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Hepatocellular carcinoma (HCC) is characterized by poor prognosis and high mortality.
The treatment of HCC is closely related to the stage, and the early-stage of HCC patients
usually accompanies a more long-term survival rate after clinical treatment. Hence, there
are critical needs to develop effective imaging agents with superior diagnostic precision for
HCC detection at an early stage. Recently, mesoporous silica nanoparticles (MSNs) based
imaging agents have gained extensive attentions in HCC detection, which can serve as a
multifunctional nanoplatform with controllable size and facile surface functionalization. This
perspective summarizes recent advances in MSNs based imaging agents for HCC
detection by the incorporation of several clinical imaging modalities. Multi-modal
imaging system has been developed for higher spatial resolution and sensitivity. Even
though some limitations and challenges need to be overcome, we envision the
development of novel MSNs based imaging agents will offer great potential
applications in clinical HCC detection.

Keywords: mesoporous silica nanoparticles, hepatocellular carcinoma, diagnostics, multimodal imaging,
biomedical applications

INTRODUCTION

Liver cancer incidence continued to increase, and the 5-years relative survival rate of liver cancer is
only 20% (Siegel et al., 2021). Hepatocellular carcinoma (HCC) is the fourth most common cause of
cancer death worldwide, which is characterized by poor prognosis and high mortality (Villanueva,
2019). The diagnosis of HCC in clinic mainly including clinical features, diagnostic imaging and liver
biopsy (El-Serag et al., 2008). However, most HCC patients are diagnosed at late and advanced stages,
leading to undesirable treatment outcomes (Befeler and Di Bisceglie, 2002; Shi et al., 2018; Zhang
et al., 2017). Precise diagnosis of HCC at an early stage is beneficial for choosing better treatment
options. Certain new imaging techniques have been applied for precise HCC detection and
improving the prognosis of patients, including ultrasound (Lin X. et al., 2019), computed
tomography (CT) (Chen et al., 2014; Cheng et al., 2014), magnetic resonance imaging (MRI)
(Cai et al., 2020; Wang C. et al., 2019), fluorescence imaging (Lin H. et al., 2019; Sun et al., 2019),
photoacoustic imaging (PAI) (Lei et al., 2020; Zhou et al., 2021) and positron emission tomography
imaging (Hu et al., 2012). Each imaging technique showed unique advantages and limitations for
liver cancer screening, detection or intraoperative navigation. (Ariff et al., 2009). US imaging has
been recommended as a screening imaging modality to screen liver cancer because of its simplicity,
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flexibility, non-invasive, low cost and real-time properties.
However, the sensitivity of ultrasonic diagnosis for small liver
cancer (<2 cm) was only 39–65%. The measurements of serum
α-fetoprotein (AFP) is usually necessary to couple with Liver US
for high-risk patients for early HCC screening. Once screening
abnormal liver, dynamic enhanced CT and muti-modal MRI can
be used for further diagnosis and staging due to their relatively
higher sensitivity and specificity. Although MRI is particularly
well-suited for liver cancer detection, it has not yet been used for
intraoperative surgical guidance owing to its high cost and long
imaging times. Fluorescence image has long been used for guiding
surgery in liver cancer theranostics (Chen H. et al., 2020). For
example, intraoperative NIR-II imaging with suitable
fluorescence probes showed a high tumor-to-normal-liver-
tissue signal ratio (5.33) during the fluorescence-guided
surgical resection of liver tumors (Hu et al., 2020). Compared
with fluorescence, PAI, an emerging new imaging method, which
offers deeper penetration, can improve imaging contrast and
spatial resolution of superficial tissue. Thus PAI is expected to be
a new method for early diagnosis and staging of early liver cancer
in the near future (Fu et al., 2019).

Nanoparticles (NPs) could integrate diagnostic and
therapeutic agents into one nanosystem in the field of cancer
diagnostics and therapy. For instance, lipid micelles could act as
drug carriers, and many lipid-based NPs have been approved by
Food and Drug Administration (FDA) for clinical tumor
treatments (Mitchell et al., 2021). Apart from lipid,
mesoporous silica nanoparticles (MSNs), as a class of
inorganic materials, has been widely researched as drug/gene/
molecular carriers for cancer theranostic (Lee et al., 2011; Li et al.,
2019; Wu et al., 2011). Compared with lipid micelles, MSNs are
precisely formulated with controllable particle size, morphology
and structure. As liver is the main organ that sequesters majority
of nanoparticles from blood circulation, nanoparticles can
intrinsically target liver. From this point, MSNs can enhance
the liver accumulation of imaging agents and enable effective liver
targeting. Furthermore, MSNs modified with targeting ligand on
the surface could accumulate in the tumor tissues by active
targeting (Chen F. et al., 2013; Goel et al., 2014; Li et al.,
2018a; Rosenholm et al., 2009; Zhang J. et al., 2013). Since the
size of nanomaterials below 200 nm could accumulate in solid
tumors via the enhanced permeability and retention (EPR) effect
(Matsumura and Maeda, 1986). The MSNs with size between 50
and 200 nm could accumulate in tumors as the leaky vessels
enable NP extravasation, which is also called passive targeting
strategy (Chen Z. et al., 2020; Li et al., 2016; Meng et al., 2011).
Graft PEG or its derivatives onto the surface of MSNs can not
only stabilize the NPs in the aqueous solution, but can escape
opsonization in the blood. The 50-nm MSNs coated with PEI-
PEG copolymer showed passive accumulation of about 12% at the
tumor site, only 3% when coating with a 5 kD PEG polymer
(Tang et al., 2012). Besides, the excellent biocompatibility and low
hemolytic activity of MSNs offers promising potential in clinical
applications (Asefa and Tao, 2012; Chen Y. et al., 2013; Tarn et al.,
2013). These advantages offer enormous opportunities for
designing MSNs-based nanocomposites for bioimaging and
cancer therapy (Chen et al., 2016; Fan et al., 2014; Hong et al.,

2017; Liu S. et al., 2020; Singh et al., 2012). Inspiringly, the
multifunctional theranostic system can control the quantity of
drug molecular and imaging contrast agents simultaneously for
effective and safe theranostics. (Zhao et al., 2012). Multimodal
imaging, compared with single imaging modal, showed higher
spatial resolution and sensitivity. And multimodal imaging-
guided treatments have been developed for precision
synergistic cancer therapy (Sun et al., 2018). Herein, we focus
on the recent advances of MSNs based imaging agents for HCC
detection. The intent is to give the readers a critical discussion of
the design and applications of MSNs based imaging agents.

MESOPOROUS SILICA NANOPARTICLES

With the dramatic development of nanotechnology and
nanomedicine during past decades, oceans of organic/
inorganic nanomaterials have been designed for cancer
therapy and diagnosis. Especially, benefit from the unique
qualities of tunable particle size, large pore volume, high
surface area, facile surface functionalization, as well as
excellent biocompatibility and biodegradation, MSNs has been
produced as nanocarriers for the art of cancer diagnostics
(Caltagirone et al., 2015; Montalti et al., 2014; Ni et al., 2017;
Tang et al., 2012). For biomedical applications, the size and
morphology of MSNs are critical for cellular uptake (Zhang
et al., 2009). It was estimated that the maximum uptake size
of MSNs by cells was the diameter of 50 nm (Lu et al., 2009). The
rates of endocytosis for MSNs with different morphology were
similar for CHO cells, while differed for fibroblast cells (Trewyn
et al., 2008). Besides, the cytotoxicity (Yu et al., 2011),
biodistribution (Fu et al., 2013; He et al., 2011; Zhao et al.,
2016) and excretion (Croissant et al., 2017) of MSNs are also
attracted much attention. The silica particle size of 100–500 nm
showed low cytotoxicity (HadipourMoghaddam et al., 2019), and
the number of silanol groups affects the hemolytic properties
(Slowing et al., 2009). MSNs were determined mainly distributed
in the liver, spleen and lung after intravenous injection into mice
(Huang et al., 2011). MSNs with negative charge showed higher
uptake and retention in the liver, while positive charged MSNs
undergo rapid hepatobiliary excretion and transport into the
gastrointestinal tract (Souris et al., 2010). In this section, we
summarized the synthesis method of MSNs and the way of
controlling the pore size/volume of MSNs.

Design and Synthesis of MSNs
With over 20-years development since discovered by Kuroda’s
and Kresge’s groups in 1990s (Yanagisawa et al., 1990), MSNs
possess certain unique advantages, such as extensive and uniform
mesoporosity, tunable particle size (10–1,000 nm), wide-range
pore diameter (2–20 nm), flexible morphology and so on.
Mesoporous silica is usually produced by a surfactant-directing
method under basic, acidic or neutral conditions. Silica
precursors are first hydrolyzed and combined with the head
groups of surfactants by either electrostatic force or hydrogen
bond interaction to form a liquid-crystalline mesophase. Then the
transformation of mesophases occurs during the hydrolysis and
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condensation of silica species. The interactions between
surfactants and silica precursors, as well as the rate of
hydrolysis and condensation of silica species which heavily
depend on the pH value of the reaction system, directly affect
the formation and the morphology of mesophases (Narayan et al.,
2018).

Silica nanoparticles with good monodispersity were
synthesized by catalyzing tetraethyl orthosilicate with
ammonia by stöber in 1968 (Stöber et al., 1968). Since then,
many researchers reported the MSNs with various sizes from
nano to micro via modified stöber method (Hao et al., 2015;
Slowing et al., 2007; Taylor et al., 2008; Wan and Zhao, 2007; Wu
et al., 2013). And several groups committed to design and
synthesis superb MSNs. For example, Zhao’s group prepared
well-ordered hexagonal mesoporous silica structures (SBA-15)
using triblock copolymer (Zhao et al., 1998). Bein and co-workers
presented a general method for the preparation of highly
dispersed MSNs ranging in size from 40 to 150 nm (Kobler
et al., 2008). Subsequently, Shi’s group reported the MSNs
with the uniform size of 25–105 nm by following Bein’s
protocol with a certain modification (Pan et al., 2012).
Nanopore-engineering strategy endows functional materials
with versatile moieties and promotes the development of
various imaging modalities.

Controlling of Pore Size/Volume
Biofunctional materials encapsulated into the cavities or the
mesopores of MSNs to fabricate potential nanotheranostic
platforms. The pore sizes/volumes of MSNs influence the
effect of therapy or diagnostics. For example, MSNs with large
pore volume possessed high loading capacities for anti-cancer
drugs, and showed enhanced cytotoxicity (Li and Shi, 2014). As a
matter of fact, the pore sizes of these mesoporous nanostructures
are usually very small (2–5 nm), resulting from the use of
cetyltrimethyl ammonium bromide (CTAB) or other
alkylammonium surfactants as templates, which greatly
hindered their further bio-applications in the encapsulation of
biomacromolecules (Slowing et al., 2006; Xuan et al., 2016).
Therefore, many new approaches have been developed to
enhance the drug storage capacity of MSNs (Feng et al., 2016;
Trewyn et al., 2007; Vallet-Regi et al., 2007; Vivero-Escoto et al.,
2010).

One way to adjust the pore size is that, utilizing of a swelling
agent during the synthetic process of MSNs, the pore sizes of
MSNs were expanded up to 45 nm for higher protein loading
capacity by mixing oil phase (chlorobenzene and tetraethyl
orthosilicate) (Xu et al., 2015). The pore structure of MSNs
was formed through a supramolecular self-assembly
mechanism, which could be influenced by the oil/water ratio,
stirring rate, and growth time in the synthetic process. Shi et al.
synthesized monodispersed, large-pore silica nanospheres, with
three different mesostructures (hexagonal, cubic and lamellar) by
adjusting the amount of CTAB (Niu et al., 2014). With the
increase of the concentration of CTAB, the micelles
morphologically transformed from lamellar to rod-like or
spherical. Subsequently, the formed micelles were sell-
assembled to the ordered long period stacking mesostructures.

A study reported the monodispersed MSNs with large pores,
using 1,3,5-Trimethylbenzene as pore swelling agents (Kim et al.,
2011). The mean pore sizes of these MSNs were increased
dramatically from 2.1 to 23 nm. The pore structure of stellate,
raspberry, or worm-like morphologies was developed based on
the nature and the concentration of small organic amines
together with an appropriate choice of the cationic surfactant
counterions (Zhang K. et al., 2013).

Besides, hollow MSNs were designed for increasing the pore
volume to improve the loading capacity (Hu et al., 2011), and had
been used in many research fields, such as catalysis (Fang et al.,
2013; Mahmoud et al., 2013), drug/gene delivery (Li et al., 2017;
Ma et al., 2013; Slowing et al., 2008) and bioimaging (Lou et al.,
2008; Lv et al., 2014; Zhao and Jiang, 2009). For example, Yang
et al. reported a new type of hollow MSNs (HMSNs) with
enhanced loading capacity, and fabricated the nanocomposite
of FePt nanoparticles for evaluating the therapy and diagnostics
effects on Hela cells (Lin et al., 2017). The nanocomposite showed
synergistic anticancer effects and could serve as dark T2 contrast
agent for MRI. In another research, the rattle-type mesoporous
silica hollow spheres were reported by using a selective etching
strategy (Chen et al., 2009). The silica nanorattles were
synthesized by etching the middle layer of the silica framework.

MESOPOROUS SILICA NANOPARTICLE
BASED DIAGNOSIS

Ultrasound Imaging
Ultrasound (US) imaging is the most common and primary
technique to screen many different diseases, because of its
simplicity, flexibility, non-invasive and low cost (Kiessling
et al., 2014). US contrast agents are usually comprised of
several micro gas bubbles, which is stabilized by shell made of
lipids, proteins or polymers, which can improve the definition
and resolution of ultrasonic image (Sirsi and Borden, 2009). The
main shortcomings of microbubbles are their micron size and
poor stability, which hinder their applications for diagnosis. To
cope with this, MSNs-based US contrast agents has been
developed and generated bubbles with lifetime of 30 min at
least (Jin et al., 2017). By actively targeting strategies, MSNs
could serve as promising US contrast agents for HCC diagnosis.
Silica-based US imaging agents can conjugate with epithelial cell-
adhesion molecule (EpCAM) aptamer as targeted diagnostics
agents for the HCC cell line (HepG2) (Pilapong et al., 2017). The
US signal showed an enhancement effect in vitro due to the
extraordinary mesoporous structure. Meanwhile, considering the
high levels express of glypican-3 protein (GPC-3) on HepG2 cells,
it has been deemed as a marker of HCC. For instance, the GPC-3
ligand peptide-functionalized silica nanoparticles demonstrated
significantly enhanced ultrasound intensity for HepG2 cells
ultrasound molecular imaging (Di Paola et al., 2017).

With the characteristics of real-time and inexpensive, US has
been reported in guiding therapy as well (Wang et al., 2013). After
intravenous injection of US imaging agent in HCC tumor-bearing
nude mice, the US imaging showed brightened in tumor tissues.
The nanoparticles accumulated in tumor tissues, and this
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phenomenon can be explained by the EPR effects. In general,
silica-based US imaging agents reduced the toxicity of gas release
in traditional gas-filled microbubbles and it is facile to
functionalize targeted agents or drugs on the surface of MSNs.
However, the current research mainly focused on the
enhancement of the ultrasound contrast for cells, the
distribution, metabolism, specificity and sensitivity of agents in
the animal model need more accurately evaluation.

Photoacoustic Imaging
PAI integrates optical and ultrasound imaging, a non-ionizing
imaging modality, and offers deeper penetration than pure
optical imaging and richer optical contrasts than US imaging
(Kim et al., 2016). Hence, PAI has attracted much attention in
biological tissues detection. Hyaluronate derivatives have been
investigated as a target-specific delivery to liver, owing to the
overexpression of cluster determinant 44, which was regarded as
the HA receptor. Lee et al. developed a hyaluronate–silica
nanoparticle containing a certain amount of nitrogen atoms
as a liver targeting PA contrast agent, which showed high liver-
specific targeting efficiency (Lee et al., 2018). Nitrogen atoms
play to the formation of nonbonding or defective sites, the sites
between the bandgap of silica nanoparticles result in the
increase of light absorption. The boundary of the liver in the
PA imaging showed highly clear after intravenous injection of
contrast agent for 12 h. This novel PA contrast agent could
provide more details. Li and co-workers reported a novel 2-
dimension composite nanoplatform by coating a thin
mesoporous-silica shell onto the surface of Ti3C2 MXene for
PA imaging, the composite nanosheets showed excellent optical
and ultrasound imaging effects grounded on the localized
surface plasmon resonance effect (Li et al., 2018b).
Furthermore, doxorubicin was loaded into the nanostructures
for synergistic chemotherapy and photothermal therapy. The in
vivo PA imaging demonstrated that the composite nanosheets
could be applied as PA contrast agents for real-time monitoring
of the therapeutic process. More recently, Chaudhary et al.
explored a series of indocyanine green (ICG) loaded MSN-
based nano-carriers with various surface modifications for PAI
(Chaudhary et al., 2019). The ICG loaded layer-by-layer
polyelectrolyte coating MSN (LBLMSN-ICG) exhibited 4-
times enhanced PA signal in vitro in comparison with the
same concentration of pure ICG.

The mesosilica materials not only acted as carriers, but endows
the 2D sheets with well-defined mesopores for multimodal
diagnostic and therapy. The as-synthesized nanocomposites
still need carefully control on the thickness of silica-shell and
the uniformity of mesopore structure.

Fluorescence Imaging
As a classic near infrared (NIR) fluorescence imaging agent, ICG
has been approved by FDA for clinical applications in 1958
(Frangioni, 2003). ICG is a low toxic and injectable NIR
organic dye and has been widely used in clinical imaging,
especially for precise surgical resection. (Quan et al., 2012).
However, there are still some drawbacks that limit its
biological applications, such as low fluorescence quantum yield

in aqueous solutions, poor solubility in physiological aqueous
conditions (Desmettre et al., 2000; Saxena et al., 2003).

Benefited from the high chemical stability and superb drug
loading ability of MSNs, Tian and others developed arginine-
glycine-aspartic acid (RGD)-conjugated MSNs loaded with ICG
for imaging-guided surgery (Zeng et al., 2016). And the RGD-
conjugated MSNs could identify precise tumor margin (1 mm)
during liver cancer surgery. Furthermore, the microtumor lesions
(0.4 ± 0.21 mm) showed excellent optical contrast under NIR and
GFP fluorescence images. ICG has been used as a near-infrared
photothermal therapy reagent for its high photothermal
conversion efficiency. More recently, Chang’s group reported a
multifunctional (ICG + sorafenib)@mSiO2 nanosystem for highly
efficient synergistic diagnosis and treatment of HCC (Yang et al.,
2020). The nanosystem showed outstanding real-time
fluorescence imaging, which was responsive to 808 nm laser
irradiation. Notably, the silica nanosystem endows the ICG
with a higher level of endocytosis and longer red fluorescence
signal retention.

Besides, fluorescent conjugated polymers is another choice for
fluorescence imaging agent, because of their high quantum
efficiency, good photostability, and fast radiative rate (Feng
et al., 2008). An efficient controlled release system has been
realized by a biofunctional nanocomposite for pH-controlled
drug delivery and cellular imaging simultaneously, capping
with polyelectrolytes at the outer surface of MSNs (Pu et al.,
2013). Hydrophobic conjugated polymers have been converted
into dispersible in the aqueous environment by silica
encapsulation strategies, which makes them excellent
candidates for fluorescence probes of HCC cells (Tan et al.,
2011). The conjugated polymers with different emissions can
be realized by employing other fluorescent conjugated polymers
to emit a blue, green, yellow, and red color. Fluorescent
conjugated polymers could be a powerful tool for cell imaging
with silica encapsulation strategies.

Moreover, MSNs were decorated with Aggregation Induced
Emission (AIE) fluorogen PhENH2 and MoS2 nanosheets for
both tumor diagnosis and treatment (Wang J. et al., 2019). The
AIE fluorogens which chemically modified on the surface of
MSNs showed more stable fluorescence than physically absorbed
luminescent molecules. As for fluorescent bioprobes, the
challenge is how to solve the problem of frequently quenching
in high concentrations or aggregate states. AIE-based materials
shed new light on fluorescence imaging.

Magnetic Resonance Imaging
MRI is recognized as the most popular technology for evaluating
the liver tissue owing to its ultrahigh sensitivity and specificity
(Bellin et al., 2003). Gadolinium chelates, as a non-specific
extracellular contrast, are used extensively for liver MRI in
clinical medicine.

In order to enhance MRI imaging effect, both passive and
active targeting strategies have been adopted to increase the
accumulation of imaging agents in tumors. In consideration of
the very short blood circulation time of Gd-EOB-DTPA, loading
Gd (III) chelates into MSNs could act as a promising T1 MRI
imaging contrast agent for cancer diagnostics (Vivero-Escoto
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et al., 2011). Although there are still great concerns about the
possibility of nephrogenic systemic fibrosis resulting from the
Gd3+ ions, this platform provides a choice for alleviating the
safety concerns (Broome, 2008; Rydahl et al., 2008). Recently,
Mn-doping MSNs has been reported as the contrast agent for T1-
weighted MRI, with the accumulation in the tumor confirmed
due to the EPR effects (Yu et al., 2016). The manganese-doped
hollow MSNs were sensitive to tumor microenvironment,
resulting in the breaking up of the Mn-O bond and releasing
of manganese ions. To a certain extent, the “manganese
extraction” strategy ravel out concerns about the
biodegradation of inorganic mesoporous nanosystems and
provides a fresh idea for biodegradation of inorganic material
nanofamily. In order to address the limitations of non-specific
contrast agents, Kim et al. investigated the liver-specific MRI
contrast agent, Mn2+-doped SiO2 nanoparticles (Mn-SiO2),
enhancing the visibility of HCC lesion (Kim et al., 2013). The
liver-to-HCC MR contrast ratio could be used for the
conspicuous detection of HCC. The maximum signal
enhancement of the liver parenchyma was observed in the
images after intravenously administered via the tail vein for
6 h. They proposed that the nanoparticles engulfed in Kupffer
cells would release the Mn2+ ions, thus T1-weighted MRI showed
hyperintense in healthy liver tissues with abundant Kupffer cells
over lesions.

Superparamagnetic iron oxide (SPIO) particles, acting as a
negative contrast agent, were used in liver-specific contrast
imaging (Lee et al., 2007; Na et al., 2009). Uniform magnetic
MSNs were prepared by coating Fe3O4 core with mesoporous
silica shells, which could be used for the enhancement of T2-
weighted MR imaging (An et al., 2015). Benefit from the easily
surface functional of silica coating layer, magnetic MSNs can be
modifed with folic acid for targeted delivery and real-time tumor
monitoring. (Chi et al., 2019).

Otherthan the passive and active targeted by modified with
cellular receptors, magnetic targeting technology is a very
attractive physical targeting technology (Hajba and Guttman,
2016; Tian et al., 2014). Magnetic MSNs could be magnetically
targeted to tumor tissues in HepG2 xenograft-bearing nude mice
using small NdFeB permanent magnets (Wang et al., 2018).
Similarly, magnetic field not only accumulated MSN-coated
iron oxide nanoparticles, but also controlled the “OFF-ON”
state of the magnetic drug delivery system (Liu J. et al., 2020).
SPIOs act as an excellent biocompatible inorganic material, on
which various thicknesses of silica coating can be realized for
enhanced MR imaging. But the concern is that, SPIOs are no
longer clinically used for MRI agents as a result of some
drawbacks. More efforts on magnetic MSNs for clinical
transformation could be in vain until SPIOs were re-approved
by FDA.

Computed Tomography
CT is one of the most common modalities for diagnostics of
disease or cancer since its rapid image generation and low cost
(Foley et al., 2000). Small iodinated molecules, usually used as
CT contrast agents in clinical, experienced fast renal excretion
and short imaging time hinder their applications (Kim et al.,
2010). Gold nanoparticles have attracted prominent interests
owing to their strong X-ray attenuation properties, and have
been widely used as CT contrast agents (Pelaz et al., 2017).
Dong’s group developed a Janus-structured gold-MSNs act as
targeted CT-imaging agents for HCC diagnosis (Wang et al.,
2017). In vivo, the Janus nanoparticles exhibited a clearly
distinguished CT signal in the corresponding tumor site of
the tumor-bearing nude mice. The unsymmetrical structures
of Janus nanoparticles provide higher radiation-absorption
efficiency. The tumor targeted MSNs with gold gatekeeper
showed higher CT signal intensity because of its EPR effects
as well as active targeting through EpCAM receptor (Babaei
et al., 2017). Qin et al. reported dual-MSNs containing small
mesopores and large mesopores for gold nanorices
encapsulation (Qin et al., 2019). They confirmed that
multiple gold nanorices (GNRs) in a nanoscale matrix
showed brighter CT signals with the increase of Au
concentrations, and the hounsfeld unit values of MSN-based
GNRs were higher than individual GNRs. These as-prepared
nanocompound possess the potential for application in CT
imaging and imaging-guided photothermal therapy.
Mesoporous silica could coat on Au NPs for improving its
hydrophilicity and drug loading dose. However, there is nearly
no report about the relationship between CT signals and the
thickness of silica coating for HCC diagnostic.

Multimodal Imaging
Multimodal imaging has been developed to satisfied the
requirement of both high spatial resolution and high
sensitivity for imaging diagnosis (Cutler et al., 2013; Lee et al.,
2012; Sailor and Park, 2012; Zhang et al., 2015). Recently,
multifunctional nanoparticles have been explored as
multimodal imaging nanoprobes (Chu et al., 2020; Liu et al.,
2018), or used for imaging-guided tumor therapy (Chen et al.,

FIGURE 1 | Different imaging modalities based on MSNs.
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TABLE 1 | MSNs-based nanomaterials for HCC imaging.

Imaging
model

Nanomaterials Size
(nm)

DLS (nm) Polydis-
persity
index

Zeta
potential

(mV)

Surface
area
(m2/g)

Pore
size
(nm)

Pore
volume
(cm3/g)

Targeting
moiety

Type
of cells

Animal
models

Concentration
of NPs

References

US Imaging mSiO2-MNP 9.4 ± 1.2 — — — 136.7 — 0.46 EpCAM
aptamer

HepG2
cells

— 0.05 mg/well Pilapong et al.
(2017)

GPC-3 SiNPs 250 450 — −16 ± 1.7 — — — GPC-3
targeting
peptide

HepG2
cells

— 0.1 mg/ml Di Paola et al.
(2017)

MSNC at Au-
PFH-PEG

250 250 — — 230 4.5 0.4 — HCC cells Rabbit VX2 xenograft;
HCC tumor-bearing
nude mice

6 mg/ml Wang et al.
(2013)

PA Imaging HA–SiNP conjugates 1.99 — — — — — — Hyaluronate HepG2
cells

Normal balb/c mouse 20 mg/ml Lee et al.
(2018)

Ti3C2at mMSNs — 116.4 — −30 772 3.1 0.96 RGD HCC cells Tumor-bearing nude
mice xenografts

5 mg/kg Li et al.
(2018b)

LBLMSN-ICG ∼71 141.8 ±
51.3

0.64 ±
0.04

−17.98 ±
1.24

— — — — HepG2
cells

Male mouse cadavers 0.2 mg/ml Chaudhary
et al. (2019)

Fluo-
rescence
Imaging

ICG/MSNs-RGD ∼100 ∼100 — — — — — RGD Hep-G2-
GFP-fLuc

(Hep-G2-GFP-fLuc)
xenograſts

0.2 mg/ml Zeng et al.
(2016)

(ICG + S) at mSiO2 ∼100 ∼100 — ∼-17 — — — — H22 cells Female C57BL/6J
mice

1 mg/ml Yang et al.
(2020)

Fluorescent
Conjugated
Polyelectrolyte-
Capped MSN

∼100 204 0.22 — 920 2.5 — — HepG2
cells

— 0.28 mg/ml Pu et al.
(2013)

C6PF BP-PPV
PDHFBT MEH-PPV

26.7;
24.3;

25.1; 22.9

65.4;
51.4;

62.3; 51.3

0.169;
0.143;
0.18;
0.168

— — — — — HepG2
cells

— 0.06 mg/ml Tan et al.
(2011)

PhENH2-MoS2-FA
MSNs

180 220 — -35 — — — Folic acid HepG2
cells

— 0.0065 mg/ml Wang et al.
(2019b)

MR
Imaging

PEGylation of Mn-
HMSNs

100 141 — — 222 3.8 0.53 — HepG2
cells

Female BALB/c nude
mice

2.5 mg/kg Yu et al.
(2016)

Mn-SiO2 25 — — — — — — — HepG2
cells

Orthotopic xenograft
model

3 mg/kg Kim et al.
(2013)

M-DMSN at pLAMA 250 — — — 119 — 0.08 Glycopolymer HepG2
cells

Male BALB/c nude
mice

100 mg/kg An et al.
(2015)

M-LPMSNs 120 — — — — 7 — Folic acid SMMC-
7721 cells

Female BALB/c mice 2 mg Fe/cm3

tumor
Chi et al.
(2019)

S-M-MSNs 250 — — — 453.6 2.8 0.32 — HepG2
cells

HepG2 xenograft-
bearing nude mouse

25 mg/kg Wang et al.
(2018)

R-M-MSNs 100*300 — — — 655.7 — 0.43 — — — — —

IONP at MSN-N3 170 ∼170 — −30 767.17 3.04 0.576 — HepG2
cells; HL-
7702 cells

HepG-2 tumor-
bearing mice

5.7 mg/kg Liu et al.
(2020a)

CT Imaging GSJNs 225*110 — — — 758.5 2.4 0.51 Folic acid SMMC-
7721 cells;
HL-7702
cells

SMMC-7721
xenografts nude mice

5 mg/ml Wang et al.
(2017)

Au at Si-5-FU — 48.27 0.2 11.43 191.6 2.9 0.35 EpCAM [Au] ¼ 2 mM
(Continued on following page)
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2018; Li et al., 2021; Lin et al., 2018; Shi et al., 2019; Song et al.,
2015; Wang et al., 2015; Zhu et al., 2019), or monitored
therapeutic response (Ye et al., 2018). For instance,
nanocomposites integrating near-infrared fluorescence with
MRI and PAI exhibit ultrasensitivity, precise anatomical
localization, and good spatial resolution for tumor detection
(Wang et al., 2015).

As for HCC imaging, fluorochrome and iron oxide were
loaded into silica nanoparticles for MRI and optical dual-mode
imaging (Liu et al., 2021). And this dual-mode imaging was
developed for a preoperative diagnosis of tumor cells and
improving the spatial resolution during surgery (Tan et al.,
2011). Conjugated polymers showed excellent fluorescent
properties and could use as fluorescent labelling agents for
cellular imaging. The nanocapsules combined conjugated
polymers as the fluorescent emitter and superparamagnetic
iron oxide nanoparticles as the T2 enhanced MRI contrast
agents. Both confocal microscopy images and MRI showed
that the cellular uptake of the nanocapsules was enhanced by
the external magnetic field. Over and above the fluorescent
conjugated polymers, upconversion nanoparticles (UCNPs) as
excellent UC luminescence agents have been used for accurate
cancer diagnosis. The multifunctional composite combined
with MnFe2O4 and UCNPs were magnetic guidance to the
tumor for in vivo MR and UC luminescence imaging (Ding
et al., 2019). Magnetic gadolinium oxide-iron oxide with
mesoporous silica shell, presented the r1 and r2 values were
10 mM−1 s−1 and 165 mM−1 s−1, separately, and could be used
as a T1 and T2 dual mode contrast agent. (Das et al., 2018).
Inorganic Janus nanoparticle with extraordinary
heterostructure could guide the cancer therapy by CT/MR
imaging in vivo (Zhang et al., 2018).

Besides, triple-mode imaging agents including MRI, US,
and fluorescence were developed for HCC cell lines imaging
(Pilapong et al., 2017). The nanoprobe determined that the r2
value were 110.9 mM−1 s−1, and the porous structure of which
enhanced US signals and reduced the side effects of gas release
in conventional gas-filled microbubbles. The MRI/US/
fluorescence imaging probe could visualize the
microscopic-scale and macroscopic-scale of the HepG2.
Another research focused on triple-mode upconversion
luminescence (UCL)/CT/MR imaging-guided synergistic
chemo-photothermal therapy of HCC (Chen X. et al.,
2020). However, it was hard to maximize the diagnostics
and treatment effects on “all in one” nanoplatforms,
simultaneously.

Although more and more muti-model imaging agents were
developed for precise diagnosis of HCC, the effect of combined
agents still need deeper exploration. And the choice of suitable
imaging modalities is significant for the art of an “all in one”
system. Multifunctional nanoplatform can be designed for
multimodal imaging guided multiple therapies. For example,
tetra-modal imaging agents containing CT, MRI, UCL and
photothermal imaging were produced and applied as drug
carriers for multiple anticancer therapies (photothermal,
photodynamic therapy, and chemo-therapy), simultaneously
(Lv et al., 2015). As showed in Figure 1, MSNs based imagingT
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agents could use in different imaging modalities. Table.1
summarized the MSNs-based nanomaterials for HCC imaging.

DISCUSSION

In this mini-review, we discuss the recent advances in MSNs based
imaging agents for HCC detection. We summarize the design and
synthesis of MSNs with different sizes and morphologies. Several
imaging agents can be incorporated into MSN for HCC detection,
including US, PAI, Fluorescence imaging, MRI, and CT. These
agents have shown excellent imaging performance in HCC
detection and encourage further exploration. Besides, MSN
based multi-model imaging probes has also been developed for
preoperative diagnosis of tumor tissues, enriching the information
of imaging diagnosis. Despite great potentials of MSN-based
imaging agents for HCC detection, there is numerous hurdles
lying in the way of MSN-based imaging agents heading to the
clinical translation. For example, large-scale production, quality
control and standard characterizations are also needed for the
commercialization of MSN-based imaging agents. The targeting of
MSN-based imaging agents still needs improvement, as a recent
analysis shows that only 0.7% of nanoparticles in the systemic route
can reach tumor sites. The toxicity, particularly long-term toxicity
aroused from nanoparticles, requires systematic and
comprehensive in vivo studies. It is hopeful that with the
constant efforts of scientists, radiologists and businessmen,
MSN-based imaging agents can make a great breakthrough for
disease diagnosis and benefit patients in the near future.

We hope that this mini review will provide readers with a
better understanding on the design and synthesis of the MSNs for
cancer imaging applications. More importantly, the design of
MSNs based imaging agents for HCC detection should consider
the imaging model, biocompatibility, and pharmacokinetics.
Additionally, it is important to meet the clinical needs of HCC

detection, developing imaging contrast agents with potential
clinical translational capacity make it sense.
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