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Abstract

When species are continuously distributed across environmental gradients, the relative strength of selection and gene
flow shape spatial patterns of genetic variation, potentially leading to variable levels of differentiation across loci.
Determining whether adaptive genetic variation tends to be structured differently than neutral variation along envi-
ronmental gradients is an open and important question in evolutionary genetics. We performed exome-wide population
genomic analysis on deer mice sampled along an elevational gradient of nearly 4,000 m of vertical relief. Using a
combination of selection scans, genotype�environment associations, and geographic cline analyses, we found that a
large proportion of the exome has experienced a history of altitude-related selection. Elevational clines for nearly 30% of
these putatively adaptive loci were shifted significantly up- or downslope of clines for loci that did not bear similar
signatures of selection. Many of these selection targets can be plausibly linked to known phenotypic differences between
highland and lowland deer mice, although the vast majority of these candidates have not been reported in other studies
of highland taxa. Together, these results suggest new hypotheses about the genetic basis of physiological adaptation to
high altitude, and the spatial distribution of adaptive genetic variation along environmental gradients.

Key words: clinal selection, population structure, high-altitude adaptation, local adaptation, gene–environment
association.

Introduction
For species that are continuously distributed across environ-
mental gradients, the spatial scale of local adaptation is de-
termined by the interplay between divergent selection and
gene flow (Slatkin 1987; Lenormand 2002; Polechov�a and
Barton 2015; Riesch et al. 2018; Bachmann et al. 2020). One
way to gain insight into the spatial scale of local adaptation is
through geographic cline analyses of allele frequencies across
an environmental transect (Nagylaki 1975; Barton 1979, 1983;
Stankowski et al. 2016; Storfer et al. 2018; Bradburd and Ralph
2019). When applied at a genomic scale, geographic cline
analyses can be used to generate hypotheses about the envi-
ronmental drivers of allele frequency variation and to identify
processes that shape the distribution of adaptive genetic var-
iation among interconnected populations (reviewed in
Storfer et al. 2018). Locus-specific spatial patterns of genetic
variation are determined by the combined effects of selection,

gene flow, recombination rate, and the distribution of selec-
tion coefficients on nearby loci (Barton 1979, 1983;
Lenormand 2002; Polechov�a and Barton 2015; Bachmann
et al. 2020). These processes can result in clines in the fre-
quencies of alleles at selected loci that are offset from one
another, and from those of neutral loci, reflecting a combi-
nation of background population structure and selection at
linked sites (Lenormand 2002; Yeaman and Whitlock 2011).
However, because patterns of allele frequency variation are
jointly determined by multiple demographic processes, as
well as the spatial scale of selective pressures and the intensity
of selection on specific loci, it is not always the case that
neutral and adaptive clines are offset. For example, in zones
of ecological transition, demographic processes and environ-
mental selective pressures may align such that allele frequen-
cies for both neutral and adaptive loci have similar geographic
patterns (Endler 1977; Moore 1977). Under these scenarios,
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clines for adaptive and neutral loci may often be concordant.
Given these expectations, an open and important question in
evolutionary genetics is whether adaptive genetic variation
tends to be structured differently than neutral variation along
environmental gradients.

Elevational gradients are particularly well-suited to address
this question. High-elevation environments are characterized
by extreme cold and low partial pressures of oxygen. Along
elevational gradients, these environmental selection pressures
covary in intensity and can often be combined with other
covarying stressors (e.g., aridity). As a result, highland animals
have evolved physiological modifications to cope with the
environmental challenges of alpine environments. Many of
these adaptations influence multiple steps of the oxygen
transport cascade—the series of physiological processes
that transport oxygen from the environment to respiring
cells—to ensure matching of O2 supply and demand (fig. 1;
e.g., Storz et al. 2010; Storz and Scott 2019). In North America,
deer mice (Peromyscus maniculatus) have an elevational
range of almost 4,500 m and populations at different eleva-
tions experience a wide range of oxygen availability, temper-
ature, precipitation, and snowpack. Deer mice native to high
elevations in the Rocky Mountains have evolved a suite of
physiological changes that contribute to adaptive enhance-
ments of whole-animal aerobic performance in hypoxia ( fig.
1; Cheviron et al. 2012, 2013, 2014; Lui et al. 2015; Ivy and Scott
2017, 2018; Lau et al. 2017; Dawson et al. 2018; Scott et al.
2015; Mahalingam et al. 2017, 2020; Nikel et al. 2018; Tate et al.
2017; Storz et al. 2019), a trait that influences survival in this
species (Hayes and O’Connor 1999; Wilde et al. 2019).

Although the physiological mechanisms of high-elevation
adaptation have been well-characterized in deer mice, our
understanding of the genetic basis of these adaptations is
far from complete (Storz et al. 2019; Storz 2021).
Transcriptomic analyses have demonstrated that some phe-
notypic adaptations are associated with differential regulation
of core metabolic and cell signaling pathways (Cheviron et al.
2012, 2014; Scott et al. 2015; Velotta et al. 2016, 2020), but
direct connections between genotypic and phenotypic vari-
ation have been restricted to studies of a few candidate genes
(e.g., Storz et al. 2009, 2010; Natarajan et al. 2015; Schweizer et
al. 2019; Wearing et al. 2020; Song et al. 2021). These studies
have revealed sharp clines in allele frequency that are cen-
tered at relatively low elevations in the geographic transition
between the Great Plains of the central United States and the
Front Range of the Rocky Mountains in Colorado (Storz et al.
2012; Schweizer et al. 2019). Two key examples include Epas1
(endothelial PAS domain-containing protein 1), a gene in-
volved in the transcriptional response to hypoxia, and tan-
demly linked gene duplicates that encode the b-subunits of
adult hemoglobin (b-globin genes Hbb-T1 and Hbb-T2).
Across the Rocky Mountains, clines for both Epas1 allele
and b-globin haplotype frequencies are centered at
�1,400 m above sea level (a.s.l.) and span approximately
600 m of vertical relief (Storz et al. 2012; Schweizer et al.
2019). Clines for both of these putatively adaptive loci are
also statistically indistinguishable from those representing

background population structure (Schweizer et al. 2019).
Whether these loci are representative of other putatively
adaptive loci across the genome is not known.

Here, we examined elevational patterns of exome-wide
variation to: 1) test whether genes that are associated with
known, putatively adaptive, phenotypic differences between
highland and lowland deer mice also bear signatures of pos-
itive selection in highland mice, and 2) identify additional loci
that may have contributed to high-altitude adaptation. We
complemented this analysis with a post hoc survey of similar
population genomic studies of high-elevation adaptation in
other endothermic species to determine whether targets of
selection in deer mice are common in other taxa. Finally, once
these putatively selected loci were identified, we then char-
acterized geographic clines of allele frequency variation along
an elevational gradient of almost 4,000 m of elevational relief.
This analysis enabled us to examine the extent to which
patterns of clinal variation at putatively adaptive loci differ
from observed patterns across the remainder of the genome.
Together, our results shed light on the spatial distribution of
adaptive genetic variation across elevational gradients and
suggest new hypotheses about the genetic basis of physiolog-
ical adaptation to hypoxia.

Results

Sequencing Results
We sampled deer mice at low-elevation sites in the Great
Plains, as well as along a transect spanning �4,000 m of ver-
tical relief in the southern Rocky Mountains in Colorado (fig.
2; table 1). In addition, we included samples from a low-
elevation site in Merced, CA, as a reference population for
some of our selection tests (supplementary table S1,
Supplementary Material online). We captured �77.4 Mb of
sequence from each individual using a custom-designed cap-
ture array that targeted two sequence classes from the deer
mouse genome, including: 1) the nuclear exome, and 2) 5,000
randomly selected nongenic segments of 500 bp each, to be
used as a neutral control to model population structure (see
Materials and Methods).

After filtering, we proceeded with a set of 256 individuals
genotyped at 5,546,642 high-quality biallelic variable sites,
with a mean depth of coverage of 22.24 6 7.90� (supple-
mentary fig. S1, Supplementary Material online) and mean
missing data of 9.07 6 12.11% (supplementary table S1,
Supplementary Material online). We also generated a data
set for analyses within the Rocky Mountain and Great Plains
populations (table 1) that consisted of 168 unrelated individ-
uals genotyped at 6,029,294 sites of which 267,264 were non-
genic LD-pruned sites to be used for analyses of population
structure. Exploratory PCA plots did not show evidence of
any consistent effects of missing data (supplementary figs. S2
and S3, Supplementary Material online).

Population Genetic Structure of Rocky Mountain and
Great Plains Mice
To determine how populations should be grouped for down-
stream analyses, we assessed fine-scale patterns of population
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structure across the Great Plains-Rocky Mountains transition.
We used a statistical framework that tests for discrete pat-
terns of population structure against a backdrop of continu-
ous geographic differentiation, implemented in the software
conStruct (Bradburd et al. 2018). Analyses using conStruct
showed strong and consistent support for two clusters—one
comprised largely of Rocky Mountain populations (dashed
box in fig. 2A: Pike Low, Pike Medium, Pike High, Boreas Pike,

Lost Park, Colorado Trail, Mount Evans, Summit Lake, Echo
Lake, Chicago Creek, Spring Gulch, Niwot Peak, St Vrain,
Lefthand Canyon, Mesa, Big Thompson, CO), the other cen-
tered on the Great Plains samples (Pawnee, CO; Bonny
Reservoir, CO; Ft. Larned, KS; Lincoln, NE)—with a clear pat-
tern of isolation by distance within each cluster (supplemen-
tary figs. S4 and S5, Supplementary Material online). Given
that the Rocky Mountain samples were well-described by a

FIG. 1. Deer mice native to high elevations in the Rocky Mountains have evolved a suite of physiological changes that contribute to adaptive
enhancements of whole-animal aerobic performance in hypoxia. For each step of the oxygen transport cascade (OTC), physiological differences
between highland and lowland deer mice are summarized on the left and previously-collected representative physiological data are on the right.
References: 1) Tate et al. (2020); 2) West et al. (2021); 3) Tate et al. (2017); 4) Ivy et al. (2020); 5) Scott et al. (2015); 6) Mahalingam et al. (2017); 7) Lui
et al. (2015); 8) Nikel et al. (2018).
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single, spatial cluster, we treated populations from across the
elevational sampling (fig. 2B) as a single transect for down-
stream analyses.

Exome-Wide Signatures of Selection in Mt Evans Mice
To identify genes under positive selection in high-elevation
mice, we used the population branch statistic (PBS; Yi et al.

2010) to measure the branch length of Mt Evans relative to
both Lincoln—the lowest elevation site along our eleva-
tional transect—and Merced populations by a transforma-
tion of pairwise FST values (see Materials and Methods). Loci
with elevated PBS values are indictive of loci under selection
in Mt Evans. Overall, we observed relatively low differentia-
tion across most of the 105,571 overlapping 5 kb
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FIG. 2. (A) Sampling localities for deer mice along the transition between the Great Plains and the Front Range of the Southern Rocky Mountains.
Dashed box represents those populations grouped within the “Rocky Mountains” for analyses. (B) Within the Front Range of the Southern Rocky
Mountains, we sampled four elevational transects: 1) the Pikes Peak Transect: Pike Low, Pike Medium, Pike High (purples, circles); 2) the Boreas Pass
Transect: Pike, Lost Park, Colorado Trail (reds, squares); 3) the Mount Evans Transect: Mount Evans, Summit Lake, Echo Lake, Chicago Creek, Spring
Gulch (greens, triangles); 4) the Niwot Peak Transect: Niwot Peak, Saint Vrain, Lefthand Canyon (blues, diamonds). Shape sizes in (B) are
proportional to number of individuals (see table 1 for sample sizes). SV, Saint Vrain; BT, Big Thompson; NP, Niwot Peak; LC, Lefthand Canyon;
BP, Boreas Pike; LP, Lost Park; CT, Colorado Trail.

Table 1. Locations and Sampling Efforts for 256 Deer Mouse Samples.

Locality Total No. of Indiv. No. of Unrel. Indiv. Mean Elevation (m) Latitude (�) Longitude (�)

Rocky Moutains
Big Thompson 11 8 1,832 40.4300 2105.3149
Boreas Pike National

Forest
10 6 3,632 39.4071 2105.9577

Chicago Creek 5 4 2,926 39.7053 2105.6062
Colorado Trail 8 6 2,311 39.3480 2105.3558
Echo Lake 9 8 3,264 39.6611 2105.5779
Lefthand Canyon 10 6 2,306 40.0757 2105.4120
Lost Park 10 8 2,997 39.3856 2105.7370
Mesa Reservoir 10 5 1,639 40.0739 2105.2659
Mount Evans 48 32 4,302 39.5872 2105.6444
Niwot Peak 8 5 3,498 40.0948 2105.5571
Pike High 5 3 4,034 38.8493 2105.0589
Pike Low 9 6 2,089 38.8789 2104.9417
Pike Middle 4 4 3,296 38.8872 2105.0694
Saint Vrain 8 5 2,618 40.1754 2105.5259
Spring Gulch 10 5 2,411 39.7381 2105.5304
Summit Lake 10 5 3,912 39.5986 2105.6406
Great Plains
Bonny Reservoir 10 9 1,158 39.6173 2102.2507
Fort Larned 10 7 620 38.1831 299.2181
Lincoln 37 27 358 40.8106 296.6803
Pawnee 9 9 1,594 40.7580 2104.0309
Merced 15 n/a 239 37.5986 2120.3415
Total 256 168
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(supplementary fig. S6, Supplementary Material online) win-
dows, which is consistent with previous analyses of broad-
scale population structure (Storz and Kelly 2008; Storz et al.
2012; Natarajan et al. 2015; Schweizer et al. 2019). Using
data simulated under an inferred demographic model
(Schweizer et al. 2019), we determined the upper 0.1% of
the simulated distribution of PBS (PBS � 0.112) and used
that as a threshold to identify candidate windows. A total of
4,118 windows exceeded the top 0.1% of the simulated PBS
distribution, and these windows represented 1,993 unique
genes (fig. 3A).

Genotype�Environment Analysis Narrows Down Top
Candidate Genes
To complement the PBS analysis, we used redundancy analysis
(RDA) to test for genotypic associations with elevation in the
full set of samples from our Great Plains-Rocky Mountains tran-
sect. Our RDA analysis of the 1,109,794 sites (a subset with low
missingness that were pruned for linkage, see Materials and
Methods) revealed two significant RDA axes related to elevation
(RDA1) and precipitation (RDA2) (supplementary fig. S7,
Supplementary Material online). We identified a total of
15,713 unique candidate SNPs that loaded 63 standard

FIG. 3. Distribution of (A) PBS, (B) RDA, and (C) Dp scores for 105,571 5-kb windows (PBS, Dp) and 1,109,794 SNPs (RDA) across the exome. (A) For
PBS, points above the red line indicate windows with a PBS score above the 99.9th percentile of the demographically corrected null distribution. (B)
For RDA, points above and below the upper and lower red lines, respectively, indicate SNPs with an RDA value that is 63 standard deviations of the
mean. (C) For delta pi, points below the red line indicate windows with a Dp in the 99.9th percentile of the null distribution for ME versus LN, and
pink dots indicate windows that are outliers for ME relative to both LN and CA. See text for details.
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deviations from the mean on each axis (12,637 on RDA1, 2,230
on RDA2, and 846 on RDA1 and RDA2). Of the total RDA
outliers, 89.4% (14,055 SNPs representing 5,643 genes; fig. 3B)
were more strongly correlated with elevation than precipitation.
We chose to focus on the elevation outliers in subsequent
analyses, but we acknowledge that there are potentially inter-
esting links with precipitation.

A total of 992 unique genes overlapped between the SNP-
based RDA elevation outliers and the window-based PBS out-
liers (top 35 in table 2; all 992 in supplementary table S2,
Supplementary Material online). These genes represent a
set of loci (henceforth, “two-way” candidate loci) that are
associated with elevation and exhibit evidence of selection
in the Mt. Evans population. Among these genes, there was a
significant functional enrichment of eight Biological Process,
four Cellular Component, and four Molecular Function cat-
egories (supplementary table S3, Supplementary Material on-
line). The most significantly enriched category was
“anatomical structure development” (GO: 0048856; P-value:
6.42E�06). Other significant categories of interest included
“ion binding” (GO: 0043167, P-value: 0.0109), “regulation of
gene expression” (GO:0010468; P-value: 0.024), “muscle cell
migration” (GO:0014812; P-value: 0.0293), and “G-protein
coupled purinergic nucleotide receptor signaling pathway”
(GO:0035589; P-value: 0.0307; supplementary table S3,
Supplementary Material online).

Evidence of Recent Selective Sweeps
To identify loci that bear signatures of recent selective sweeps
at high elevations, we also identified windows with signifi-
cantly reduced nucleotide diversity (Dp) in Mt Evans mice
relative to the two lowland populations (see Materials and
Methods). We used these data for two purposes. First, we
tested whether the 992 two-way outliers exhibited signifi-
cantly higher Dp values than a random sample of nonoutlier
loci, as would be expected if they had experienced a recent
selective sweep at high elevation. This analysis revealed that
the mean Dp value for two-way outliers was indeed higher
than that of random loci (Welch two sample t-test; t ¼
�11.283, P< 2.2 � 10�16). Second, we performed a scan of
Dp outliers to identify additional loci that may have experi-
enced a recent selective sweep at high elevation. As we did
with PBS, we simulated nucleotide diversity for 100,000 5 kb
windows under our demographic model to generate a null
distribution of Dp values. Our scan identified 314 windows
with a Dp value that was greater than the top 0.1% of the
demographically corrected distribution for both highland/
lowland comparisons (fig. 3C). Of the 246 unique genes in
these windows, 89 overlapped with the 992 two-way candi-
date loci (supplementary table S4, Supplementary Material
online). Gene enrichment analyses of this reduced candidate
set (henceforth, “three-way” candidate loci) showed an en-
richment of GO categories such as “negative regulation of
catecholamine secretion” (GO:0033604) and “G-protein cou-
pled nucleotide receptor activity” (GO:0001608) (supplemen-
tary table S5, Supplementary Material online). There was also
significant enrichment within the reactome pathway (R-HSA-
417957) “P2Y receptors.”

Clinal Patterns of Variation for Candidate Loci
Given that we observed high levels of gene flow and low levels
of differentiation among Rocky Mountain populations, we
analyzed all populations, including those from the Great
Plains, as a single elevational transect to assess clinal patterns
of variation. For each of the 992 two-way candidate loci, we
used the software HZAR (Derryberry et al. 2014) to fit a sig-
moidal tanh cline model to the relationship between allele
frequency and sampling elevation (see Materials and
Methods). We estimated the cline center (c) and width (w)
for 992 SNPs within our two-way candidate subset (supple-
mentary table S6, Supplementary Material online). The vari-
ables c and w characterize the geographic location along the
transect where the allele frequency turnover is greatest and
the geographic region corresponding to the inverse of the
maximum cline slope, respectively. We compared these
best-fit clines with a cline generated using PC1 of our non-
genic SNPs (supplementary fig. S8, Supplementary Material
online; see Materials and Methods), and identified a subset of
two-way candidate loci with cline centers (n¼ 297; 29.9%)
and widths (n¼ 240; 24.2%) outside of the 95% confidence
interval (CI) of the nongenic PC1 cline (fig. 4). Genes with
clines centers that were offset upslope (i.e., occurring at higher
elevation; n¼ 158 or 15.9%) of the nongenic PC1 cline
showed an enrichment of functions related to catecholamine
secretion and multiple categories related to odor perception
(“sensory perception of smell,” “odorant binding,” and
“olfactory receptor activity”; supplementary table S7,
Supplementary Material online), whereas genes with cline
centers that were offset downslope (n¼ 297 or 29.9%)
showed enrichment of reactome pathways related to trans-
port and cell junction organization (supplementary table S7,
Supplementary Material online). There were no significantly
enriched GO categories (supplementary table S8,
Supplementary Material online) among the genes with cline
widths that were narrower than the nongenic PC1 cline,
whereas genes with cline widths greater than the nongenic
PC1 cline only showed enrichment of broad categories such
as “cell periphery” and “membrane part” (supplementary ta-
ble S8, Supplementary Material online). The majority of our
two-way candidate loci, however, were characterized by cline
centers (n¼ 695 or 70.1%) or widths (n¼ 752 or 75.8%) that
were indistinguishable from the PC1 cline representing back-
ground population structure.

Post Hoc Review of Candidate Genes in High-Elevation
Vertebrates
To place the results of our selection scan into a broader
context and to assess the degree of overlap in the genomic
targets of selection across other similar studies, we performed
a post hoc review of 14 studies in nine different species of
terrestrial vertebrates (supplementary table S9,
Supplementary Material online). We limited our survey to
those that used population genomic data sets and allele-
frequency-based tests of selection to allow for more direct
comparison with our results. This survey identified a total of
3,983 unique genes that have been identified as selection
candidates in other studies. Of our 992 two-way outlier
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Table 2. Top 35 Candidate Genes That Are Outliers for Both PBS and RDA (two-way candidates).

Gene Symbol (P.
maniculatus)

Gene Name (P.
maniculatus)

Gene Symbol (M.
musculus)

Window Location PBS SNP Location RDA

Stx16 Syntaxin 16 Stx16 6501107.1:962501 2 967500 1.981 6501107.1:967816 0.795
Aff2 AF4/FMR2 family

member 2
Aff2 6501704.1:907501 2 912500 1.788 6501704.1:910760 0.790

Hps3 HPS3 biogenesis of
lysosomal organ-
elles complex 2
subunit 1

Hps3 6501722.1:610001 2 615000 1.573 6501722.1:590083 0.737

Gabrq Gamma-aminobuty-
ric acid type A re-
ceptor theta
subunit

Gabrq 6501587.1:1297501 2 1302500 1.530 6501587.1:1300279 0.657

Cpa3 Carboxypeptidase
A3

Cpa3 6501722.1:272501 2 277500 1.381 6501722.1:283951 0.486

Cwf19l2 CWF19-like 2 cell
cycle control (S.
pombe)

Cwf19l2 6501598.1:270001 2 275000 1.324 6501598.1:334183 0.777

Usp28a Ubiquitin specific
peptidase 28

Usp28 6501163.1:165001 2 170000 1.320 6501163.1:208277 0.823

LOC102906935 Interstitial collage-
nase A-like

Mmp1a 6501245.1:2847501 2 2852500 1.299 6501245.1:2841407 0.596

Znfx1 Zinc finger protein
OZF

Znfx1 6501708.1:275001 2 280000 1.275 6501708.1:284143 0.625

Dync2h1 Dynein cytoplasmic
2 heavy chain 1

Dync2h1 6501245.1:2427501 2 2432500 1.268 6501245.1:2399127 0.808

Exoc6b Exocyst complex
component 6B

Exoc6b 6501567.1:1457501 2 1462500 1.251 6501567.1:1061086 0.687

Gria4 Glutamate iono-
tropic receptor
AMPA type subu-
nit 4

Gria4 6501245.1:37501 2 42500 1.219 6501245.1:40269 0.837

Kmt2a Lysine methyltrans-
ferase 2A

Kmt2a 6501694.1:475001 2 480000 1.186 6501694.1:481688 0.832

Ptprz1 Protein tyrosine
phosphatase type
IVA member 1

Ptprz1 6501405.1:145001 2 150000 1.169 6501405.1:188227 0.646

Rims2 Regulating synaptic
membrane exocy-
tosis 2

Rims2 6501417.1:1140001 2 1145000 1.152 6501417.1:1177690 0.456

Cpsf6 Cleavage and polya-
denylation spe-
cific factor 6

Cpsf6 6501066.1:10150001 2 10155000 1.136 6501066.1:10172904 0.852

LOC102906541 Pyrethroid hydro-
lase Ces2e-like

Ces2b 6501344.1:235001 2 240000 1.102 6501344.1:244202 0.686

Ctsz Cathepsin Z Ctsz 6501107.1:1315001 2 1320000 1.095 6501107.1:1306134 0.417
Hspa4l Heat shock protein

family A (Hsp70)
member 4 like

Hspa4l 6501366.1:1650001 2 1655000 1.091 6501366.1:1682358 0.736

Edn3 Endothelin 3 Edn3 6501107.1:1652501 2 1657500 1.071 6501107.1:1660223 0.656
Bud13 BUD13 homolog Bud13 6501163.1:3185001 2 3190000 1.058 6501163.1:3186863 0.803
Ncam1a Neural cell adhesion

molecule 1
Ncam1 6501057.1:4725001 2 4730000 1.058 6501057.1:4733662 0.781

Cpb1 Carboxypeptidase
B1

Cpb1 6501722.1:225001 2 230000 1.052 6501722.1:221496 0.736

Cadm1 Cell adhesion mole-
cule 1

Cadm1 6501163.1:1602501 2 1607500 1.041 6501163.1:1552848 0.831

Nnat Neuronatin Nnat 6501257.1:617501 2 622500 1.037 6501257.1:620180 0.343
Supt20h SPT20 homolog

SAGA complex
component

Supt20 6501125.1:3700001 2 3705000 1.035 6501125.1:3670022 0.530

Med12la Mediator complex
subunit 12 like

Med12l 6501814.1:835001 2 840000 1.032 6501814.1:872041 0.661

LOC102923525 Probable G-protein
coupled receptor
83

Gpr165 6501190.1:5030001 2 5035000 1.012 6501190.1:5031532 0.496

(continued)
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candidate genes, only 163 (16.4%) have been identified in
other selection scans of high-altitude populations. Of those
163 genes, 139 (85.3%) were only identified in one other
study, 22 were identified in two additional studies, and 2
were identified in three or more additional studies (Epas1
and Kcnma1).

Discussion
In this study, we took a population genomic approach to
assess the concordance of spatial patterns of genetic variation
between adaptive and neutral loci. We combined selection
scans with genotype�environment associations and geo-
graphic cline analysis along an elevational gradient of nearly
4,000 m vertical relief to identify loci that bear the signature of
natural selection at high elevations. We then compared spa-
tial patterns of allele frequency variation at putatively adap-
tive loci with those at neutral loci. The combined results of
these analyses reveal three primary insights. First, multiple
lines of evidence indicate that altitude-related selection has
shaped patterns of genetic variation across a large portion of
the genome. As detailed below, we identified hundreds of loci
that bear signatures of selection in highland population sam-
ples, many of which can be plausibly linked to known phys-
iological differences between high- and low-elevation deer
mice. Second, the vast majority of the selection candidates
we identified have not been reported in similar studies of
other highland taxa, suggesting potentially novel candidate
genes and physiological pathways for adaptation to high

elevation. Finally, our geographic cline analysis revealed that
most loci under selection show clinal patterns of allele fre-
quency variation that are concordant with background pop-
ulation structure, as only a small subset of putatively adaptive
loci are characterized by cline centers shifted significantly up-
or downslope from the genome-wide average.

Genomic Signatures of Selection on Genes That Span
Multiple Physiological Systems
Recent studies have uncovered many of the physiological
traits involved in high-elevation adaptation in deer mice, in
addition to some of their gene regulatory underpinnings
(reviewed in Storz et al. 2019; Storz and Cheviron 2021).
This suite of physiological adaptations spans multiple steps
in the transport pathways for oxygen and metabolic sub-
strates (fig. 1). Consistent with this pattern of multitrait ad-
aptation, we found hundreds of loci bearing signatures of
positive selection at high elevations, many of which are likely
involved in functions that relate to processes that influence
oxygen homeostasis and aerobic metabolism (fig. 1). For brev-
ity, we highlight just a few of the most promising candidate
genes that may relate to known physiological differences be-
tween highland and lowland deer mice below. A list of the top
35 two-way candidates is presented in table 2, and the full list
of selection candidates is provided in the supplemental mate-
rials (supplementary tables S2, S4, and S6, Supplementary
Material online).

Plch1a Phospholipase C eta
1

Plch1 6501060.1:2525001 2 2530000 1.007 6501060.1:2440272 0.704

Fxr1 FMR1 autosomal
homolog 1

Fxr1 6501046.1:2650001 2 2655000 0.994 6501046.1:2633664 0.512

Angpt1 Angiopoietin 1 Angpt1 6501143.1:3235001 2 3240000 0.991 6501143.1:3032740 0.735
Mmea Membrane metallo-

endopeptidase
Mme 6501060.1:2105001 2 2110000 0.972 6501060.1:2148909 0.693

Peg3 Paternally expressed
3

Peg3 6501712.1:890001 2 895000 0.967 6501712.1:889216 0.781

LOC102914701 Arylacetamide
deacetylase-like 2

Gm8298 6501814.1:1227501 2 1232500 0.961 6501814.1:1255421 0.468

Nlgn1 Neuroligin 1 Nlgn1 6501046.1:11272501 2 11277500 0.960 6501046.1:11281042 0.700

aGene is also a significant three-way outlier (see supplementary table S2, Supplementary Material online). Locations are provided as NW contig ID and position.
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A key aspect of circulatory oxygen and metabolic fuel de-
livery is the regulation of blood flow via dynamic modifica-
tions of local blood pressure. Several recent studies have
documented adaptive modifications of blood pressure regu-
lation under hypoxia in highland deer mice. For example,
highland mice exhibit reduced pulmonary hypertension un-
der hypoxia compared with their lowland counterparts
(Velotta et al. 2018); this lack of a global vasoconstrictive
response likely contributes to their ability to achieve higher
pulmonary O2 extraction (Tate et al. 2017) (fig. 1).
Angiotensins, and their precursor angiotensinogen, are key
regulators of blood pressure and fluid homeostasis (Wu et
al. 2011). One of our most compelling two-way outliers is an
angiotensin receptor (Agtr1b, angiotensin II receptor type 1)
that mediates cardiovascular effects of angiotensin, including
vasoconstriction (Bonnardeaux et al. 1994). Similarly, several
other outliers are P2Y receptors—purinergic G protein-
coupled receptors that also play a role in vasodilation
(Burnstock and Ralevic 2013; Sluyter 2015). It is conceivable
that allelic variation at these loci could contribute to the
modifications of adaptive pulmonary function in highland
deer mice.

Highland deer mice also show a greater capacity for tissue
oxygen extraction (Tate et al. 2020), in part because of
evolved differences in skeletal muscle capillarity, fiber compo-
sition, and mitochondrial density and distribution (Lui et al.
2015; Scott et al. 2015; Mahalingam et al. 2017). One potential
candidate gene that could contribute to these differences in
muscle phenotype is Itga7 (integrin subunit alpha 7; two-way
outlier), which may have a role in the formation of muscle
fibers (Mayer et al. 1997). Other candidate genes seem to be
related to these phenotypic differences as well. One example
is Angpt1 (angiopoietin; two-way outlier), which plays an im-
portant role in vascular development and angiogenesis, as
well as blood vessel maturation. Due to their effects on rele-
vant muscle phenotypes, variants at these loci may contribute
to known differences in tissue diffusion capacity between
highlanders and lowlanders (Lui et al. 2015; Scott et al.
2015; Mahalingam et al. 2017; Nikel et al. 2018; Mahalingam
et al. 2020).

Finally, highland deer mice exhibit greater whole-animal
aerobic performance under hypoxia that is associated with a
number of measured phenotypes, including differential regu-
lation of core metabolic pathways that contribute to lipid and
carbohydrate metabolism and oxidative phosphorylation
(Cheviron et al. 2012, 2013; 2014; Lau et al. 2017). Several
genes that participate in these processes also bear signatures
of selection in the highland population. One example is
Ndufc1 (NADH: Ubiquinone Oxidoreductase Subunit C1),
which encodes a subunit in the first enzyme complex of
the electron transport chain in mitochondria. Previous
work on deer mice has demonstrated an increased mitochon-
drial respiratory capacity in muscle, and other evolved
changes in mitochondrial physiology of high-altitude popu-
lations (Mahalingam et al. 2017; fig. 1); variation at Ndufc1 and
other genes in related pathways may contribute to these
differences in mitochondrial function (supplementary tables
S2, S4, and S6, Supplementary Material online).

Importantly, although we have highlighted a few key genes
related to several steps of the oxygen homeostasis and aerobic
metabolism pathways, we have not demonstrated associa-
tions between putatively adaptive phenotypes and allelic var-
iation at these loci. Many of the other candidate genes we
have identified, but did not highlight, could also be involved
in these complex physiological processes (supplementary
tables S2, S4, and S6, Supplementary Material online), al-
though it is also possible that our candidate gene lists contain
false positives. Future work should aim to experimentally
document phenotypic effects of mutations in some of the
most compelling candidates, and to test for their effects on
fitness (Barrett and Hoekstra 2011). Additionally, further
efforts should focus on formal tests of polygenic adaptation
by determining specific alleles associated with phenotypes of
interest (e.g., through a genome-wide association study), and
demonstrating that those alleles have population frequency
differences that consistently increase or decrease (Berg and
Coop 2014; Jeong et al. 2018).

Most Genomic Targets of Selection Are Unique to
Deer Mice
Recent surveys in humans and domesticated animals have
documented overlap in the genomic targets of selection
among independent high-elevation populations, suggesting
that adaptation to these environments may often involve
repeated selection on a common set of genes (Witt and
Huerta-Sanchez 2019; Storz and Cheviron 2021). Although
a number of recent studies have documented selection on
obvious candidate genes, such as Epas1, in independent
lineages of wild vertebrates, these examples are often
cherry-picked from a list of outliers specifically because they
have been highlighted in other studies which may therefore
give a biased view of the degree of convergence in selection
targets at high elevation.

In our study, only two genes—Epas1 and KCNMA1 (po-
tassium calcium-activated channel subfamily M alpha 1)—
that were detected as outliers in highland deer mice have
been identified in more than three additional highland pop-
ulations of other species. Epas1 encodes the oxygen sensitive
subunit of hypoxia-inducible factor, a transcription factor
that coordinates the transcriptional response to hypoxia,
and was an outlier in 9 of the 14 studies representing 7 dif-
ferent species (Simonson et al. 2010; Yi et al. 2010; Li et al.
2014; Zhang et al. 2014; Song et al. 2016; Liu et al. 2019).
KCNMA1 encodes the alpha-pore of calcium-sensitive potas-
sium channels that influences vascular tone and blood flow
by regulating Kþ efflux in vascular smooth muscle cells
(Brayden and Nelson 1992; Knaus et al. 1995), and was a
target of selection in four different species in addition to
deer mice (Zhang et al. 2014; Qu et al. 2015; Song et al.
2016; Jeong et al. 2018). These two examples aside, the general
lack of overlap suggests a diversity of different mechanisms
underlying high-elevation adaptation. However, we cannot
rule out the possibility that the lack of overlap is, to some
extent, due to the presence of false positives in our or other
studies. Nonetheless, the unique selection targets identified
here may provide novel insight into physiological
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mechanisms to surmount the challenges of high-elevation
environments.

Spatial Patterns in Adaptive Genetic Variation Are
Largely Consistent With Population Structure
Across environmental gradients, the relative strength of se-
lection and gene flow shape spatial patterns of genetic vari-
ation (Slatkin 1987; Lenormand 2002). When many loci are
subject to spatially varying selection, variation in local recom-
bination rates may lead to variable levels of gene flow across
loci (Endler 1977). This process can result in allele frequency
clines for selected loci that are discordant with background
population structure, though this need not always be the case
(Yeaman and Whitlock 2011; Lenormand 2002). Our analysis
revealed that the majority of putatively selected loci had cline
centers (70.1%) and cline widths (75.8%) that fell within the
95% CI of genome-wide estimates from nongenic regions.
This result suggests that, for the most part, loci that have
experienced a history of altitude-related selection do not ex-
hibit patterns of spatial structure that are distinct from back-
ground population structure. Not all cline shapes were
concordant with population structure, however, suggesting
that locus-specific levels of gene flow may structure allelic
variation at such loci differently than background neutral
genetic variation. This finding supports previous results
from simulation studies suggesting that spatially varying se-
lection can structure groups of locally adapted alleles over
large geographic distances, even among populations that are
connected by high rates of gene flow (Yeaman and Whitlock
2011).

Often, the loci with cline shapes that deviated from back-
ground population structure were not enriched for specific
functions, suggesting that this class of loci participate in a broad
range of biological functions. The one exception is for genes
with clines that are centered upslope of the nongenic PC1 cline.
This list of genes showed an enrichment of functions related to
catecholamine secretion and odor perception. Catecholamine
synthesis and secretion by the adrenal gland is responsive to
environmental hypoxia, and catecholamines can affect many
physiological processes that impinge on oxygen delivery and
consumption, including heart rate and vasoconstrictive
responses (Brown et al. 2009). High- and low-elevation deer
mice differ in their catecholamine response to hypoxia (Scott
et al. 2019), and it is possible that these loci may contribute to
this physiological difference. For example, previous work has
shown that Epas1, a two-way outlier, is a target of selection in
deer mice and is associated with variation in heart rate under
hypoxia (Schweizer et al. 2019). Allelic variation in Epas1 causes a
differential regulation of the catecholamine biosynthesis path-
way (Schweizer et al. 2019), and the specific mutation under
selection at high elevation disrupts interaction with a transcrip-
tional coactivator, thus providing a possible mechanistic expla-
nation (Song et al. 2021). We identified several additional
promising candidate genes, such as P2RY1, DRD2, and
P2RY12, that are related to catecholamine regulation under
hypoxia (fig. 5). Studies of the phenotypic effects of allelic var-
iation at these loci would be a fruitful area for future work.

No other grouping of loci with discordant clines exhibited
clear gene ontology enrichment. Loci with clines that were
centered downslope, as well as those with widths that were
significantly narrower or greater than the PC1 cline, were not
enriched for terms that were obviously related to abiotic se-
lective pressures along elevational gradients. We note that
functional enrichments such as those presented above are
post hoc tests that generate hypotheses to be addressed in
future work, rather than formal tests of previously specified
hypotheses.

Conclusions
Our results demonstrate that hundreds of genes have expe-
rienced a history of spatially varying selection at high eleva-
tion in deer mice, and many of these loci participate in
physiological processes that underlie known phenotypic dif-
ferences between highland and lowland populations. The vast
majority of selection targets we identified have not been
reported in similar studies of other highland terrestrial verte-
brates. Although convergence in phenotypic traits is relatively
common in high-altitude vertebrates (reviewed in Storz and
Scott 2019), the general lack of overlap among selection tar-
gets between deer mice and other highland species suggests
that the genetic underpinnings of this phenotypic conver-
gence may be more idiosyncratic. Finally, our results also
show that, at least for deer mice along this elevational gradi-
ent, adaptive and neutral genetic variation tend to be struc-
tured similarly across the landscape. If this is a general
outcome, it may have important implications not only for
our understanding of the process of local adaptation, but also
for more directed applications in conservation genetics, such
as assisted migration and genetic rescue.
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FIG. 5. Maximum-likelihood allele frequency clines for catecholamine
genes located upslope of the nongenic PC1 cline. For the nongenic
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reference allele. Shaded regions show the 95% CIs.
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Materials and Methods

Sampling Scheme
Tissue samples of deer mice were collected from a variety of
sources. In the field, we live-trapped deer mice using baited
Sherman traps. We also used liver samples from euthanized
mice, and blood or tail clip samples from mice that were part
of a mark-recapture study (e.g., Wilde et al. 2019), in which
individuals were released after capture. To augment our sam-
ple sizes for some sites, we used tissue samples from previ-
ously collected museum specimens that are cataloged in the
mammal collections of the Denver Museum of Nature and
Science, the University of Arizona Museum of Natural History
Museum, the Museum of Vertebrate Zoology, and the
Museum of Southwestern Biology (see Natarajan et al. 2015).

Exome Design, Capture, and High-Throughput
Sequencing
To identify all annotated exons, we downloaded the
Peromyscus maniculatus bairdii general feature file (GFF)
v101 from NCBI (ftp://ftp.ncbi.nih.gov/genomes/
Peromyscus_maniculatus_bairdii/GFF/), and extracted all fea-
tures annotated as an exon. The final set of unique, non-
pseudogenized exonic regions consisted of 218,065 exons in
25,246 genes. We designed 500 bp nongenic regions to be
located at least 10 kb from any annotated gene, outside re-
petitive DNA regions, containing GC content within one
standard deviation of the mean GC content, and located
on contigs larger than 20 kb (Wall et al. 2008; Schweizer et
al. 2016). Five thousand autosomal regions were randomly
chosen that satisfied these criteria. In total, a custom Roche
NimbleGen SeqCap EZ Library captured 226,973 regions
(77,559,614 bp).

We used 256 mouse specimens for the analysis of exomic
variation (table 1), 100 of which were used in a previous study
(NCBI Short Read Archive PRJNA528923) (Schweizer et al.
2019). We extracted DNA from tissue samples of 156 deer
mice (supplementary table S1, Supplementary Material on-
line) using a Qiagen DNeasy kit and sheared DNA to�300 bp
using a Covaris E220 Focused Ultrasonicator. A genomic li-
brary for each individual was prepared using 200 ng of sheared
DNA with a NEBNext Ultra II kit and unique index following
the manufacturer’s protocols (New England Biolabs). Batches
of 24 indexed libraries were pooled, then target enriched and
PCR amplified according to the NimbleGen Seq Cap EZ pro-
tocol (Roche). Quality control for each capture pool included
a check of its size distribution on an Agilent TapeStation, as
well as a check for enrichment of targeted regions and lack of
enrichment of nontargeted regions using custom primers and
the Luna qPCR master mix (NEB). Each capture pool of 24
individuals was sequenced with 100 bp paired-end sequenc-
ing on an Illumina HiSeq 4000. All 256 individuals were proc-
essed concurrently.

Data preprocessing and variant discovery on all samples
followed the recommendations of the Broad Institute GATK
v3.7-0-gcfedb67 Best Practices pipeline (https://software.
broadinstitute.org/gatk/best-practices/workflow; last
accessed June 2, 2021) and followed our previously published

methods (Schweizer et al. 2019). Briefly, we trimmed se-
quence reads of adapter sequences and bases with quality
below 20 using fastq_illumina_filter 0.1 (http://cancan.cshl.
edu/labmembers/gordon/fastq_illumina_filter/; last accessed
November 1 2018) and trim_galore 0.3.1 (http://www.bioin-
formatics.babraham.ac.uk/projects/trim_galore/; last accessed
June 2, 2021). Forward and reverse reads were aligned and
mapped to the P. maniculatus baiardii genome using bwa
mem (Li and Durbin 2010), then duplicates were removed
using samtools rmdup (Li et al. 2009). After two rounds of
GATK Base Quality Score Recalibration, we genotyped each
sample using GATK HaplotypeCaller with the “–
emitRefConfidence” flag, then called variants using GATK
GenotypeGVCFs. GVCFs were combined and filtered to re-
move SNPs with a quality of depth<2.0, an FS>60, mapping
quality <40, mapping quality rank sum <�12.5, and read
position rank sum<�8.0. This process identified 106,883,914
variable sites in at least 1 of our 256 individuals. However,
three sampled individuals were dropped from further analysis
due to high levels of missing data (>50% sites with missing
genotype calls). After assessing the quality of filtered reads
using the vcftools package (Danecek et al. 2011), we further
filtered variants so that a site was called in at least 75% of
individuals, was biallelic, and had a minimum depth of 5 and
genotype quality of 20.

Population Genetic Structure of Rocky Mountain and
Great Plains Mice
To focus our efforts on the Rocky Mountains-Great Plains
transect, we removed the geographically disparate Merced
samples and used an LD-pruned set of nongenic SNPs (using
the “–indep-pairwise 50 5 0.5” flag in PLINK; Purcell et al.
2007). These nongenic SNPs are best suited for assessing neu-
tral population processes. We also identified a subset of unre-
lated individuals using PRIMUS (Staples et al. 2013) and a
maximum identity-by-descent of 0.1875, as recommended
in Anderson et al. (2010).

The method implemented in the software conStruct is
well-suited to our sampling design and the geographic distri-
bution of deer mice, where there is a high likelihood of
isolation-by-distance and the sampling is discontinuous
(Bradburd et al. 2018). We ran conStruct on two data sets:
All unrelated samples (N¼ 168), and just those east of the
Rocky Mountains (i.e., excluding Bonny Reservoir, Ft. Larned,
and Lincoln; N¼ 117). We evaluated both the spatial and
nonspatial models with the number of discrete populations
(K) varying between 1 and 5. For each model, we ran 2 rep-
licate analyses, each for 5,000 iterations. The performance of
the MCMC was assessed by comparison between replicate
runs and visual inspection of marginal parameter estimate
trace plots. We compared models using the “layer
comparisons” approach outlined in Bradburd et al. (2018).

Exome Scan for Selection
To calculate PBS, for each population pair we used vcftools to
calculate pairwise FST in 5-kb windows with a step size of
2.5 kb (following Jones et al. 2018) and specified vcftools to
only use sequenced sites for those calculations. We then
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transformed FST and calculated PBS for each window follow-
ing Yi et al. (2010). We calculated PBS for 105,571 overlapping
5 kb windows from the exomes of 48 Mt Evans, 37 Lincoln,
and 15 Merced mice, then, as a demographic control, simu-
lated the distribution of FST under our previously character-
ized demographic history of these same populations
(Schweizer et al. 2019). Using point estimates from our pre-
viously characterized demographic history of the Mt Evans,
Lincoln, and Merced mice (Schweizer et al. 2019), we used
msms (Ewing and Hermisson 2010) to simulate the distribu-
tions of FST for 17,000 5-kb windows. We calculated PBS
values for all simulated windows, then used the 99.9% quan-
tile of the simulated distribution to set the significance thresh-
old for the empirical data using the ecdf() function in R. For
each 5 kb window, we identified which genes overlapped that
window using the bedtools intersect function and a bed file of
targeted exonic regions.

Multivariate Genotype�Environment Associations
RDA characterizes a response matrix (here, genotypes) in re-
lation to an explanatory matrix (here, environmental data)
using multivariate linear regressions, followed by a PCA to
produce canonical axes (Van Den Wollenberg 1977; Legendre
et al. 2011). We implemented RDA in our set of mice sampled
across the entire transect (N¼ 165 unrelated individuals) fol-
lowing the recommendations of (Forester et al. 2018). Three
of the 168 individuals were not included in RDA because high
missingness might bias the genotype imputation done for
that analysis. RDA shows low false positive and high true
positive rates under a variety of selection and demographic
scenarios (Forester et al. 2018). Briefly, we obtained
population-level environmental data for precipitation and
temperature from BIOCLIM (Hijmans et al. 2005) using the
getData function within the “raster” package (https://rspatial.
org/raster/; last accessed June 2, 2021). We also obtained
estimates of snowpack (measured as daily mean snow water
equivalent from 1915 to 2011) from Livneh data provided by
the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA at their
web site at https://psl.noaa.gov/ (last accessed June 2, 2021)
(Livneh et al. 2013). We initially chose 11 environmental var-
iables summarizing precipitation, temperature, and snow-
pack, then removed those variables with a Pearson
correlation greater than j0.70j, as recommended by
Dormann et al. (2013), while prioritizing the retention of el-
evation as a variable. Given that many environmental varia-
bles are highly correlated with elevation (supplementary fig.
S9, Supplementary Material online), we subsequently chose a
subset of two variables (elevation and annual precipitation)
for further analysis. With this approach we aimed to identify
the variable (or correlated variables) that caused the observed
spatial patterning of allele frequencies. Due to computational
limitations within RDA, we subsampled our genotype data by
further pruning for linkage (r2� 0.75) and missingness (�1%)
in PLINK, resulting in a set of 1,109,794 sites. Given that RDA
requires no missing data and removing sites with any missing
data would have resulted in the loss of 483,261 (43.5%) sites,
we imputed missing genotypes for our data set (n¼ 483,261
or 0.26% of all data) using the most common genotype across

all individuals (Forester et al. 2018). After running RDA, we
identified significant constrained axes with a P-value of<0.05
after 999 permutations of the genotypic data. We identified
candidate SNPs as those with a loading greater than 3 stan-
dard deviations of the mean and characterized each candi-
date SNP by the environmental variable with which it had the
highest correlation.

Detection of Selective Sweeps
To identify loci that bear signatures of selective sweeps in the
Mt Evans population, we identified 5 kb windows with a re-
duced nucleotide diversity (p) both in Mt Evans relative to
Lincoln (by calculating delta pi (Dp), or pMt Evans�pLincoln),
and in Mt Evans relative to Merced (by calculating Dp as pMt

Evans�pMerced). With this approach we attempted to mirror
the polarized calculations of the PBS. As with PBS, we simu-
lated nucleotide diversity for 100,000 5 kb windows under our
demographic model. Then, we used a custom Python script
to calculate empirical nucleotide diversity in overlapping 5 kb
windows and a demographically controlled threshold for sig-
nificance of 99.9% (see Supplemental Materials).

GO Enrichment
We performed functional enrichment analysis to test for sig-
nificantly enriched gene sets and functional categories of
genes within our two-way and three-way outlier sets that
may reflect a history of altitude-related selection. For each
P. maniculatus gene, we identified the orthologous Mus mus-
culus gene, then used gProfiler (Reimand et al. 2007, 2011,
2016) to analyze enrichment for GO, biological pathways
such as Kyoto Encyclopedia of Genes and Genomes
(Kanehisa and Goto 2000), and Reactome (Jassal et al.
2019), regulatory motifs in DNA, protein databases, and hu-
man phenotype ontology (Reimand et al. 2016). We used
strong hierarchical filtering (returning only the most general
term per parent term) to identify enriched gene functional
categories below a false discovery rate corrected significance
of P< 0.05.

Clinal Patterns of Variation for Candidate Genes
HZAR fits genetic data to equilibrium cline models using an
MCMC algorithm and estimates parameters such as the cline
center (c) and width (w); c and w characterize the geographic
location along the transect where the allele frequency turn-
over is greatest and the geographic region corresponding to
the inverse of the maximum cline slope, respectively. The
values of these parameters can be estimated within HZAR
by 15 models that vary in the number of estimated param-
eters (e.g., exponential decay on either side of the cline center,
minimum and/or maximum allele frequencies). For each of
our two-way candidate loci, we identified the highest ranked
SNP (first by occurrence in an outlier PBS window and then
ranked by maximum RDA correlation) with a�75% call rate
amongst our 165 unrelated individuals from the Rocky
Mountain and Great Plains populations, then calculated
that SNP’s allele sample frequency for each population sam-
pled across our elevational transect. For each of those SNPs,
we modeled the cline shape parameters using HZAR and
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determined the cline center and cline width. We used sam-
pling elevation in meters as a proxy for geographic distance
and used a burn-in of 10,000 iterations.

To set a neutral background expectation for clinal patterns
of allele frequency variation, we performed a PCA on the set
of 282,617 LD-pruned nongenic SNPs within PLINK. There is a
clear pattern of geographic structure on both the first (PC1;
east/west) and second principal component axes (PC2;
north/south). Therefore, we used PC1 values for each individ-
ual to fit clines in HZAR, as has recently been done elsewhere
(Hague et al. 2020). We used similar parameters as when
generating the allele frequency clines, with appropriate mod-
ifications for trait data (e.g., avoiding models that set scaling
to a fixed minimum and maximum of 0 and 1, respectively).
Because principal components, especially those generated on
geographically structured data, can be shaped by mathemat-
ical artifacts that can make interpretation unintuitive
(Novembre and Stephens 2008), we visually confirmed that
the cline fit to PC1 is representative of the clines fit to 20 SNPs
with the highest loadings on PC1 (supplementary fig. S10,
Supplementary Material online). We identified statistically
discordant clines as those SNPs whose cline center or cline
width CIs do not overlap with the CIs of the neutral PC1 cline.

Degree of Candidate Gene Overlap with Other High-
Elevation Studies
To determine the degree of overlap in the genomic targets of
selection across other similar studies, we performed a post
hoc review of 14 studies in nine different species of terrestrial
vertebrates (supplementary table S9, Supplementary Material
online). Prior to spring 2020 (our last search date), there were
to our knowledge 56 studies of high-altitude adaptation; we
subsequently eliminated studies that were not population
genomic comparisons, did not publish a complete list of out-
lier genes, did not use a comparable allele-frequency based
test of selection, did not sample a highland population at a
high enough elevation to be comparable, and/or focused on
an ectotherm.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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