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Abstract: The aim of this study was to evaluate the precision, accuracy, practicality, and potential
uses of a PM2.5 miniaturized monitor (MM) in exposure assessment. These monitors (AirBeam,
HabitatMap) were compared with the widely used direct-reading particulate matter monitors
and a gravimetric reference method for PM2.5. Instruments were tested during 20 monitoring
sessions that were subdivided in two different seasons to evaluate the performance of sensors across
various environmental and meteorological conditions. Measurements were performed at an urban
background site in Como, Italy. To evaluate the performance of the instruments, different analyses
were conducted on 8-h averaged PM2.5 concentrations for comparison between direct-reading
monitors and the gravimetric method, and minute-averaged data for comparison between the
direct-reading instruments. A linear regression analysis was performed to evaluate whether the two
measurement methods, when compared, could be considered comparable and/or mutually predictive.
Further, Bland-Altman plots were used to determine whether the methods were characterized
by specific biases. Finally, the correlations between the error associated with the direct-reading
instruments and the meteorological parameters acquired at the sampling point were investigated.
Principal results show a moderate degree of agreement between MMs and the reference method and
a bias that increased with an increase in PM2.5 concentrations.

Keywords: exposure assessment; particulate matter; air pollutant; environmental monitoring;
low cost sensor; performance evaluation; personal exposure

1. Introduction

Presently, particulate matter (PM) is considered as one of the main air pollutants [1], since several
epidemiological and toxicological studies have reported associations between PM and its effects on
human health [2–5]. Thus, air quality monitoring is frequently required by national and international
regulations [6,7].

The inadequacy of traditional fixed air quality stations in assessing human exposure to PM has
emerged in recent years and their main disadvantages are related to: (i) the inability to provide data
at high spatial and temporal resolutions—a limitation essential in urban environments [8,9]; (ii) the
necessity of technical and logistic infrastructures (power supply, protection structures, etc.) [9,10];
and, (iii) the high cost/high level of maintenance [6,11]. Due to these limitations, several portable
monitors have been developed which provide data (i) at high spatial and temporal resolutions; (ii) at
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individual or personal levels; (iii) characterized by real-time responses [12]; and, (iv) provide air
pollutant exposure values for the selected subject. Previous studies have tested several portable
monitors through laboratory tests with standard aerosol, outlining that such monitors are generally
characterized by a worse performance than reference measurement methods [13–19]. Nevertheless,
only few studies aimed at evaluating the performance of these monitors were conducted in field
and in real-world conditions [20–27]. However, studies regarding the evaluation/comparison of
miniaturized monitors (MMs) are few. MMs are characterized by several advantages because they
are (i) compact; (ii) lightweight; (iii) inexpensive; (iv) energy-efficient; (v) easy to use and portable;
and, (vi) are able to provide data at high spatial and temporal resolutions [28–30]. Presently, many
of these monitors are neither well evaluated in the scientific literature nor compared with reference
methods. Therefore, the aim of this study is to evaluate the performance of an MM for direct-reading
(real-time) measurement of PM2.5 (AirBeam, HabitatMap Inc., Brooklyn, NY, USA; particle sensor:
Shinyei PPD60PV—abbreviated ‘AB’). AB was selected among other sensors [28] mainly due to its
practicability (as discussed in Section 4.1), since ABs are intended to be used in a future exposure
assessment study by the authors. However, presently, scientific articles regarding the use of AB are
few: for this reason, it was necessary to deepen the issue of AB’s precision and accuracy and provide
further information in this regard.

In particular, only three studies have been conducted to evaluate accuracy, precision, and reliability
of such miniaturized and low-cost sensors in field and real-world conditions [31–33] (Table 1).
Mukherjee et al. [31] evaluated the performance of the AB over a 12-week period in Cuyama Valley
(California, USA). Contrariwise, Sousan et al. [32] evaluated performances of different consumer air
quality monitors (including AB) in laboratory tests and over a wide range of mass concentrations.
Finally, the multi-year CAIRSENSE project [33] tested different instruments in the field.

Table 1. Principal outcomes from other studies that evaluated AirBeam (AB). n.a.: not available.

Reference MonitoRing
Period

Sampling
Point

Compared
Instruments Performed Analysis Notes

[31] 12 weeks

Cuyama Valley
(California,

USA).
Field test

GRIMM 11-R
Met One (BAM)

Precision
Accuracy

Evaluation of
sampling orientation

Size distribution
Meteorology and size
distribution influence

High precision between couple of
ABs: R2 > 0.95

Low R2 for comparison between
AB and BAM (<0.33)

Instruments were evaluated over
different meteorological

conditions and aerosol properties
Authors used the default

conversion algorithm that was
used to convert counts to PM
concentrations (PM2.5: 0.518 +

0.00274 × particle count − hppcf)

[32] n.a Laboratory test

Personal DataRAM
1500, Thermo

Scientific, Waltham,
MA, USA

Tests performed
across different

occupational settings
Regression analysis

Bias analysis
Precision analysis

R2 from comparison with
comparison instrument: 0.7–0.96

High precision: 2–9%
Precision < 10% for all types of

aerosol used (salt, welding
fume, ARD)

AB is not able to detect mass
concentrations > 200 µg/m3

[33] 2013–2014 USA.
Field test

Met One (BAM)
FEM

Regression analysis
OLS regression R2 ranges from 0.65 and 0.66

It should be noted that studies that evaluated other types of MMs or measurement devices based
on the Shinyei PPD60PV sensor [34,35] are not reported in Table 1, since the aim of this study is to
specifically evaluate the AB monitor and its potential applicability for exposure assessment studies,
wherein the performance depends not only on the kind of sensor but also on other factors, such as the
type of hardware and software system, as well as calibration factors and correction algorithms used.
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2. Materials and Methods

2.1. Study Design

This study consisted of a field campaign carried out to evaluate the performances of co-located
MMs in comparison with a reference (gravimetric) method for PM2.5 and with other widely used
portable PM monitors.

The campaign was performed during two different periods (warm period: 24 July 2017–8 August 2017;
cold period: 10 January 2018–7 February 2018) at an urban background site described elsewhere [20,36].
An urban background site was chosen according to the Guidelines for Air Quality Monitoring Network
provided by the Agency for Environmental Protection and Technical Services [37] to acquire data
representative of the average pollution levels in the study area. Moreover, measurements were
performed across different periods of the year to evaluate the performance of sensors under different
meteorological and environmental conditions. In each season, 8-h long (8 AM to 4 PM) monitoring
sessions (N = 10) were conducted.

The sampling equipment was placed in a dedicated sampling station, which is approximately
1.5 m above the ground, far from obstructions, walls, and pollution sources.

All of the instruments were positioned at about 20 cm from each other to avoid possible
interferences. Clocks for all the instruments were synchronized at the first measurement session
and were checked at the beginning of each 8-h sampling (Figure S1).

To ensure that quality-controlled data were collected, all of the direct-reading instruments were
operated following the manufacturer guidelines and using the factory-supplied calibration factors.
Further, before and after each monitoring session, a zero calibration was performed for Optical Particle
Counters (OPC) and Aerocet with appropriate HEPA absolute filter (rated at 99.96% removal efficiency
for 0.45 mm particles). During monitoring, the functionality of the instruments was checked hourly to
avoid malfunctions or data loss. Immediately before the study, all of the instruments were checked by
factory services to verify their compliance with the product specifications.

2.2. Instruments: PM

To assess the performance of the MM, direct-reading instruments and a reference filter-based
technique were selected for comparison.

Specifically, two Optical Particle Counters were used as direct-reading devices, and specifically
a Handheld 3016 IAQ (abbreviated “OPC”—Lighthouse Worldwide Solutions, Fremont, CA, USA;
counting efficiency: 50% at 0.3 nm; 100% for particles >0.45 nm;) and an Aerocet-831 (abbreviated
“Aerocet”—Aerosol Mass Monitor, Met One Instruments, Inc., Grants Pass, OR, USA; accuracy ±10%
to calibration aerosol). Both of the instruments classify PM into different fractions, including PM2.5,
and they are based on the principle of light scattering while using an active sampling mode with a
flow rate of 2.83 L/min.

The filter-based instrument for the gravimetric determination of PM2.5 (used as reference method
in this study) was an EPA Well Impactor Ninety–Six (“EPA WINS”; Federal Reference Method for PM2.5)
which operates using a sampling pump (Digit ISO, Zambelli, Milan, Italy) at a flow rate of 16.7 L·min−1.
Particles were collected on 47 mm glass fiber filters (Whatman GF/D glass microfiber filters) and mass
concentrations were determined via gravimetric analysis following a standard reference method [38,39].
The weighing filters were conditioned in a controlled environment (temperature: 20.0 ± 1.0 ◦C; relative
humidity (RH): 50 ± 5%) for a minimum of 24-h following which the filters were weighed, before and
after the sampling, with a microbalance (Gibertini Micro1000, Novate, Milan, Italy; readability: 1 µg).
An electrical C-shaped ionizer (HAUG GmbH & Co. KG, Leinfelden—Echterdingen, Germany) was
used to eliminate electrostatic charges from the filter surface. Two laboratory blanks were also weighed
under the same conditions to identify the possible anomalies in the weighing room environment
(temperature and humidity variations). To check the accuracy of the microbalance, certified masses of
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1 and 100 mg were always weighed at the beginning and at the end of each weighing session, allowing
for deviations of ≤3 and 5 µg, respectively, from the true value.

Finally, three ABs (instruments that reflect the MM characteristics reported above) represented the
MMs to be evaluated in this study. The sensor is based on an Arduino board and can detect particles
ranging from 0.5 to 2.5 µm and PM2.5 concentrations up to 400 µg/m3 [32,40]. These monitors are
characterized by reduced dimensions (10.46 cm × 10.03 cm × 4.62 cm), low weight (198 g), and low
costs (about USD 250, according to [31]). The air was drawn through the sensing chamber by means
of an internal fan where an LED light source scattered off particles. The light scatter produced was
then detected and the instrumental signal was converted to a mass concentration value while using
a linear regression model [32]. The acquired data were sent via Bluetooth, approximately once per
second, to an open source Android Application (AirCasting Android app, HabitatMap Inc., Brooklyn,
New York, NY, USA), from which they can be downloaded [41].

2.3. Instruments: Meteorological Data

An external weather station (BABUC-ABC, LSI Lastem, Milan, Italy) was placed at the same
sampling point to characterize the meteorological conditions. In particular, temperature (◦C), RH (%),
atmospheric pressure (hPa), wind intensity (m/s), and wind direction (◦) data were acquired.
The weather station was programmed with an acquisition rate of 1 min and an elaboration rate
of 60 min. The acquired data were processed every hour to provide: (i) hourly averages; (ii) standard
deviations (S.D.); (iii) maximum; (iv) minimum; and, (v) time of maximum and minimum values.
Hourly mean rainfall data were obtained from the nearest monitoring station of the Regional Agency
for Environmental Protection of Lombardy (Como, ARPA—Agenzia Regionale per la Protezione
Ambientale—Villa Gallia) located 2.5 km NW from the sampling point.

2.4. Statistical Analyses and Data Treatment

Statistical analyses were performed while using SPSS Statistics 20.0 software package (IBM,
Armonk, NY, USA). To exclude unrealistic low and high concentration values, all data (except
meteorological data averaged for the 1-h period) were truncated below the 1st percentile and above
the 99th percentile [3]. A p-value lower than 0.05 was considered as statistically significant for all tests.
Descriptive statistics were estimated for PM2.5 concentration outcomes from all instruments and for
meteorological data for the single monitoring sessions, the two seasons, and the entire study period.

The evaluation of the AB by comparison with the reference method (as well as other direct-reading
instruments) was carried out using different tests: (i) precision evaluation (evaluation of uncertainty
between co-located MMs by means of uncertainty analysis and linear regression, according to the
indications summarized by Watson et al. [42]); (ii) comparison with reference gravimetric method
(Mann-Whitney test, Spearman’s correlation (rho); regression analysis according to the indications that
were summarized by Watson et al. [42]); (iii) evaluation of error trends (Bland-Altman plot method;
absolute and relative errors); and, (iv) impact of meteorological variables on measurement errors
(multiple linear regression analysis between AB absolute errors and meteorological parameters; only
independent variables that were found to be statistically significant in the bivariate correlations were
included in each multivariate model).

1-min averaged data were used for comparisons among direct-reading instruments (AB, Aerocet,
OPC) while 8-h averaged values were used for comparisons between direct-reading instruments
and the gravimetric reference method (EPA WINS). Because of the high strength of the relationships
between co-located AB, as described in the Results and Discussion sections, for convenience, the mean
of data for all the ABs was used as a new variable for the statistical analyses. Results regarding each
AB device (AB1, AB2, and AB3) are reported in the supplementary material.

The uncertainty between couple of ABs was calculated following the guidance that was reported
by the EC Working Group [43]. AB data were averaged for 8-h instead of 24-h since the study design
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was based on a period of 8-h. The uncertainty of AB was calculated from the difference of measure
according to Equation (1):

u2
bs =

∑n
i=1 (yi,1 − yi,2 )

2

2n
(1)

Equation (1) Uncertainty formula used in this study. u2
bs represents the uncertainty; yi,1 and yi,2

represent AB measurements averaged for the entire monitoring session period (8-h); n represents the
number of the total measurements considered in the analysis.

Following the guidance report, the uncertainty was determined for the total dataset as well as for
the two datasets that were obtained by splitting the entire dataset according to PM2.5 concentrations:
≥18 µg/m3 and <18 µg/m3. Moreover, in this study, the uncertainty was also calculated separately for
the summer and winter datasets. According to the guidance report, an uncertainty >2.5 µg/m3 must
be considered as an indication of unsuitable performance for one or both of the co-located instruments.

Linear regression was used to evaluate the level of agreement between the two methods and
the reference method was considered as the independent variable while the method to be tested
was the dependent variable. As reported by Watson et al. [42,44], equation parameters (R, slope,
and intercept) can be used as indicators of the comparability and/or predictability between the two
methods. In particular, the two methods can be classified as comparable and mutually predictable (i.e.,
the independent and dependent variables are considered interchangeable) if: (i) slope is equal to 1 ± 3
standard error (s.e.); (ii) intercept is equal to 0 ± 3 s.e.; and, (iii) R > 0.9. If R is >0.9 but the slope and
intercept criteria are not met, the investigated methods can be considered as comparable but only the
dependent variable is predictable from the independent variable. Finally, methods with R < 0.9 are
classified as not comparable.

Additionally, Bland-Altman plots were used to evaluate possible error trends [45,46]. In the
present study, the plots were based on the entire dataset and reported absolute deviation
between measurements and the upper and lower confidence intervals (calculated as the average
difference ± 1.96 S.D. of the differences).

3. Results

3.1. Average PM2.5 Levels and Meteorological Parameters

Repeated 8-h monitoring sessions (N = 20 sessions; >150 h) were conducted at the urban
background station during summer (July 2017–August 2017) and winter (January 2018–February
2018). A total of 20 filter-based samples (N = 19 valid) and N > 7000 were collected from gravimetric
samplers and direct-reading instruments, respectively.

Tables 2 and 3 present the summary statistics of the PM2.5 concentrations and the meteorological
data that were acquired from all instruments during the two monitoring periods.

During the warm period, the mean concentration values (mean ± S.D.) of ABs were similar
(7.1 ± 4.7; 6.5 ± 4.2, and 6.8 ± 4.8 µg/m3, respectively) and comparable to the average OPC
concentration (6.6 ± 4.7 µg/m3) (Table 2). On average, AB data tended to underestimate PM2.5

levels when compared to Aerocet and the reference gravimetric method for PM2.5 (12.3 ± 8.9 and
12.5 ± 7.2 µg/m3, respectively) (Table 2). During the cold period, the average PM2.5 concentrations
were equal to 34.9 ± 29.5, 40.8 ± 32.2, and 37.9 ± 28.5 µg/m3 for AB1, AB2, and AB3, respectively.
Additionally, the AB values were lower than the Aerocet concentrations (50.8 ± 46.5 µg/m3) but higher
with respect to the average value for EPA WINS (22.8 ± 48.3 µg/m3) (Table 2). When considering the
entire dataset, maximum PM2.5 concentrations were reached during the 18th monitoring session (EPA
WINS: 48.3 µg/m3; AB1: 98.1 µg/m3; AB2: 102.7 µg/m3; AB3: 88.0 µg/m3), while the lowest values
were registered during the first summer monitoring session (EPA WINS: 2.2 µg/m3; AB1: 1.3 µg/m3;
AB2: 1.3 µg/m3; AB3: 1.2 µg/m3).
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Table 2. PM2.5 concentrations acquired with different monitoring devices. N: number of data point
used for statistical analysis; Min: minimum; Max: maximum; S.D.: standard deviation.

D
at

a
av

er
ag

ed
fo

r
1-

m
in

PM2.5—Total Summer Dataset (µg/m3)

N Mean Median Min. Max. S.D.

AB 1 3816 7.1 7.2 0.7 17.8 4.7
AB 2 3862 6.5 6.1 0.7 15.6 4.2
AB 3 3259 6.8 6.4 0.6 18.0 4.8

Aerocet 4544 12.3 11.5 0.3 33.9 8.9
OPC 4530 6.6 6.2 0.2 17.3 4.7

PM2.5—Total Winter Dataset (µg/m3)

N Mean Median Min. Max. S.D.

AB 1 3782 34.9 33.3 0.8 104.1 29.5
AB 2 3574 40.8 38.7 0.9 108.9 32.3
AB 3 3833 37.9 42.5 0.7 95.0 28.5

Aerocet 4645 50.8 43.7 0.8 202.6 46.5
OPC 4097 52 40.9 0.8 313.2 50.1

8-
h

da
ta

PM2.5—Total Summer Dataset (µg/m3)

N Mean Median Min. Max. S.D.

AB 1 9 7.0 8.0 1.3 13.2 4.7
AB 2 9 7.2 8.0 1.3 13.0 4.6
AB 3 9 7.0 8.0 1.2 13.3 4.7

Aerocet 9 12.7 14.1 1.4 28.5 9.4
OPC 9 6.8 7.6 0.8 13.8 4.9

EPA WINS 9 12.5 14.8 2.3 21.7 7.2

PM2.5—Total Winter Dataset (µg/m3)

N Mean Median Min. Max. S.D.

AB 1 10 38.1 39.8 5.3 98.1 31.0
AB 2 10 41.4 40.3 4.7 102.7 33.2
AB 3 10 36.1 36.1 5.0 88.0 27.1

Aerocet 10 50.3 47.9 7.0 147.8 41.9
OPC 10 47.8 47.1 0.0 133.9 41.7

EPA WINS 10 22.8 20.5 5.3 48.3 15.8

Table 3. Meteorological parameters at the sampling site during the two monitoring periods. N: number
of data used in statistical analysis; Min: minimum; Max: maximum; S.D.: standard deviation

Meteorological Data—Total Summer Dataset

Mean Median Min. Max. S.D.

ARPA cumulative rainfall (mm) 0.0 0.0 0.0 0.2 0.0
Temperature (◦C) 29.2 29.8 17.1 38.7 5.1

RH (%) 40.7 34.9 16.1 82.6 17.1
Atmospheric pressure (hPa) 1002.6 1002.5 993.9 1009.0 5.0

Wind intensity (m/s) 0.9 0.9 0.1 1.7 0.3
Wind direction (◦) 186.4 198.0 2.0 267.0 64.3

Meteorological Data—Total Winter Dataset

Mean Median Min. Max. S.D.

ARPA cumulative rainfall (mm) 0.0 0.0 0.0 0.0 0.0
Temperature (◦C) 8.0 8.8 −0.9 14.0 3.2

RH (%) 67.8 72.4 23.9 99.9 21.1
Atmospheric pressure (hPa) 1005.4 1003.4 992.6 1022.3 8.6

Wind intensity (m/s) 39.5 0.5 0.0 229.0 75.4
Wind direction (◦) 145.1 173.0 0.0 249.0 88.5
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The warm period was characterized by low RH (mean: 40.7%) and by high temperature (mean:
29.2 ◦C; min.: 17.1 ◦C; max.: 39.7 ◦C). Typical winter meteorological parameters were found during
the cold period. The average RH was equal to 67.8%, while the temperature ranged from −0.9 ◦C
to 14.0 ◦C (mean: 7.7 ◦C). The sampling site was characterized by generally low wind speeds (also
reported in a previous study carried out in the same area [36]), mainly because of the sampling location
(approximately 1.8 km from the banks of Lake Como) and the local topographic scenario (with moraine
hills which surrounded the area). During the warm period, the wind intensity was <1.5 m/s in 96%
of the cases (and <1 m/s in 62.7% of the cases), while during the cold period, the wind speed was
<1.5 in 70.6% of the cases. Wind blew principally from S during summer and from SW during winter
(Figures S2 and S3).

3.2. Precision Evaluation: Comparison among AB Copies

As previously stated, linear regression analyses were carried out on the total dataset with 1-min
averaged values, and regression parameters were used as indicators of precision of co-located ABs
(Table 4).

Table 4. Regression parameters between AB (data averaged on a 1-min basis). N: number of data;
R: Pearson correlation coefficient; p: significance; m: slope; q: intercept; SE: standard error. Regression
parameters that did not meet the Watson et al. criteria are marked in bold while values that met these
criteria are underlined.

Instrument
Compared

Regression Model Slope Intercept

N R R2 P m SE p q SE p

AB1 vs. AB2 6188 0.995 0.990 <0.001 0.978 0.001 <0.001 0.018 0.001 <0.001
AB1 vs. AB3 5862 0.994 0.988 <0.001 1.004 0.001 <0.001 0.004 0.002 0.037
AB2 vs. AB3 5761 0.995 0.990 <0.001 1.027 0.001 <0.001 −0.011 0.002 <0.001

AB1 vs. AB2 Comparable and mutually predictable: NO
Comparable but not mutually predictable: YESAB1 vs. AB3

AB2 vs. AB3

As reported in Table 4, R2 values were always very high (>0.98). Nevertheless, the tested
instruments can be classified as comparable but not mutually predictable, because of non-compliance
with the slope and intercept criteria with regard to the Watson et al. approach [42,44].

Additionally, the absolute error (defined as the difference between tested and reference
measurement) and relative error (absolute error divided by reference measurement) between the
ABs were evaluated [47]. The mean absolute error between the three ABs was 5.7 µg/m3, while the
relative error was 9% (Table S1).

Subsequently, the uncertainty between pairs of co-located AB was calculated following the
guidance for demonstration of equivalence [43] and it is presented in Table 5. Uncertainty was
calculated for the total dataset as well as the four subsets (splitting the total dataset a function of
PM2.5 levels and seasons). 8-h averaged values were used for this analysis. As reported in Table 5,
the uncertainty was higher than 2.5 µg/m3 in the case of the total database and for winter and
high-concentration (i.e., >18 µg/m3) datasets, thus, indicating unsuitable performances of one or both
the co-located instruments. Contrariwise, the uncertainty was lower than 2.5 µg/m3 when considering
the summer and low-concentration (i.e., <18 µg/m3) datasets, thus, indicating better performance
under these conditions. Therefore, this analysis outlined the potential presence of seasonal and
proportional biases that must be verified.
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Table 5. Results of uncertainty analysis conducted between couple of co-located instruments.
High-concentration database refers to particulate matter2.5 (PM2.5) concentrations ≥18 µg/m3 while
the low-concentration database refers to PM2.5 concentrations <18 µg/m3. N: number of sessions
considered in the analysis. In bold and underline are marked results that are not in agreement with the
criterion followed in this test (>2.5 µg/m3).

AB1-AB2 (µg/m3) AB1-AB3 (µg/m3) AB2-AB3 (µg/m3)

Total database (N: 20) 2.58 2.80 4.25
High concentration (>18 µg/m3) (N: 6) 4.02 4.39 7.71
Low concentration (<18 µg/m3) (N: 14) 1.60 1.72 0.60

Summer (N: 10) 0.32 0.27 0.29
Winter (N: 10) 3.63 3.95 6.01

For simplicity and considering the substantial level of agreement as outlined in the previous
evaluations, all further statistical analyses were carried out with the variable ABx, i.e., the mean of the
data for the three co-located ABs. Analysis for each AB is reported in the supplementary material.

3.3. Accuracy: Comparison with Reference Methods

Despite the low number of sampling sessions, the non-parametric Mann-Whitney test was
performed as the first analysis to assess the differences between two independent groups of a continuous
variable. A non-parametric test was chosen as it was verified that the AB concentration data (as well as
in the case of Aerocet and OPC) were not normally distributed (Kolmogrov-Smirnov test).

In this study, the concentration data obtained from all direct-reading instruments in each session
were averaged on an 8-h basis and compared with the gravimetric PM2.5 concentrations. As reported in
Table S2, the obtained results clearly show statistically non-significant differences between the median
concentrations of all direct-reading devices and the gravimetric method.

Table 6 (and Table S3) shows the correlation coefficients between the direct-reading monitors (ABx,
Aerocet, and OPC–8-h averaged data) and the gravimetric method EPA WINS. The results revealed
high correlation values between ABx and the gravimetric methods (rho = 0.916) and between ABx
and the other direct-reading instruments (rho = 0.991 and 0.932 for Aerocet and OPC, respectively)
(Table 6).

Table 6. Correlations between all instruments (8-h averaged data). All the correlations are significant
at 0.001 level and results are based on 19 monitoring sessions. Spearman’s rank order correlation (rho)
is reported in the table.

ABx Aerocet OPC EPA WINS

ABx --- 0.991 0.932 0.916
Aerocet --- --- 0.940 0.932

OPC --- --- --- 0.821
EPA WINS --- --- --- ---

Correlations between direct-reading instruments were also performed on 1-min averaged data
(Tables 7 and S4), and, as expected, ABx was found to be highly correlated with the other direct-reading
devices (ABx vs. Aerocet: 0.982 (rho); ABx vs. OPC: 0.987 (rho)).

Table 7. Correlations between direct-reading instruments (1-min average). All correlations are
significant at 0.001 level. Spearman’s rank order correlation (rho) is reported in the table.

ABx Aerocet OPC

ABx --- 0.982 (N = 9009) 0.987 (N = 8467)
Aerocet --- --- 0.989 (N = 8429)

OPC --- --- ---
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To assess the level of agreement between direct-reading instruments and the gravimetric
method, a linear regression analysis was performed on the entire dataset, while considering ABx,
Aerocet, and OPC concentrations as the dependent variable (y) and the reference gravimetric method
concentrations as the independent variable (x). Table 8 reports the regression parameters between ABx,
Aerocet, and OPC (averaged on 8-h basis) and the gravimetric method EPA WINS. Results concerning
each AB are shown in the Supplementary Material (Table S5 and Figure S4).

Table 8. Regression parameters between direct-reading instruments (8-h averaged data) and the
gravimetric method. N: number of data; R: Pearson correlation coefficient; p: significance; m: slope;
q: intercept; SE: standard error.

Instrument Compared
Regression Model Slope Intercept

N R R2 p m SE p q SE p

ABx vs. EPA WINS 9 0.909 0.826 <0.001 1.849 0.206 <0.001 −9.522 4.543 0.051
Aerocet vs. EPA WINS 9 0.899 0.808 <0.001 2.428 0.287 <0.001 −11.042 6.336 0.099

OPC vs. EPA WINS 9 0.877 0.769 <0.001 2.397 0.319 <0.001 −14.593 7.059 0.054

Comparable and Mutually Predictable Comparable But Not Mutually Predictable

ABx vs. EPA WINS NO YES
Aerocet vs. EPA WINS NO NO

OPC vs. EPA WINS NO NO

As reported in Table 8, the highest R2 value was reached between ABx and EPA WINS (R2: 0.826),
while R2 for Aerocet and OPC were slightly lower (0.808 and 0.769, respectively). Additionally,
to evaluate the comparability between the two methods, the indications that were summarized by
Watson et al. [42] were followed. Evaluating these criteria, it is clear that Aerocet and OCP could not
be considered mutually predictable and comparable with respect to the reference method, because
slope and intercept criteria were not met and R values were always <0.9. Contrariwise, ABx can be
considered as comparable but not mutually predictable with respect to EPA WINS because R met the
criteria reported above (which does not occur for slope and intercept parameters). The regression
parameters between the direct-reading methods are reported in Tables 9 and S6.

Table 9. Regression parameters between direct-reading instruments (1-min averaged data). N: number
of data; R: Pearson correlation coefficient; p: significance; m: slope; q: intercept; SE: standard error.

Instrument Compared
Regression Model Slope Intercept

R R2 p m SE p q SE p

Abx vs. Aerocet 0.928 0.861 <0.001 0.644 0.003 <0.001 2.167 0.134 <0.001
Abx vs. OPC 0.876 0.767 <0.001 0.575 0.003 <0.001 6.632 0.170 <0.001

Comparable and Mutually Predictable Comparable But Not Mutually Predictable

ABx vs. Aerocet NO YES
ABx vs. OPC NO NO

Despite the reduced sample size (9–10 samples per season), the linear regression analysis was
also performed separately during summer and winter to evaluate the concordance between the
direct-reading monitors and the gravimetric method across different climatic conditions and PM2.5

concentrations. The results (Tables 10 and S7) indicate that during summer and at lower concentrations,
R2 for all comparison analyses were higher than the R2 outcomes for winter comparisons, thus,
confirming the indication of a better performance under these conditions, as outlined by the uncertainty
analysis (Table 5).
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Table 10. Regression parameters between direct-reading instruments and EPA WINS (8-h averaged
data). Regression parameters were calculated and reported for the summer and winter datasets.
N: number of data; R: Pearson correlation coefficient; p: significance; m: slope; q: intercept;
SE: standard error.

Summer Database

Instrument Compared
Regression Model Slope Intercept

N R R2 p m SE p q SE p

ABx vs. EPA WINS 9 0.984 0.968 <0.001 0.629 0.043 <0.001 −0.801 0.619 0.237
Aerocet vs. EPA WINS 9 0.940 0.884 <0.001 1.222 0.168 <0.001 −2.582 2.395 0.317

OPC vs. EPA WINS 9 0.969 0.939 <0.001 0.660 0.063 <0.001 −1.429 0.905 0.159

Winter Database

Instrument Compared
Regression Model Slope Intercept

N R R2 p m SE p q SE p

Abx vs. EPA WINS 10 0.943 0.889 <0.001 1.808 0.225 <0.001 −2.670 6.129 0.675
Aerocet vs. EPA WINS 10 0.901 0.812 <0.001 2.380 0.406 <0.001 −3.975 11.094 0.729

OPC vs. EPA WINS 10 0.900 0.810 <0.001 2.369 0.405 <0.001 −6.212 11.059 0.590

3.4. Accuracy: Measurement Error Trends

To better evaluate the possible errors and error trends, instruments were also analyzed by
using the Bland-Altman plot method [45,46]. The single plots for each AB are reported in Figure S5.
The results revealed good agreement between the two techniques, especially for lower concentrations
(i.e., <20 µg/m3); however, they also showed an error that tended to increase with increasing
PM2.5 concentrations.

Therefore, to evaluate whether the error increase was influenced by an increase in PM
concentrations and not by an instrument drift over time, the Bland-Altman plot analysis was carried out
while considering the differences between all direct-reading instruments (Figure 1). The Bland-Altman
plot (Figure 1) clearly shows that all the direct-reading instruments were characterized by the same
trend (increase in the absolute error with increase in PM2.5 concentrations).

Figure 1. Bland-Altman plot for different instruments (grey: Aerocet; white: Optical Particle Counters
(OPC); black: ABx). The mean concentrations between the gravimetric reference method (EPA WINS)
and the compared instrument are reported on the x-axis while on the y-axis the differences between
methods are shown (8-h average). The dotted line represents the perfect agreement between the two
instruments (absolute deviation: 0).
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Regarding the relative error analysis between direct-reading instruments and the gravimetric
method, as reported in Table 11, the ABx relative error for summer was very similar to the summer
OPC relative error, but five times higher than relative error that was calculated between Aerocet and
EPA WINS. Contrariwise, during winter, the average relative error calculated for AB was equal to half
the relative error calculated for the other methods (OPC and Aerocet). When considering each single
monitoring session (Table S8), the ABx relative error was lower than the OPC relative error in 66.6% of
the cases and lower than the Aerocet relative error in 52.6% of the cases.

Similar results were obtained with the absolute error analysis (Table 11). Additionally, the absolute
error for ABx during summer differed by less than 1 µg/m3 from the OPC absolute error but was five
times higher than the Aerocet error. During winter, the average AB absolute error was equal to half of
the absolute errors for OPC and Aerocet. While considering each single session (Table S9), the ABx
absolute error was lower than the OPC error in 68.4% of the cases and lower than Aerocet absolute
error in 52.6% of the cases.

Relative and absolute errors (Table 11) were negative during summer and positive during the
winter sessions, indicating an underestimation and overestimation of concentration data during
summer and winter, respectively.

Table 11. Relative and absolute errors (mean ± S.D.; median, minimum, maximum) calculated between
direct-reading instruments and the gravimetric method. The error is reported considering the mean
values during summer and winter monitoring periods as well as the entire dataset.

ABx Aerocet OPC

Mean
(±S.D.)

Median
(Min.; Max.)

Mean
(±S.D.)

Median
(Min.; Max.)

Mean
(±S.D.)

Median
(Min.; Max.)

R
el

at
iv

e
Er

ro
r

(%
)

Total database
9 −27 55 38 23 −27

(±64) (−70; 122) (±82) (−67; 245) (±98) (−100; 204)

Summer database
−46 −45 −10 −6 −51 −49

(±10) (−70; −32) (±29) (−67; 50) (±14) (−81; −27)

Winter database
58 86 113 121 90 122

(±51) (−21; 122) (±69) (32; 245) (±93) (−100; 204)

A
bs

ol
ut

e
er

ro
r

(µ
g/

m
3 )

Total database
5.7 −0.8 14.6 4.0 10.5 −1.3

(±15.5) (−8.8; 47.9) (±24.0) (−2.9; 99.4) (±24.8) (−10.5; 85.6)

Summer database
−5.5 −6.1 0.2 −0.6 −5.7 −5.2

(±2.7) (−8.8; −0.8) (±3.4) (−2.8; 9.5) (±2.6) (−9.3; −1.3)

Winter database
15.7 12.1 27.5 24.7 25.0 20.5

(±15.4) (−2.2; 47.9) (±27.0) (1.7; 99.4) (±26.8) (−10.5; 85.6)

To evaluate the relative error trend and to assess the relationship between the AB error and
instrument drifts, the relative errors of all the selected direct-reading instruments were plotted vs. time
(Figure 2). Figure 2 reports the ascending order of the monitoring sessions on the abscissa x and the
relative error (%) between the direct-reading instrument and the gravimetric methods on the ordinate.
The figure clearly indicates that summer data are characterized by a lower relative error and lower
instrumental differences than the winter data. Further, the error trend was similar for all of the tested
instruments, suggesting the lack of instrument calibration drifts.

Finally, when considering the seasonal averaged ratio between the direct-reading instruments
and the gravimetric method, different correction factors have been proposed for ABs, Aerocet,
and OPC. In particular, the summer correction factors (calculated as the ratio between the reference
PM concentrations and those measured by direct-reading instruments [20]) for ABs, Aerocet, and OPC
are 0.54, 0.90, and 0.49 for summer and 1.58, 2.13, and 2.11 for winter, respectively.
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Figure 2. Relative error trend. The abscissa axis x reports the number of monitoring sessions while the
ordinate axis y shows the relative error for the different instruments (grey: Aerocet; white: OPC; black:
mean of ABx) as compared to the gold standard (gravimetric method).

3.5. Error and Meteorological Parameters

Finally, to evaluate whether meteorological parameters could affect the performances of ABs
and other devices, a correlation analysis between errors (both absolute and relative errors) and
meteorological variables (temperature, atmospheric pressure, wind intensity and direction) was
performed. Rainfall has not been considered because it was absent during the entire monitoring period.
As reported in Table 12, absolute errors between ABx (and also between the other direct-reading
methods) and the gravimetric method were positively and highly correlated with RH and wind
intensity and negatively correlated with wind direction. A moderate and negative correlation was
also found with temperature. Contrariwise, the relative error was, in general, less correlated than the
absolute error with the same meteorological parameters.

Table 12. Correlations between absolute and relative errors (direct-reading instruments vs. EPA WINS)
and meteorological parameters (RH: relative humidity; Atm. pressure: atmospheric pressure; Wind
int.: wind intensity; Wind dir.: wind direction). ** Correlation is significant at the 0.01 level (2-tailed);
* Correlation is significant at the 0.05 level (2-tailed).

Temperature
(◦C)

RH
(%)

Atm.Pressure
(hPa)

Wind Int.
(m/s)

Wind Dir.
(◦)

Absolute error
ABx Pearson correlation −0.495 * 0.690 ** 0.317 0.749 ** −0.788 **

Aerocet Pearson correlation −0.584 * 0.685 ** 0.314 0.726 ** −0.778 **
OPC Pearson correlation −0.568 * 0.734 ** 0.353 0.775 ** −0.807 **

Relative error
ABx Pearson correlation −0.400 0.339 -0.231 0.431 −0.453

Aerocet Pearson correlation −0.710 ** 0.488 * -0.113 0.436 −0.492 *
OPC Pearson correlation −0.639 ** 0.541 * -0.115 0.477 * −0.471 *

Moreover, despite the low number of acquired samples and variables, a multiple linear regression
analysis was performed between ABx absolute error (compared with the gravimetric method) and
meteorological parameters that were measured at the sampling point (Table 13). In the model,
the absolute error was included as the dependent variable and meteorological parameters (temperature,
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RH, atmospheric pressure, wind intensity, and wind direction) as predictors. Only meteorological
variables that were found to be statistically significant in the bivariate correlation analysis (at a
p-value <0.05) were considered in the multiple regression model. The results from this analysis must
be carefully evaluated, mainly due to the low sample number and variables considered (N = 19).
However, preliminary results, as reported in Table 13, indicate that RH exhibited the main influence
on ABx absolute error.

Table 13. Summary of the multiple regression model results. Both unstandardized (B) and standardized
(Beta) coefficients and the standard error (SE) for each independent variable, the model statistical
significance (Sig.), and the upper and lower 95% confidence intervals (95% C.I.) for beta are reported.
Other parameters are reported as indicators of the regression model: R, R2, adjusted R2 (Adj. R2),
standard error (Std. Error), and p value (p). * Variable is significant at the 0.05 level (2-tailed).

ABx (µg/m3)

Independent
Variable (Predictors)

Unstandardized Coefficient Standardized Coefficient Sig. 95% C.I.

B SE Beta Lower Upper

(Constant) 4.406 19.285 0.823 −37.256 46.069

Temperature (◦C) 0.052 0.225 0.046 0.820 −0.433 0.538

RH (%) 0.312 0.136 0.469 * 0.039 0.018 0.607

Wind intensity (m/s) 0.056 0.075 0.255 0.466 −0.105 0.217

Wind direction (◦) −0.070 0.067 −0.365 0.311 −0.215 0.074

Regression Model Statistics

R R2 Adj. R2 Std. Error p
0.883 0.780 0.712 6.77141 <0.001

4. Discussion

In this study, PM2.5 MMs were tested at an urban background station to evaluate their performance
against the reference gravimetric method for PM2.5 (EPA WINS) and other common and widely used
portable direct-reading instruments (Aerocet and OPC).

First, the tested ABs were mutually compared by linear regression analyses between the co-located
instruments (Table 4). As reported in other studies, results in this study showed good precision among
ABs throughout the entire monitoring period [31]. In particular, different AB copies can be classified
as comparable to each other, even if not being characterized by mutual predictability. ABs were also
comparable but not mutually predictable when compared to other traditionally used portable PM
monitors (Aerocet). The uncertainty between couples of ABs was moderate during the entire study
period (Table 5), even if not fully compliant with the uncertainty criterion proposed by the EC working
group [43] (i.e., uncertainty <2.5 µg/m3). Overall, these results show that ABs are characterized by
good precision; however, some factors can interfere in defining measurement error that can potentially
affect the precision and accuracy of the results (i.e., RH and PM2.5 concentration).

It was observed that MMs tended to overestimate EPA WINS concentrations during winter and
underestimate the reference concentrations during summer (Table 2, Figure 2). The regression analysis
performed on the total dataset (Table 8) showed a regression slope significantly different from 1 with
good R2 values, indicating the presence of a proportional bias. Such bias could be related to differences
in the PM that were monitored at the sampling point with respect to the standard particulate used for
instrument calibration [21]. It is well known that the factory calibration factor of a photometer cannot
be used to obtain accurate data when there are marked differences in terms of shape, morphologies,
size-distribution, chemical composition, and reflectance properties between the analyzed particulate
and the standard dust. As reported in different studies that were conducted in the study area [20,36,48],
the local urban particulate is typically less dense than the standard dust, which could result in a
significant overestimation of PM concentrations by optical particle counter and nephelometers. This
can explain the underestimation of average concentrations by a factor of about 0.5 in summer and



Sensors 2018, 18, 3089 14 of 21

an overestimation of mean concentrations by a factor of three during winter. These results are in
accordance with those reported by Mukherjee [31] which showed that AB tended to underestimate or
overestimate PM2.5 concentrations depending on the aerodynamic diameters of the particles. Indeed,
it was shown that, with larger particles, AB seemed to underestimate PM2.5 concentrations whereas
when the smallest fraction was predominant, PM concentrations tended to be overestimated. This is
the case for the winter size-distribution at the sampling site, which is characterized by a sharp increase
in the accumulation-mode peak during the cold season [36].

Further, it should be noted that all the instruments used in the field campaign (AB, OPC,
and Aerocet) showed the same error trend over time (Figures 1 and 2) and were characterized by a
high overestimation error during winter and a slight underestimation error during summer when
PM2.5 concentrations were lower. Thus, it is reasonable to exclude the presence of an instruments drift
over time and to assume the presence of a seasonal bias.

The regression analysis between EPA WINS and the mean of AB concentrations showed a high R2

value (R2 > 0.80), which is in agreement with the R2 value calculated by manufacturers for regression
between ABs and the gravimetric method and used as reference method [49] (R2 = 0.70). However,
as expected, ABs (like other instruments tested in this study (Aerocet and OPC) cannot be classified
as mutually predictable with respect to the gravimetric method in the concentration range under
investigation (2.3–48.3 µg/m3). However, ABx (considered as the average of ABs) can be considered to
be comparable to the gravimetric method (unlike the other direct-reading instruments tested).

Also, the Bland-Altman plot analysis showed a negative error trend that increased with
increasing PM2.5 concentrations (especially at concentrations >25 µg/m3) for all instruments (Figure 1).
The value of 25 µg/m3 can be considered as a threshold above which the performance of instruments
significantly decreases in accordance with the results that were reported by the manufacturers [49] and
elsewhere [34]. However, it should be noted that Johnson et al. [34]. evaluated the same sensor that
was used in the ABs and indicated a suitability for PM concentrations <50 µg/m3. Therefore, while
the level of 25 µg/m3 cannot be used as a clear demarcation value in terms of sensor performance,
it should be remembered that the average annual concentrations of PM2.5 across Europe are usually
lower than this threshold [50] and can be overcome in particular microenvironments [51–53], especially
during short-term periods [48].

The error associated with direct-reading methods could be reduced by using appropriate
calibration factors. As reported in several studies, calibration factors can be calculated as the
ratio between the reference PM concentrations and those that were measured by direct-reading
instruments [20]. In this study, calibration factors were calculated separately for the two monitoring
seasons (and as a function of PM2.5 concentration), since the performance of ABs varied significantly
with season. Once corrected on the basis of EPA WINS PM2.5 concentrations, AB performances were
significantly improved (R2 for comparison: AB1 vs. EPA WINS: 0.82; AB2 vs. EPA WINS: 0.82; AB3 vs.
EPA WINS: 0.83) and all the ABs could be considered comparable to the gravimetric method. Therefore,
correction factors should be used to obtain reliable concentrations by direct-reading instruments.
As reported by Mukherjee et al. [31], the bias between ABs and the comparison instruments depended
on the size distribution and chemical composition of the aerosol. It is important to note that the
response of optical-based sensors is a function of aerosol properties at the specific sampling point
(such as size distribution and chemical composition) [34] and the relationship between light scattered
by the instrument and PM concentrations is set a priori by manufacturers using well characterized
standard dust. The challenge with optical measurement techniques arises when the instruments
measure PM that differs from the PM used for instrument calibration [21]. In this study, the correction
factor was calculated for every comparison session and reported as a summer/winter mean correction
factor. However, it is important to state that it must be calculated in a specific way (depending on the
sampling period and location) for different monitoring sessions, and, for this reason, it should not be
used in other contexts. Furthermore, in the case the correction factor is not calculated and not taken
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into account, it should be considered that the introduced error may not be negligible (as in the case of
direct-reading error reported in this study).

The influence of RH on the instrument performance and, in particular, on the light scattering
methods, has already been analyzed in previous studies [20,54]. According to these investigations,
a moderate high correlation (mean between AB: 0.589) between the (absolute) measurement error and
RH was found and confirmed by multivariate analysis (Table 13). The results from the multivariate
analysis confirmed the findings of the univariate analyses, namely, a significant relationship between
absolute ABx error and RH, which was found to explain about 46% of the total variability in the
multivariate model.

Some studies have reported the influence of RH on different particle properties, such as: (i) particle
volume; (ii) shape; (iii) refractive index; and, consequently, (iv) light scattering properties [54,55].
Additionally, the AB manufacturer [49] indicates that the RH (>80%) has a negative effect on the
accuracy of instrumental responses because aerosols take on water and become more reflective at high
RH conditions. As reported in Figure S6–S10, the effects of RH on absolute and relative errors also
seem to occur at lower RH values than those that were proposed by the manufacturer, especially in
the presence of high PM concentrations (i.e., >25 µg/m3). Lower errors seem to occur at RH values
below 50% even when the PM concentrations are generally lower. Effects of RH on performance
of low-cost PM sensors are reported in a recent study [56], and the results indicate that RH may
also cause condensation on electrical components, leading to a resistive bridge across components.
As reported above, the performance of AB was worst during winter when the average RH measured at
the sampling point was 71.5% and better during the summer session which was characterized by lower
RH (40.7% on average). The combined effect of RH and PM concentrations as a factor that focuses on
the measurement error should be further explored in future studies to expand on case studies of data
measured in the field under different conditions.

This study was specifically conducted during two different seasons that were characterized by
different environmental conditions (PM concentrations, temperature, RH, etc.) to evaluate instrument
performance across several conditions. The error trend that was reported in this study could not be
reasonably related to a single environmental factor but was related to the total contribution by different
conditions, such as the increase in PM concentrations and an increase in RH. Therefore, it would be
useful to perform laboratory tests in future studies to evaluate the effects of single potential error
determinants on the error trend.

4.1. Practicality

The present study was conducted with the primary aim of evaluating the performance of ABs
and their potential applicability in exposure assessment studies. It should be noted that despite
these devices not being intended for use in techniques equivalent to gravimetric methods, these
devices were compared to a reference filter-based method and to other direct-reading instruments
that are widely used in the scientific literature and already evaluated elsewhere. For example,
Spinazzè et al. [20] recently assessed the performance of different direct-reading methods (Aerocet
and OPC) and gravimetric instruments at the same sampling point used in our study. As reported
by Spinazzè et al. [20], portable direct-reading methods are easy to operate and are able to provide
data at high temporal resolutions. Contrariwise, filter-based methods are generally not able to provide
information at high spatial and temporal resolutions, which is an essential feature for monitoring
environments characterized by high variability in terms of pollutant concentrations, such as urban
environments [10]. The AB device tested in our investigation is smaller than the other widely used
direct-reading instruments commercially available, cheaper than the other investigated devices, easy
to transport and user-friendly, and able to provide additional data on temperature and RH. Moreover,
it is associated with an Android application that affords an instant view of the concentration data
and a facility of data-interpretation, even to the general population. Moreover, it is also possible to
detect PM2.5 maps and graphs in real-time directly from the smartphone. Finally, despite the fact
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that the AB cannot be considered to be mutually predictable, but only comparable with respect to the
reference method and that its performance seems to be influenced by different variables (RH and PM
concentrations), we found a similar performance trend across different direct-reading instruments,
such as Aerocet and OPCs, already widely used in human exposure assessment studies [53,56–63].

In addition to poor agreement with the reference method, another disadvantage that is related
to the use of ABs is due to the data communication protocol. As mentioned above, data acquired
by AB are sent to an Android application via Bluetooth and then stored. As can be seen in Table 2,
the monitoring time (reported as the number of data points used during statistical analysis) is different
for the three ABs because during the monitoring session the Bluetooth connection between AB and
mobile phone could be lost.

To summarize, despite the disadvantages that are reported above and mainly related to the
presence of a measure bias and to connection loss, AB could be used, with some precaution (i.e.,
application of a proper correction factor, management of potential outliers in the data series), across
different and several applications. As reported by other authors [31], such sensors can be useful
to assess the short-term changes in aerosol environment due to their acquisition rate and high
response. Moreover, like other MMs, AB can potentially: (i) provide real-time data at high spatial
and temporal resolutions; (ii) collect data across long or short-term campaigns and as stationary or
mobile devices; (iii) collect data across different environments, both indoors and outdoors; (iv) be used
for the evaluation of PM hot-spots; (v) be used as a support to fixed air quality monitoring stations;
(vi) collect data at personal or individual levels, thus, enabling the subject to carry out the measurement
themselves; and, (vii) provide pollutant data regarding community/individual exposure, or regarding
a selected category of subjects (such as workers or susceptible subjects) [28,33].

Regarding the potential use in human exposure assessment studies, AB and MMs, in general,
potentially have the ability to improve knowledge and become a novel way for human exposure
assessment due to the advantages reported above, low costs, and their ability to measure pollutants
across different environments, scenarios, and applications. One such application concerns the new
paradigm of “citizen science” (the pros and cons of which should be carefully evaluated) [28] being
applied by the AirBeam—Aircasting application (http://aircasting.org).

4.2. Strengths and Limitations of The Study

The main limitation of this study is related to the low number of sampling sessions (N = 20) over
the monitoring period, which are further reduced if the two different monitoring sub-periods (warm
and cold period), specifically identified to evaluate the performance of MMs across different climatic
conditions and at different PM2.5 concentration levels, are considered.

Additionally, the portable instruments were evaluated only at a fixed site station and not under
their normal use conditions, namely, as personal devices. A further development of this study will
include the evaluation of AB performance as compared to other portable monitors for personal
exposure measurement applications. Moreover, the monitoring sessions were carried out only at one
urban background site, not allowing the assessment of possible spatial variations in the monitoring
area. Further, despite reference methods and accepted standard practices were adopted for gravimetric
sampling, the adoption of further precautions, and technical measures (i.e., field blanks, duplicated
measurements, etc.) would have allowed for further control and reduction of the level of variability
of the PM2.5 gravimetric measurements. Finally, the changes in the AB performances were assessed
only within a relatively restricted concentration range (2.3–48.3 µg/m3), even though this is typical of
a medium-sized provincial town, such as Como. In this context, the authors think that evaluations
conducted at higher PM concentrations could be relevant because, as reported by the manufacturer [49],
the relation between AB and the reference methods should become increasingly non-linear above
100 µg/m3 [34]. Despite the results of different studies for PM sensors are quite difficult to compare
among each other (as the responses of these sensors may be influenced by aerosol composition),
it should be noted that a recent study that was performed in the framework of AQ-SPEC project by

http://aircasting.org
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Feinberg et al., 2018 [64], concerning the long-term evaluation of air sensors, outlined that AB is one
of the sensors with the highest correlation with reference measurements, despite they may have a
certain level of measurement noise and a potential level of interference related to the presence of
relative humidity. Anyhow, further studies for PM miniaturized sensors are needed to in deep evaluate
their performance for different air pollutant concentration ranges and aerosol characteristics, both in
(i) long-term, in-field studies [64] and under controlled conditions [65].

Therefore, additional studies covering a wider range of PM2.5 concentrations and assessing further
influencing factors (e.g., particles size and shape, particles refractive index, etc.) on measurement
errors are suggested and encouraged.

Despite the aforementioned limitations, one of the main advantages of the present study is that,
to the knowledge of the authors, this is one of the first comparison studies on ABs conducted in
real environmental conditions and not only through laboratory tests. The possibility to quantify the
instrument performances under real-world conditions is indeed a key highlight of this study [31]
because, in general, laboratory tests can hardly reproduce an aerosol mixture matching the complex
composition and variability of particles in real environments [34]. However, field tests can provide a
greater variation of conditions in contrast to the controlled conditions that were found in laboratory
tests [66].

5. Conclusions

In conclusion, despite a moderate level of agreement between AB and the gravimetric method,
especially at lower concentrations, relevant bias was found across the entire sampling period, indicating
the necessity to develop standardized protocols and harmonize performance evaluation criteria for
these devices. Moreover, it is important to interpret data outcomes from AB (and, in general, from
optical particle counters and photometers) carefully, especially if appropriate calibration factors are
not used. However, that very similar trends in performances were found to those of other widely used
direct-reading instruments (Aerocet and OPC), should be underlined; although, all instruments that
were compared are based on the same measurement technique.

Future developments should aim at evaluation of AB, and, in general, of MMs, across
different environments that are characterized by different PM concentrations and chemical-physical
characteristics. Furthermore, the influences of meteorological and other environmental parameters
should be better evaluated. Also, AB should be evaluated over a longer time-period and under the same
conditions in which the instruments are actually used: as personal and mobile monitors. Evaluation of
measurement instruments in real-word conditions and during real operation procedures can provide
more information regarding the performance of instruments and their usability. In this regard, other
tests should be performed under real use conditions to evaluate the response of subjects to the use of
the instrument itself (in terms of portability, ease of use, interference with normal activities, etc.).

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/9/3089/s1,
Figure S1: Setup of the sampling equipment and relative position (view from the above). Figure S2: Wind
direction (◦) and intensity (m/s) during warm and cold periods. Figure S3: Maps of wind direction and intensity
at the sampling point during cold and warm periods. Red areas correspond to wind intensity ≥1.50 m/s, yellow
areas to wind intensity between 1 and 1.5 m/s, green areas between 0.5 and 1 m/s, and blue to wind intensity
between 0 and 0.5 m/s. Table S1: Error between ABs - descriptive statistic. S.D.: standard deviation; Max.:
maximum; Min.: minimum; C.I.: confidence interval. Table S2: Mann-Whitney test statistics. Z: Mann-Whitney
test statistics; Asymp. Sig: significance. Table S3: Correlations between all ABs (8-h averaged data). All correlations
are significant at 0.001 level and results are based on 19 monitoring sessions. In the table is reported the Spearman’s
rank order correlation (rho). Table S4: Correlations between direct-reading instruments (1-min averaged data). All
correlations are significant at 0.001 level. In brackets are reported the number of data used for analysis. In the table
is reported the Spearman’s rank order correlation (rho). Table S5: Regression parameters between direct-reading
instruments (8-h average) and the gravimetric method. N: number of data; R: Pearson correlation coefficient;
p: significance; m: slope; q: intercept; SE: standard error. Figure S4: Regression between AB (a.: AB1; b.: AB2;
c.: AB3) and the gravimetric method (EPA WINS). Table S6: Regression parameters between direct-reading
instruments (1-min averaged data). N: number of data; R: Pearson correlation coefficient; p: significance; m: slope;
q: intercept; SE: standard error. Table S7: Regression parameters between AB and EPA WINS (8-h averaged data).
N: number of data; R: Pearson correlation coefficient; p: significance; m: slope; q: intercept; SE: standard error.
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Regression parameters were calculated and reported for the summer and winter datasets. Figure S5: Bland-Altman
plot. Red dotted lines represent upper and lower confidence intervals (95%) while the green dotted line represents
the average difference between instruments. The mean concentrations between EPA WINS and the compared
instruments (a.: AB1; b.: AB2; c.: AB3) are reported on the x-axis while the differences between the methods are
shown (8-h average) on the y-axis. Table S8: Relative error (%) calculated during all monitoring sessions between
direct-reading instruments and the gravimetric method. Table S9 Absolute error (µg/m3) calculated during
all monitoring sessions between direct-reading instruments and the gravimetric method. Figure S6: Analysis
of absolute error (absolute value - µg/m3) for ABs as a function of PM2.5 concentrations (µg/m3) and RH (%).
Figure S7: Analysis of relative error (absolute value - %) for ABs as a function of PM2.5 concentrations (µg/m3)
and RH (%). Figure S8: Analysis of absolute error (absolute value - µg/m3) for direct-reading instruments as a
function of PM2.5 concentrations (µg/m3) and RH (%). Figure S9: Analysis of relative error (absolute value - %)
for direct-reading instruments as a function of PM2.5 concentrations (µg/m3) and RH (%). Figure S10 Analysis
of relative error (%) for direct-reading instruments as a function of PM2.5 concentrations (µg/m3) and RH (%).
a.: AB1; b.: AB2; c.: AB3.
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60. Vilčeková, S.; Kapalo, P.; Mečiarová, L.; Burdová, E.K.; Imreczeová, V. Investigation of Indoor Environment
Quality in Classroom—Case Study. Procedia Eng. 2017, 190, 496–503. [CrossRef]
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