active until the rat receives its food reward and exists 
the C or D zones.
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Video 1). The trials were videotaped with a color CCTV (WV-CP500(Panasonic camera, with an on-line analysis 
utilizing the Ethovision XT 9.0 software (Nuldus, The Netherlands). Our interfacing costume-made device syn-
chronized the video tracking (i.e. entring to zone B – during phase) and activates the Multichannel, to start neural 
recording, using the multichannel communication and recording system.

Geometrical representation analysis.  We plotted the raw data recordings coming from any pair of elec-
trodes (Fig. 1b) In the plots, the x- and y- axes are displaying the recorded raw data in pico-volts recorded from 
any pair of electrodes.

An axis-aligned ellipse, centered at the origin, with major axis of length 2a and a minor axis of length 2b, is 
defined by the following equation:
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Because x-values (electrode 1) and the y-values (electrode 2) are normally distributed, the left hand side of 
equation (2) actually represents the sum of squares of independent normally distributed data samples. The sum 
of squared Gaussian data points is distributed according to a Chi-Square distribution. A Chi-Square distribution 
is defined in terms of ‘degrees of freedom’, which represents the number of unknowns. In our case there are two 
unknowns, and therefore two degrees of freedom.

Since we calculated the confidence interval, we looked for the probability that is less than or equals to a specific 
value which can be obtained using the cumulative Chi-Square distribution.

For example, using this probability table we can find that in the 2-degrees of freedom case:

< . = − . = .P s( 5 991) 1 0 05 0 95 (3)

Therefore, a 95% confidence interval corresponds to s=5.991. In other words, 95% of the data will fall inside 
the ellipse defined as:
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When the ellipse is not axis-aligned, we need to find the directions in which the 2D data has the largest vari-
ance. The directions in which the data varies the most are defined by the covariance matrix. It is known that the 
direction of the vectors along such a linear transformation are the eigenvectors of the transformation matrix. 
Indeed, the vectors shown by pink and green arrows in Fig. 1b, are the eigenvectors of the covariance matrix of 
the data, whereas the length of the vectors corresponds to the eigenvalues.

To obtain the orientation of the ellipse, we calculated the angle of the largest eigenvector towards the x-axis:

θ = arctanV y
V x
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where V1 is the eigenvector of the covariance matrix that corresponds to the largest eigenvalue.
The major and minor ellipse are as follows:
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In order to characterize the repetitive ellipse shapes, we calculated the covariance matrix of the raw data com-
ing from every pair of electrodes. The covariance of two random variables x and y is calculated by:
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where x is a one electrode voltage array containing 20k samples(n) and y is the same for the second electrode. xi 
and yi are the I’th voltage reading from each electrode, x  and .. are the mean voltage for each electrode for that 
second.

since we are correlating two random variables our covariance matrix is two dimensional and is expressed by:
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We found the Eigen values and vectors of the covariance matrixes. The Eigen values represent the variance of 
the data in the direction of the Eigen vectors. The arc tan of the x and y axes of the big Eigen vector is the orienta-
tion of the ellipse. Using the chi square confidence table, in order to meet 95% confidence level, we multiplied the 
Eigen values by the square root of 5.99. The outcome was the major and minor ellipse axes (Fig. 1b). In blue is a 
scatter plot of the recorded raw data, in red the ellipse shape with 95% confidence. In magenta is the ellipse major 
axis and in green the minor axis

In order to be able to synchronize the shape with behavioral performance, we produced an ellipse shape for 
every second of the behavioral trial.

Collapsing a series of ellipses along a full behavioral trial, we got a pattern of ellipses; every ellipse represents 
the covariance between a pair of electrodes (the example in Supplementary Fig. 1a depicts 6 ellipses of 6 seconds 
of recording each ellipse represents the covariance between the left vs. right Putamen). In order to compare the 
neural activity between two sub-regions, we produced a series of ellipses. The example in Supplementary Fig. 1b, 
depicts a bi-lateral comparison of 8 electrodes from the Putamen. Overall, we calculated the covariance between 
8×8 of electrodes along 6 seconds, yielding 64 ellipses at each time point.

Considering the behavioral nature of the selective attention task, we chose a time sensitivity of 1 sec bins. 
However, the time sensitivity can be adjusted to sub-seconds sensitivity, depending on the behavioral task.

Statistical analysis.  Data was analyzed using one-way ANOVA followed by Post-hoc Tukey tests to com-
pare the task phases (i.e. before, during and after). When examining both task phases and attention conditions 
(i.e. high or low), a two-way ANOVA (2 × 3) followed by Post-hoc Tukey was utilized to compare differences 
between the task phases. A student’s t-test was used as a Post-hoc when comparing two attention conditions. The 
statistical analyses were two-tailed and carried out by using SPSS (IBM, ltd; version 21). Results were considered 
significant when the P-value was less than 0.05. Results are displayed as mean ± S.E.M.
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