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Nature is an important source for the discovery of new bioactive compounds. Nat-
ural compounds constitute a strategic starting point for the development of novel drugs,
since they exhibit a wide range of pharmacophores and a large number of chiral centers
that allow the interaction with proteins and biological targets.

Terpenes are natural isoprene-derived compounds and are classified according to the
number of carbon atoms in monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20),
triterpenes (C30), tetraterpenes (C40) and polyterpenes (C > 40). Many of these compounds
are considered secondary metabolites in plants. They showed a variety of biological
activities, such as anticancer, anti-inflammatory, antimicrobial, antiparasitic, antiviral, etc.
They constitute the largest group of natural compounds with more than 50,000 molecules
of diverse chemical structures. They are of great interest, both in the cosmetic and the food
market as well as in the pharmaceutical industry [1].

Among terpenoids, sesquiterpene lactones and diterpenes stand out due to their
role in human health and as a source of new drugs. The medicinal potential of plant
terpenoids has been reviewed by Bergman et al. [2]. In this review, the sesquiterpene
lactone artemisinin, isolated from the medicinal Chinese plant Artemisia annua (Asteraceae)
is described. This compound and its semisynthetic derivatives are used nowadays for
the treatment of malaria. Its mechanism of action is related to the heme metabolism of
Plasmodium spp. Another sesquiterpene lactone mentioned by the authors is thapsigar-
gin, a guaianolide-type sesquiterpene lactone produced by Thapsia garganica (Apiaceae),
which has been proved to interact with pathways regulating Ca2+homeostasis in mam-
malian cells. The effect of the derivative mispsagargin is being evaluated in clinical trials
for hepatocellular carcinoma. As regards diterpenoids, the antineoplastic agent paclitaxel
isolated from Taxus breviflolia (Taxaceae) has been described. This compound acts as a mi-
crotubule stabilizer and a mitosis inhibitor. Paclitaxel is used for refractory ovarian cancer
and metastatic breast cancer. It is currently obtained by semisynthesis from baccatins and
from which docetaxel and analogs have been developed. Ingenol mebutate and prostratin
are also diterpenoids with antitumor and anti-HIV activities.

Other examples of bioactive terpenoids are forskolin, a labdan diterpene from Coleus
forskohlii (Lamiaceae) and the sesquiterpene lactone arglabin, isolated from Artemisia myr-
iantha (Asteraceae), as well as its derivative dimethylamino-arglabin, which have been
demonstrated to be potential antitumor agents. Other sesquiterpene lactones with promis-
ing activity and which are under study are parthenolide and its analog dimethylamino-
parthenolide, which are active against breast cancer cells, leukemia and pancreatic car-
cinoma cells; artemisinin, which has been studied for the treatment of different types of
cancers such as breast and colorectal cancer [3,4]; and dehydrocostuslactone and costuno-
lide for breast cancer and leukemia [5]. Other sesquiterpene lactones such as psilostachyin,
psilostachyin C, helenalin, mexicanin, cumanin, deoxymikanolide, lychnopholide and goy-
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azensolide were found to be active against tumor cell lines and against Trypanosoma cruzi,
the causative agent of Chagas disease [6–9].

Over the last years, several updates have been published in Molecules regarding the po-
tential of sesquiterpene lactones and diterpenes for the development of novel drugs. In this
sense, Remy and Litaudon (2019) reviewed the properties of macrocyclic diterpenoids
of plants of the Euphorbiaceae family and their capacity to inhibit chikungunya virus
replication [10]. Jin et al. (2019), published a review on daphnane-type diterpenoids [11].
These authors highlighted the activities demonstrated for this type of compounds: anti-
HIV, anticancer, antileukemic, neurotrophic, pesticidal and cytotoxic. Ullah et al. (2019)
reviewed the pharmacological potential of steviol and isosteviol and derivatives as cyto-
toxic, antiviral, antibacterial, antihypertensive, anti-inflammatory and antihyperglycemic
agents, among others [12]. Li et al. (2018) published a review describing ent-kaurane
diterpenoids, specifically spirolactone-type diterpenoids, which exhibit attractive activi-
ties, especially antiproliferative activity [13]. Herrera Acevedo et al. [14] focused on the
importance of in silico studies using sesquiterpene lactones for the detection of poten-
tial compounds for the treatment of leishmaniasis, schistosomiasis, Chagas disease and
sleeping sickness.

Apart from the reviews mentioned, research articles describing bioactive sesquiterpene
lactones and diterpenoids have also been published in Molecules. A brief summary of
selected articles published in 2019–2020 is also presented.

The synthesis, crystallography and antileukemic activity of amino adducts of de-
hydroleucodine have been reported by Ordoñez et al. [15]. The cytotoxic activity of the
sesquiterpene lactones was evaluated against acute myeloid leukemia cell lines. The pro-
line adduct showed the highest antileukemic activity and was about 270 times more water
soluble than the natural compound.

The isolation of the sesquiterpene lactones 4,15-iso-atriplicolide tiglate, methacry-
late and isobutyrate from Helianthus tuberosus (Asteraceae) has been reported by Galk-
ina et al. [16]. These compounds were evaluated against Trypanosoma brucei rhodesiense,
Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum. The 4,15-iso-atriplicolide
tiglate showed a promising activity and selectivity against T. b. rhodesiense, the etiologic
agent of African human trypanosomiasis (IC50 = 0.015 ± 0.003 µM). Lenz et al. demon-
strated that this sesquiterpene lactone inhibited trypanothione reductase (TR). This en-
zyme is responsible for the maintenance of the cellular redox state of the parasite [17].
Other analogs belonging to the furanoheliangolide-type sesquiterpene lactones were also
found to inhibit TR.

The sesquiterpene lactones α-santonin, arglabin, schkuhrin II, vernolepin and eu-
cannabinolide were loaded into polylactic acid (PLA) nanoparticles and evaluated against
T. b. rhodesiense. Argablin, vernolepin and eucannabinolide showed trypanocidal activ-
ity with IC50 values of 3.67, 1.11 and 3.32 µM, respectively. None of the nanoparticle
formulations were cytotoxic to mammalian cells [18].

The synthesis of oxygenated and oxy-nitrogenated derivatives of the sesquiterpene
lactones cumanin, helenalin and hymenin was reported by Beer et al. [19]. The natural
compounds and analogs were evaluated against human cancer cell lines. The silylated
derivatives of helenalin were the most active (GI50 = 0.15–059 µM). The ditriazolyl cumanin
was more active and selective than cumanin on the cell lines employed. This analog showed
a GI50 of 2.3 µM and an SI of 227.9 on WiDr human colon tumor cell lines.

Andrographolide is a labdene diterpene lactone studied by Li et al. (2020) [20].
The activity of three 14-aryloxy analogs of this diterpenoid was evaluated against Zika
virus (ZIKV) and dengue virus (DENV). One of the derivatives (ZAD-1) showed higher
activity against both ZIKV and DENV than the natural compound. The EC50 values against
ZIKV and DENV-2 were 27.9 ± 1.7 µM and 22.6 ± 1.8 µM, respectively.

The natural ent-kaurane diterpenoid adenanthin, isolated from Isodon adenantha,
has shown activity against leukemic and hepatocellular carcinoma cells. This diterpene has
been tested as a potential agent for the prevention of obesity [21]. Adenanthin inhibited
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adipogenesis in 3T3-L1 and mouse embryonic fibroblasts and reduced the growing body
weight and adipose tissue mass during high-fat diet-induced obesity of mice.

Estafietin is a guaianolde-type sesquiterpene lactone isolated from Stevia alpina (Aster-
aceae). This natural compound and four semisynthetic derivatives were evaluated against
Trypanosoma cruzi and Leishmania braziliensis. Epoxyestafietin was the most active com-
pound against trypomastigotes and amastigotes, with IC50 values of 18.7 and 2.0 µg/mL,
respectively. Regarding leishmanicidal activity, estafietin and 11βH,13-dihydroestafietin
were the most active and selective compounds on L. braziliensis (IC50 values of 1.0 and
1.3 µg/mL, respectively) [19].

The in vitro and in vivo trypanocidal activity of eupatoriopicrin has been reported by
Elso et al. (2020) [22]. This compound was active and selective against Trypanosoma cruzi
amastigotes and tripomastigotes (IC50 = 2.3 µg/mL and 7.2 µg/mL, respectively). Eupato-
riopicrin was also active in an in vivo model of Chagas disease, producing a significant
reduction in the parasitemia levels in comparison with non-treated animals. Skeletal mus-
cular tissues from eupatoriopicrin-treated mice displayed only focal and interstitial lym-
phocyte inflammatory infiltrates and small areas of necrosis. In contrast, infected mice
treated with the vehicle showed severe lymphocyte inflammatory infiltrates with necrosis
of the adjacent myocytes.

The results detailed herein show the potential of sesquiterpene lactones and diter-
penoids for drug discovery and development. The wide variety of skeletal types as well as
the differences in oxidation and substitution patterns determine a wide range of biological
activities, being the anticancer, antiparasitic, antiviral and the anti-inflammatory activities
some of the most mentioned for these classes of phytochemicals.
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