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Introduction

Congenital heart disease (CHD) is the most common 
birth defect, affecting nearly 1% of all live births (1). 
CHD encompasses a wide spectrum of defects from simple 
malformations with a favorable prognosis to more complex 
and severe lesions that require multiple catheter-based or 

surgical interventions with uncertain long-term outcomes. 
Although CHD remains a leading cause of morbidity and 
mortality in childhood, the population of adults with CHD 
is dramatically expanding. Now, more than 90% of children 
with CHD survive into adulthood due to significant 
advances in disease recognition and improved medical and 
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surgical management across the lifespan (2-5). Therefore, 
understanding the genomic architecture of CHD is 
increasingly clinically important (6). While there have 
been significant advances in the elucidation of the genetic 
etiologies for other forms of inherited cardiac disease such 
as cardiomyopathy and arrhythmias, it has only been with 
the increased understanding of the molecular pathways 
regulating cardiovascular development over the past couple 
of decades that the genetic basis of CHD has become more 
defined (7-10). However, the detailed genetic architecture 
of CHD and how disruption of these underlying regulatory 
mechanisms result in the spectrum of CHD phenotypes is 
actively being investigated.

While numerous genes have been discovered to be 
implicated in the pathogenesis of syndromic CHD, the 
identification of the genetic contributors of non-syndromic 
CHD is more challenging due to genetic heterogeneity, 
incomplete segregation and potentially oligogenic or 
polygenic origins. The initial discoveries of disease-causing 
genes were primarily restricted to milder forms of CHD 
in non-syndromic and syndromic cases by using linkage 
analysis to study large families with autosomal dominant 
disease or by targeted sequencing of candidate genes in 
affected populations (7,8,10). Remarkable advances in 
genetic sequencing technologies, such as massively parallel 
or next-generation sequencing (NGS) have enabled the 
discovery of rare variants in new candidate genes that 
are likely contributing to non-syndromic CHD (11-15). 
Although in vivo and in vitro genetic models have allowed 
for assessment of the potential functional deficits of specific 
variants on gene function, these sequencing studies still 
have practical challenges in establishing pathogenicity of 
identified variants (16-18). Recent advances in powerful 
new technologies known as single-cell RNA sequencing 
(scRNA-seq) have facilitated the discovery of the role of 
individual cells during cardiac development and pathogenic 
mechanisms by which small subset of cells affected by 
genetic mutations lead to cardiac malformations (19).

In this review, we aimed to summarize the well-
established genetic contributors to CHD and also discuss 
the recent advances in our understanding of the genetic 
architecture of CHD along with the challenges associated 
with the interpretation of newly discovered genetic variants 
in individuals with CHD. In addition, we sought to 
highlight the clinical implications of these genetic findings, 
which have the potential to predict and improve clinical 
outcomes in patients with CHD. 

This narrative review was compiled through study, 

analysis, and discussion of previously published literature. 
PubMed was searched without time limitations and 
language restrictions, including articles related to the 
etiology and genetic contributors of CHD, NGS studies 
in large CHD cohorts, challenges with interpretation of 
NGS findings, functional genomics of CHD, and clinical 
implications of genetic testing and genetic prediction of 
clinical outcomes in patients with CHD. Search terms 
included congenital heart defects in combination with 
genetics, etiology, pathogenesis, mutations/genetic 
variation, environmental factors, NGS, exome sequencing, 
whole genome sequencing (WGS), variant prioritization, 
scRNA-seq, functional genomics, genetic animal models, 
human induced pluripotent stem cells (iPSCs), noncoding 
variants, or genetic testing and a combination of congenital 
heart disease, genetics and clinical outcomes. We present 
the following article in accordance with the Narrative 
Review reporting checklist (available at https://dx.doi.
org/10.21037/tp-21-297).

Established etiologic contributors to CHD

The etiology of CHD is multifactorial as both genetic and 
environmental factors have been implicated in its etiology (20).  
Specific genetic causes can be detected in an estimated 
40% of CHD cases (Figure 1). Genetic causes of CHD 
are extremely heterogeneous, including chromosomal 
anomalies or aneuploidies (estimated 13%, range from 9% 
to 18%) (21), copy number variants (CNVs) (estimated  
10–15%: range from 3% to 25% in syndromic CHD and 
3% to 10% in non-syndromic CHD) (22-24), and single 
gene disorders (12%) (13,25-27). The genetic basis of CHD 
can be divided into syndromic CHD and non-syndromic 
CHD, where congenital abnormalities are isolated to the 
heart. 

Genetic abnormalities associated with syndromic CHD

Numerous commonly observed syndromes have been found 
to be caused by chromosomal aneuploidies and CNVs as 
well as pathogenic variation of single genes (28). Common 
syndromes associated with CHD are summarized in Table 1.  
Chromosomal aneuploidies include the trisomies (13, 
18 and 21) and monosomies such as Turner syndrome, 
that are detectable by karyotyping (29-34). CNVs are 
large deletions or duplications of DNA and pathogenic 
CNVs that are associated with syndromic CHD. These 
include 22q11.2 deletion syndrome (DiGeorge syndrome)  
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(35-41), 1p36 deletion syndrome (42-44), 7q11.23 deletion 
(Williams-Beuren syndrome) (45,46), terminal deletions 
of 11q (Jacobsen syndrome) (47-50), 1q21.1 deletion/
duplication (69-72), and 8p23.1 deletion syndrome (73,74), 
which can be detected by fluorescent in situ hybridization 
and/or chromosomal microarray (CMA). Syndromes 
caused by single gene variants have additionally been found 
to be genetically heterogeneous, including mutations in 
transcription factors and chromatin modifiers that are 
important for normal cardiac development. Single gene 
etiologies, inherited in a Mendelian manner, were initially 
detected by classic linkage analyses and targeted sequencing 
of candidate genes in large, multigenerational kindreds 
where multiple family members were affected with CHD 
associated with syndromes. 

Monogenic causes of non-syndromic CHD

Pathogenic variants that result in non-syndromic CHD 
can be broadly divided into transcription factors, cell 
signaling molecules and cardiac structural proteins 
(17,25). Monogenic causes of non-syndromic CHD with 
sufficient evidence are summarized in Table 2 and briefly 
described below. The expression and function of these 
factors are critical for cardiac progenitor lineages and the 

spatiotemporal regulation and formation of the complex 
three-dimensional heart structure.

Transcription factors
Transcription factors involved in cardiac development have 
been identified by genetic studies with multiple animal 
model systems (152,153). NKX, GATA and T-box family 
members constitute the core regulatory network that is 
responsible for normal cardiogenesis and are causative 
genes in CHD (154).

Mutations in the homeobox transcription factor NKX2–5 
were first reported as the cause of non-syndromic CHD 
by studying four kindreds with autosomal dominant 
disease (98). The common phenotype associated with 
NKX2–5 mutations is atrial septal defect (ASD) along 
with atrioventricular conduction abnormalities (99). 
NKX2–5 mutations have since been reported in a wide 
spectrum of CHD, including ventricular septal defect 
(VSD), tetralogy of Fallot (TOF), subvalvar aortic 
stenosis (AS), pulmonary atresia and hypoplastic left 
heart syndrome (HLHS), as well as atrioventricular 
conduction abnormalities, leading to complete heart 
block and sudden cardiac death (100-103). Previous 
studies demonstrated that mutations in the homeodomain 
of  NKX2–5  are a  cause of  ASD, while  mutations 

Figure 1 Established genetic causes of congenital heart disease. Chromosomal abnormalities, copy number variation and single gene 
variants are associated with ~40% of congenital heart disease cases but the majority (60%) of congenital heart disease remains unknown. All 
percentages are approximate based on recent publications (13,21-27). NR, not reported.
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Table 1 Common syndromes associated with congenital heart disease (selected) 

Syndrome Gene Loci Cardiac defect Clinical findings References

Chromosomal aneuploidies

Down syndrome Unknown Trisomy 21 AVSD, ASD, VSD, 
PDA, TOF

CHD (40–50%), short stature, cognitive 
deficits, atlantoaxial instability, immune system 
dysfunction, hypotonia, hypothyroidism

(29-31)

Turner syndrome Unknown 45, X  
(monosomy X)

CoA, BAV, dilated 
Ao, AS, HLHS

CHD (30%), short stature (partially growth 
hormone responsive), cognitive deficits, ADHD, 
lymphedema, webbed neck, primary amenorrhea

(32-34)

CNVs

22q11.2 deletion 
syndrome (DiGeorge 
syndrome)

TBX1 22q11.2 deletion Conotruncal 
defects (TOF, PTA), 
VSD, IAA, ASD

CHD (74–85%), cleft palate, bifid uvula, 
velopharyngeal insufficiency, microcephaly, 
hypocalcemia/hypoparathyroidism, thymic 
hypoplasia/immune deficit, psychiatric disorder, 
learning disability

(35-41)

1p36 deletion 
syndrome

Unknown 1p36 deletion PDA, VSD, ASD, 
BAV, Ebstein’s 
anomaly, LVNC

CHD (70%), Growth deficiency, intellectual 
disability, microcephaly, deep-set eyes, low-set 
ears, hearing loss, hypotonia, seizures, central 
nervous system defects, genital anomalies

(42-44)

Williams-Beuren 
syndrome

ELN 7q11.23 SVAS, PPS, VSD, 
ASD

CHD (80%), dysmorphic facies, thick lips, 
strabismus, stellate iris pattern, intellectual 
disability, infantile hypercalcemia

(45,46)

Jacobsen syndrome ETS1 11q terminal  
deletion

HLHS, AS, VSD, 
CoA, Shone’s 
complex

CHD (56%), growth retardation, developmental 
delay, thrombocytopenia, platelet dysfunction, 
widely spaced eyes, strabismus, broad nasal 
bridge, thin upper lip, prominent forehead, 
intellectual disability

(47-50)

FLI1

Single-gene variation

Alagille syndrome JAG1 20p12.2 PPS, TOF, PA CHD (>90%), bile duct paucity, posterior 
embryotoxon, butterfly vertebrae, renal defects

(51-53)

NOTCH2 1p12-p11

Char syndrome TFAP2B 6p12.3 PDA, VSD CHD (58%), wide-set eyes, down-slanting 
palpebral fissures, thick lips, hand anomalies

(54)

CHARGE syndrome CHD7 8q12 TOF, PDA, DORV, 
AVSD, VSD

CHD (75–85%), coloboma, choanal atresia, 
genital hypoplasia, ear anomalies, hearing 
loss, developmental delay, growth retardation, 
intellectual disability

(55,56)

Costello syndrome HRAS 11p15.5 PS, ASD, VSD, 
HCM, arrhythmias

CHD (44–52%), short stature, feeding problems, 
broad facies, bitemporal narrowing, redundant 
skin, intellectual disability

(57)

Ellis-van Creveld 
syndrome

EVC 4p16.2 Common atrium CHD (60%), skeletal dysplasia, short limbs, 
polydactyly, short ribs, dysplastic nails, respiratory 
insufficiency

(58,59)

EVC2 4p16.2

Holt-Oram 
syndrome

TBX5 12q24.1 VSD, ASD, AVSD, 
conduction defects

CHD (50%), absent, hypoplastic, or triphalangeal 
thumbs, phocomelia, defects of radius, limb 
defects more prominent on left

(60,61)

Table 1 (continued)
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outside the homeodomain may result in TOF (155).  
In addition, mice harboring NKX2–5 mutations have 
been reported to recapitulate cardiac phenotypes found in 
humans (156-158). Identification of NKX2–5 mutations is 
clinically beneficial in terms of detecting patients with the 
increased risk of progressive conduction system disease, 
sudden cardiac death or asymptomatic ASD.

Mutations in the GATA family members GATA4, 
GATA5, and GATA6, characterized by zinc finger domains 
and transcriptional activation domains, have been identified 
in patients with various types of CHD. Heterozygous 
mutations in GATA4 were first discovered in familial cardiac 
septal defects (76). GATA4 mutations have been associated 
with ASD, VSD, atrioventricular septal defect (AVSD), 
pulmonary stenosis (PS), and TOF (77-80). These findings 
have been supported by the reports of similar cardiac 
phenotypes in mice haploinsufficient for GATA4 or those 
harboring disease-causing GATA4 mutations (159-161).  
Additionally, rare sequence variants in GATA5 have been 
reported in affected individuals with CHD, including 
bicuspid aortic valve (BAV), VSD, TOF and double outlet 
right ventricle (DORV) (82,162,163). Genetic deletion of 
GATA5 and endothelial cell-specific deletion of GATA5 

using Tie2-Cre in mice led to BAV (164). Furthermore, 
GATA6 mutations were first reported in patients with 
persistent truncus arteriosus (PTA) (85) and have been 
implicated in a variety of CHD, including TOF, DORV, 
transposition of the great arteries (TGA), ASD, VSD 
and PS (86,165). However, murine models display BAV, 
including mice haploinsufficient for GATA6 and those 
with second heart field specific deletion of GATA6 using 
Isl1-Cre (166). Interestingly, GATA6 mutations were also 
found to be an important cause of pancreatic abnormalities 
(hypoplasia and agenesis) and associated type 1 diabetes 
mellitus (87,165). GATA6 was recently shown to function 
as a pioneer factor in cardiac development, regulating 
transcriptional activation of critical genes associated with 
the development of the heart as well as endodermal lineages, 
pancreas and diaphragm (167). These findings illuminated 
the molecular mechanisms for diverse developmental 
defects such as cardiac outflow tract defects, pancreas and 
diaphragm dysgenesis in patients with distinct GATA6 
variants.

The T-box family consists of important transcription 
factors in cardiac development. TBX5 and TBX1 are 
implicated in the etiology of Holt-Oram syndrome and 

Table 1 (continued)

Syndrome Gene Loci Cardiac defect Clinical findings References

Kabuki syndrome KMT2D 12q13 CoA, BAV, VSD, 
TOF, TGA, HLHS

CHD (50%), growth deficiency, wide palpebral 
fissures, large protuberant ears, fetal finger pads, 
intellectual disability, clinodactyly

(62-64)

KDM6A Xp11.3

Noonan syndrome PTPN11 12q24.13 Dysplastic PVS, 
ASD, TOF, AVSD, 
HCM, VSD, PDA

CHD (75%), short stature, hypertelorism, down-
slanting palpebral fissures, ptosis, low posterior 
hairline, pectus deformity, bleeding disorder, 
chylothorax, cryptorchidism

(65-68)

SOS1 2p22.1

RAF1 3p25.2

KRAS 12p12.1

NRAS 1p13.2

RIT1 1q22

SHOC2 10q25.2

SOS2 14q21.3

BRAF 7q34

ADHD, attention deficit/hyperactivity disorder; AS, aortic stenosis; ASD, atrial septal defect; AVSD, atrioventricular septal defect; BAV, 
bicuspid aortic valve; CHARGE, coloboma, heart defects, choanal atresia, retarded growth and development, genital anomalies, and ear 
anomalies; CHD, congenital heart disease; CNVs, copy number variants; CoA, coarctation of the aorta; dilated Ao, dilated ascending 
aorta; DORV, double-outlet right ventricle; HCM, hypertrophic cardiomyopathy; HLHS, hypoplastic left heart syndrome; IAA, interruption of 
aortic arch; LVNC, left ventricular noncompaction cardiomyopathy; PA, pulmonary atresia; PDA, patent ductus arteriosus; PPS, peripheral 
pulmonary stenosis; PS, pulmonary stenosis; PTA, persistent truncus arteriosus; PVS, pulmonary valve stenosis; SVAS, supravalvular 
aortic stenosis; TGA, transposition of great arteries; TOF, tetralogy of Fallot; VSD, ventricular septal defect.
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Table 2 Genes associated with non-syndromic congenital heart disease (selected)

Gene Cardiovascular malformation OMIM References

Transcription factors

CITED2 ASD, VSD 602937 (75)

GATA4 ASD, VSD, AVSD, PS, TOF 600576 (76-81)

GATA5 ASD, VSD, DORV, TOF, BAV 611496 (82-84)

GATA6 PTA, TOF 601656 (85-89)

HAND1 AVSD, DORV, HLHS, ASD, VSD 602406 (90,91)

HAND2 TOF, LVNC, VSD 602407 (92-94)

JARID2 Left-sided lesions 601594 (95)

MED13L TGA 608771 (96)

NR2F2 AVSD, AS, CoA, VSD, HLHS, TOF 107773 (97)

NKX2-5 ASD, atrioventricular conduction delay, TOF, HLHS, VSD 600584 (98-103)

NKX2-6 PTA 611770 (104,105)

TBX1 DORV, TOF, IAA, PTA, VSD 602054 (106)

TBX5 AVSD, TOF, BAV, CoA, ASD, VSD 601620 (107)

TBX20 ASD, VSD, MS, DCM 606061 (108-110)

MEF2C DORV 600602 (111)

NFATC1 TA, AVSD 600489 (112,113)

ZFPM2/FOG2 TOF, DORV 603693 (114-116)

Cell signaling and adhesion proteins

ACVR1/ALK2 AVSD 102576 (117)

CFC1 TGA, DORV 605194 (118)

CRELD1 ASD, AVSD 607170 (119-122)

FOXH1 TOF, TGA, VSD 603621 (123)

GDF1 ASD, DORV, TGA, TOF 602880 (124)

GJA1 HLHS, VSD, PA 121014 (125-127)

HEY2 AVSD 604674 (128)

JAG1 TOF, PS 601920 (129-131)

NODAL TGA, DORV, TOF, VSD 601265 (123,132)

NOTCH1 BAV, AS, HLHS, TOF, PS, ASD, VSD, CoA, DORV 190198 (12,133,134)

PDGFRA TAPVR 173490 (135)

SMAD6 BAV, CoA, AS 602931 (136)

TAB2 BAV, AS, TOF 605101 (137)

VEGFA TOF, PDA, AS, BAV, CoA, IAA, VSD 192240 (138,139)

Table 2 (continued)
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22q11.2 deletion syndrome, respectively (168,169). In 
addition to the link to syndromic CHD, mutations in TBX5 
and TBX1 have been identified in non-syndromic CHD 
such as TOF and cardiac septal defects (106,107,170). 
Another member of the family, TBX20, has subsequently 
been implicated in non-syndromic CHD, including cardiac 
septal defects, mitral valve stenosis, dilated cardiomyopathy 
and TOF (108-110).

Cell signaling and adhesion molecules
Notch signaling is important for cellular differentiation 
regulating the development of cardiac valves and chambers, 
and is associated with syndromic as well as non-syndromic 
CHD (51,129,171). Variants in NOTCH1 were the first 
reported genetic cause of aortic valve disease (133) and then 
have been described in not only left-sided CHD such as 
BAV, AS, coarctation of the aorta (CoA), and HLHS, but 
also TOF and other right-sided CHD (15,134,172).

Another  impor tant  ce l l  s igna l ing  pa thway  in 
cardiovascular development is the Nodal signaling that 
regulates left-right patterning. NODAL mutations have 
been reported in patients with heterotaxy as well as non-
syndromic CHD including TGA, conotruncal heart defects 
and VSD (123,132). Mutations in several downstream 
targets of NODAL (GDF1, CFC1 and FOXH1) were also 
identified in CHD cohorts (118,124,173,174). 

Structural proteins
Cardiac sarcomere and extracellular matrix proteins are 

crucial for the structure and function of cardiac muscle. 
Mutations in structural cardiac proteins are common causes 
of cardiomyopathy; however, some of these genes have 
also been associated with non-syndromic CHD. MYH6 
(α-myosin heavy chain 6) mutations have been described in 
familial ASD along with hypertrophic or dilated forms of 
cardiomyopathy (146,175). Mutations in MYH7 (β-myosin 
heavy chain) have been associated with Ebstein’s anomaly 
and left ventricular noncompaction (LVNC) (149,150). 
Similarly, mutations in ACTC1 (α-cardiac actin), another 
sarcomere protein gene, have been identified in familial 
ASD and cardiomyopathy (140,176). MYH11 (myosin 
heavy chain 11) mutations have been implicated in familial 
thoracic aortic aneurysm with patent ductus arteriosus 
(PDA) (11,151). ELN (elastin) haploinsufficiency causes 
syndromic CHD in Williams-Beuren syndrome (45,142), 
whereas mutations in ELN have been reported in non-
syndromic supravalvular AS and PS (143,144).

Environmental contributors to CHD

Environmental causes are implicated in 2–10% of CHD 
cases, and include maternal illnesses such as diabetes 
mellitus, obesity and phenylketonuria, maternal infection 
such as rubella and influenza, nutritional deficiencies such 
as folic acid, vitamin A and vitamin D, and teratogens such 
as thalidomide, alcohol, smoking and drugs (177-181). 
Although a significant proportion of CHD cases are likely to 
have some environmental etiologic contribution, it has been 

Table 2 (continued)

Gene Cardiovascular malformation OMIM References

Structural proteins

ACTC1 ASD, HCM, DCM, LVNC 102540 (140)

DCHS1 MVP 603057 (141)

ELN SVAS 130160 (142-145)

MYH6 ASD, HCM, DCM 160710 (146-148)

MYH7 Ebstein’s anomaly, LVNC, HCM, DCM 160760 (149,150)

MYH11 PDA, TAA 160745 (11,151)

AS, aortic stenosis; ASD, atrial septal defect; AVSD, atrioventricular septal defect; BAV, bicuspid aortic valve; CoA, coarctation of the 
aorta; DCM, dilated cardiomyopathy; DORV, double-outlet right ventricle; HCM, hypertrophic cardiomyopathy; HLHS, hypoplastic left 
heart syndrome; IAA, interruption of aortic arch; LVNC, left ventricular noncompaction cardiomyopathy; MS, mitral valve stenosis; MVP, 
mitral valve prolapse; PA, pulmonary atresia; PDA, patent ductus arteriosus; PPS, peripheral pulmonary stenosis; PS, pulmonary stenosis; 
PTA, persistent truncus arteriosus; SVAS, supravalvular aortic stenosis; TA, tricuspid atresia; TAA thoracic aortic aneurysm; TAPVR total 
anomalous pulmonary venous return; TGA, transposition of great arteries; TOF, tetralogy of Fallot; VSD, ventricular septal defect.
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difficult to quantify the specific role these environmental 
contributors play in disease development. The underlying 
mechanisms by which environmental factors disrupt 
molecular pathways during cardiac development to cause 
CHD remain unknown. Moreover, CHD has been shown 
to be caused by gene-environment interactions in mice, 
where haploinsufficiency of Notch1 in developing embryos 
together with maternal hyperglycemic or hypoxic exposure 
resulted in increased incidence of CHD (182-184).

Recent advances in the understanding of the 
genetic architecture of CHD

Summary of NGS in large CHD cohorts

Over the past decade, remarkable advancements in NGS 
technologies have allowed for the identification of novel 
genetic etiologies for CHD and better understanding of 
the complex genetic architecture of non-syndromic CHD. 
Recent multi-institutional studies describing the results 
of exome sequencing of 2,871 CHD probands (among 
which were 2,645 trios) conducted by the Pediatric Cardiac 
Genomics Consortium (PCGC) have uncovered damaging 
rare transmitted variants and de novo variants (DNVs) 
in 8% of patients with sporadic CHD including 28% of 
syndromic and 3% of non-syndromic CHD (14,185). These 
DNVs were frequent in genes associated with proteins 
that function in chromatin modification, transcriptional 
regulation and RNA processing. A recent gene-burden 
analysis of 2,391 CHD trios revealed that cilia-related 
genes are enriched for rare, damaging recessive variants but 
comparatively less enriched for damaging DNVs (186). In 
contrast, chromatin-modifying genes were highly enriched 
for damaging DNVs. Similar findings were observed in 
another exome sequencing study that confirmed an excess 
of DNVs in chromatin-modifying genes involved in 
H3K4 methylation, H3K27 methylation, and H2BK120 
ubiquitination (25). These DNVs in chromatin-modification 
genes were also associated with neurodevelopmental delays 
and extra-cardiac anomalies, indicating a potential role of 
these DNVs in syndromic forms of CHD. Furthermore, 
a large international study using exome sequencing of 
1,891 probands has revealed a distinct genetic architecture 
for syndromic versus non-syndromic CHD, with unique 
enrichment of loss-of-function DNVs in syndromic CHD 
and incompletely penetrant inherited protein-truncating 
variants in non-syndromic CHD, respectively (13). 
Incomplete penetrance of these rare variants may contribute 

to the phenotypic heterogeneity in familial CHD and could 
also contribute to oligogenic causes of CHD (187,188).

With the advances in NGS technologies and large 
patient cohort studies, new genes and genetic variants were 
implicated in the pathogenesis of CHD as well as identifying 
a subset of patients with pathogenic variants identified in 
known CHD genes as described in Table 2. Variants in the 
gene, FLT4, which encodes vascular endothelial growth 
factor receptor 3 (VEGFR3), were identified in several 
large cohort exome sequencing studies. Jin et al. (14) found 
2.3% of TOF patients to have LOF FLT4 variants and 
Page et al. (15) reported that deleterious FLT4 variants were 
identified in 2.4% of TOF cases. Majority of FLT4 variants 
were predicted LOF variants. A recent study of WGS in 
231 individuals with CHD, most with TOF, demonstrated 
a significant truncating variant burden for FLT4 (189). Not 
surprisingly, these studies also identified pathogenic variants 
in NOTCH1 in patients with TOF. Additional studies are 
necessary to understand the mechanistic roles of FLT4 
variants in the etiology of TOF, which may influence the 
subtypes of TOF and clinical outcomes (190). In addition 
to FLT4, other genes in the vascular endothelial growth 
factor (VEGF) pathway have been associated with TOF. 
LOF variants in KDR, encoding the vascular endothelial 
growth factor receptor 2 (VEGFR2), were identified in 
TOF cohorts (138) and more recently, exome sequencing 
in a familial case of TOF and large-scale genetic studies 
revealed rare variants in KDR in a family with TOF (191). 
These studies proposed novel mechanisms that dysregulated 
VEGF signaling contributes to the pathogenesis of TOF.

Recessive genotypes in MYH6 were identified ~11% 
of patients with Shone complex, and left ventricular 
dysfunction was demonstrated in 4 of 7 probands with 
MYH6 mutations in the recent large exome sequencing 
study by PCGC (14). A study of WGS in 5 patients with 
HLHS and reduced right ventricular ejection fraction 
revealed recessive compound heterozygous MYH6 variants 
in 2 patients (192). Furthermore, in a case-control study in 
190 unrelated patients with HLHS, an increased burden 
of damaging MYH6 variants (10.5%) was noted compared 
with controls (2.9%) (193). A recent WGS study in 197 
probands with HLHS identified rare, damaging MYH6 
variants in 10% of cohorts (194). Interestingly, these studies 
suggest that MYH6 variants are associated with poor clinical 
outcomes in HLHS, as will be discussed further in the 
section titled genetic prediction of clinical outcomes.

RBFOX2, an RNA-binding protein that regulates 
alternative splicing, has also been identified as a new 
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candidate CHD gene (195). RBFOX2 has a variety of 
biological activity contributing to neuronal maturation and 
axon assembly as well as cardiac remodeling and cardiac 
decompensation in pressure overload-induced heart failure 
(196,197). Damaging DNVs in RBFOX2 have been found 
in patients with HLHS in the large patient cohort studies 
(14,27). In addition, Verma et al. (198) uncovered a new role 
of RBFOX2 in the pathogenesis of HLHS, demonstrating 
that RBFOX2 was functionally impaired in HLHS patients 
leading to transcriptomic changes in the right ventricle of 
HLHS patients.

KMT2D encodes the histone-lysine N-methyltransferase 
2D enzyme,  respons ib le  for  H3K4 methylat ion, 
and regulates the genes involved in early embryonic 
development (199). Pathogenic variants in KMT2D are 
a well-known genetic cause of Kabuki syndrome (200). 
Recently, significant enrichment of damaging DNVs in 
KMT2D have been observed in CHD cases (14,27), and 
clustering of missense KMT2D variants have been found 
to cause a novel phenotype distinct from Kabuki syndrome, 
that includes CHD (201).

Challenges with interpretation of NGS results 

Although NGS technologies in CHD cohorts have 
contributed to identifying variants associated with CHD 
risk, NGS techniques have some challenges that have 
limited translation to the clinical setting. First, there are 
difficulties in variant prioritization and interpretation. 
Second, establishing the pathogenicity of identified variants 
is still challenging even with advances in in vitro and in 
vivo genetic modeling of CHD. Third, with the increased 
availability and use of WGS, the role of noncoding variation 
in the genetic architecture of CHD is not clear. 

Variant prioritization
In spite of the tremendous advances in genetic sequencing 
technologies, the identification of pathogenic variants in 
patients with non-syndromic CHD has been challenging, 
even in familial cases of CHD. Previously, we and others 
have successfully used exome sequencing and a variant 
prioritization pipeline to identify novel pathogenic variants 
in familial CHD using known CHD-causing gene lists. 
Blue et al. (202) reported that a targeted NGS gene panel of 
57 candidate genes in a cohort of CHD families identified 
pathogenic variants in 31% of families. Consequently, 
they have successfully performed exome sequencing along 
with bioinformatics pipelines and filtering strategies to 

identify candidate variants in familial non-syndromic 
CHD (203). In our work, we identified a genetic etiology 
in 3/9 (33%) of familial cases of CHD using similar 
approaches (11). In these studies, variants were filtered 
using bioinformatics pipelines and prioritized according to 
in silico prediction programs, predicted mode of inheritance, 
minor allele frequencies, and presence in databases such 
as dbSNP (Single Nucleotide Polymorphism Database), 
the National Heart, Lung and Blood Institute Exome 
Sequencing Projects (ESP) (https://evs.gs.washington.edu/
EVS/), 1000 Genomes (https://www.internationalgenome.
org/), the Exome Aggregation Consortium (ExAC) and 
the Genome Aggregation Database (gnomAD) (https://
gnomad.broadinstitute.org/). Variants were then classified 
based on the American College of Medical Genetics and 
Genomics (ACMG) and the Association for Molecular 
Pathology (AMP) guidelines (204). Since the release of 
these guidelines, several online tools and repositories 
have been developed for classification and interpretation 
of genetic variants, including the National Institutes of 
Health-funded Clinical Genome Resource (ClinGen) 
(https://clinicalgenome.org/working-groups/sequence-
variant-interpretation/), Varsome (https://varsome.com/), 
Franklin (https://franklin.genoox.com/clinical-db/home) 
and Clinvar (https://www.ncbi.nlm.nih.gov/clinvar/). 
Recently, Szot et al. (205) reported the utility of their dual 
approaches for analyzing exome sequencing data to identify 
likely pathogenic variants. They achieved overall high 
diagnostic rate in families with sporadic and familial CHD 
by interrogating high confidence CHD-causing genes as 
well as an unbiased screen in which the exome sequencing 
data were analyzed comprehensively for additional variants 
not identified through the CHD gene list. In addition, 
a recent study has reported the effectiveness of pathway 
enrichment analyses of DNVs in exomes of CHD patients 
to explore novel CHD risk genes and validate potentially 
damaging variants (206).

With the advent of scRNA-seq technology, the profiling 
and analysis of single-cell transcriptomes is now possible 
with unprecedented resolution and throughput. The 
resolution of scRNA-seq datasets coupled with machine 
learning approaches has led to numerous findings in 
CHD. scRNA-seq has been utilized to generate cell 
atlases of cardiac cell types at various stage of cardiac 
development by profiling the anatomical locations of the 
embryonic heart (207,208). Additionally, scRNA-seq has 
been used to elucidate the mechanisms regulating the 
emergence and segregation of the early cardiac lineage 

https://evs.gs.washington.edu/EVS/
https://evs.gs.washington.edu/EVS/
https://www.internationalgenome.org/
https://www.internationalgenome.org/
https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://clinicalgenome.org/working-groups/sequence-variant-interpretation/
https://clinicalgenome.org/working-groups/sequence-variant-interpretation/
https://varsome.com/
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during heart development (209,210). A network-based 
computational method for scRNA-seq analysis has revealed 
the mechanisms by which relatively small populations of 
cells are affected during cardiogenesis and how regulatory 
defects in discrete cell subsets can lead to morphologic 
developmental defects (19). Single-cell genomics will help 
to understand the pathogenic mechanisms of CHD at the 
single-cell level and provide novel insights into the genetic 
architecture of CHD. These approaches can refine variant 
prioritization pipeline by filtering novel candidate genes 
from large patient cohorts along with validation of cardiac 
expression from scRNA-seq datasets to expand our ability 
to identify pathogenic variants in CHD. The incorporation 
of these additional filtering criteria will result in continued 
improvement of the pathogenic variant detection algorithm 
and increasingly identify the genetic underpinnings of 
CHD. 

Functional genomics of CHD
Although the ability to identify potential genetic variants 
contributing to CHD is improving, the determination of 
variant pathogenicity remains challenging. Accordingly, 
genetic model systems are required to characterize 
potentially pathogenic variants and elucidate pathogenic 
mechanisms (18). Numerous in vivo and in vitro models 
are available, including zebrafish, fruit fly, frog, chick 
and large mammals, and each model has strengths and 
weaknesses. Murine models have been widely used to study 
cardiovascular development because they share a high 
degree of sequence conservation to humans and recapitulate 
human cardiac development. However, genotype-
phenotype relationships can be different between humans 
and mice. Furthermore, using the murine model system is 
not amenable for the analysis of large number of recently 
identified genetic variants. Therefore, additional genetic 
models that allow for a higher throughput analysis are 
increasingly necessary.

Human iPSCs provide a unique in vitro platform to study 
genetic mechanisms of non-syndromic CHD by single-
gene defects (211). Human iPSCs can be differentiated 
into a variety of cell types including cardiomyocytes (iPSC-
CMs), endothelial cells (iPSC-ECs), vascular smooth 
muscle cells (iPSC-SMCs) and cardiac fibroblasts (iPSC-
CFs). In addition, patient-specific iPSCs can be tailored to 
the unique individual genetics of patients and are crucial in 
investigating the complex genetic mechanisms of CHD by 
incorporating with advanced NGS technologies as well as 
transgenic animal models. These significant advantages have 

made it possible to expand the use of patient-derived iPSCs 
to study a variety of CHD, including supravalvular AS (212), 
and BAV and calcific aortic valve disease (213), cardiac septal 
defects (214,215), HLHS (216-219), pulmonary atresia 
with intact ventricular septum (220), and LVNC (187,221). 
A recent examination of transgenic murine hearts and 
patient-derived iPSC-CMs study revealed the oligogenic 
inheritance of LVNC with the evidence for a NKX2–5 
variant as a genetic modifier (187). Another recent study 
reported genome-wide transcriptome profiles of iPSC-CMs 
that were generated from patients with single ventricle 
heart disease and non-syndromic TOF (222). These studies 
provide growing evidence for the effectiveness of using 
iPSCs to model CHD and open the door to identifying 
how a modifier gene or multiple genes interact to cause 
CHD. Furthermore, the single-cell omics approaches in 
cardiovascular precision medicine combined with iPSC 
platforms, epigenomics and proteomics will contribute to 
the development of patient-specific therapeutics for CHD.

Noncoding genetic variation
WGS captures both coding and noncoding regions of the 
genome. Although the overall yield of exome sequencing in 
patients with CHD is low, WGS allows for the discoveries 
of a large number of CNVs and single nucleotide variations 
(SNVs) in regulatory and noncoding regions of the entire 
human genome. However, establishing a link between 
noncoding genetic variation and CHD is still challenging 
because classic transgenic mouse methods are not as 
applicable to noncoding regions. Allele-specific expression 
analysis can identify candidate noncoding genetic variants 
by combining RNA-seq and WGS in complex genetic 
diseases including CHD (195,223). The largest WGS in 
CHD demonstrated an enrichment in damaging DNVs 
in noncoding regions in CHD trios compared to controls 
and estimated that noncoding DNVs are associated with 
17–45% of CHD cases (224). These studies highlight 
the potential of WGS to elucidate the role of noncoding 
variants contributing to the pathogenesis of CHD. Future 
studies are needed to establish the transcriptional and post-
transcriptional regulatory effects of noncoding variants on 
cardiac development.

Clinical implications of recent genetic advances

Genetic testing

Over the past 20 years, the advanced genetic testing 
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methodologies (e.g., CMA and exome sequencing) are 
increasingly being incorporated into the genetic evaluation 
of patients with CHD, and the results of this testing has 
important clinical implications. The clinical benefits of 
genetic testing for patients with CHD include establishing 
a genetic diagnosis, anticipatory management of CHD and 
associated extra-cardiac conditions, and clinical screening 
of at-risk family members (225). In addition, genetic testing 
can provide the information about the genetic causes 
and the recurrence risk of CHD to support reproductive 
decisions and to guide perinatal management. While CMA 
and single-gene testing for specific syndromes are currently 
utilized as standard genetic testing for patients with CHD 
and extra-cardiac abnormalities, diagnostic use of NGS 
technology is evolving, allowing the interrogation of large 
datasets of genetic variants. The overall diagnostic yield of 
genetic testing varies from the low single digits to close to 
40%, which depends on the tests available, the anatomical 
lesions, and the presence of extra-cardiac or other relevant 
clinical features (13,27). Despite the potential utility, 
variant interpretation is challenging as genotype-phenotype 
correlations remain elusive and phenotypic heterogeneity or 
incomplete penetrance is present. Communicating complex 
genetic findings to potentially unsuspecting patients is 
also challenging. Given the potential psychosocial impact 
of genetic testing in asymptomatic, phenotype-negative 
individuals, it is therefore critical that genetic testing 
should be offered within the context of appropriate genetic 
counseling so that families are given the opportunity to 
discuss insurance and other risks well in advance (6).

Genetic prediction of clinical outcomes

Despite advances in our understanding of genetics 
underlying CHD, prediction of clinical outcomes by 
using genetic findings remains challenging. Initial 
successful examples of linking common genetic variants 
for clinical care were limited to areas of prediction of 
disease risk, disease classification, and drug response (226). 
Apolipoprotein E genotypes were associated with adverse 
neurodevelopmental outcomes after cardiac surgery in 
patients with CHD (227,228). Additionally, in patients 
with single ventricle, adrenergic receptor genotypes were 
associated with poor postoperative outcomes, and renin-
angiotensin-aldosterone receptor genotypes were linked 
to failure of ventricular remodeling after surgery, impaired 
renal function and somatic growth (229).

Discovery of  an increas ing number of  genet ic 

contributors to CHD, large-scale data of clinical 
phenotypes and the growing knowledge about the biological 
and physiological impact of genetic variants are providing 
evidence to help understand clinical implications of genetic 
findings to predict clinical outcomes in CHD patients. 
Underlying genetic variants are increasingly recognized 
to affect clinical outcomes such as long-term/event-
free survival, growth, neurodevelopmental performance, 
and ventricular function (230). Additionally, a significant 
increase in genetic burden of novel and rare variants 
in genes implicated in CHD and neurodevelopmental 
disabilities (NDD) was identified to be associated with the 
development of NDD in CHD patients (231). Therefore, 
identification of genetic variants associated with CHD and 
neurodevelopmental abnormalities could be useful for early 
learning intervention strategies.

Furthermore, specific genetic variation influences clinical 
outcomes in some categories of CHD patients. Pathogenic 
variants in cilia genes may predict postoperative and 
respiratory outcomes (25). Patients with single ventricle 
heart defects segregated by the presence of potentially 
pathogenic CNVs had worse outcomes as well as worse 
linear growth and neurodevelopmental performance at  
14 months of age than those without CNVs (22). Pathogenic 
CNVs have been associated with increased risk of death or 
transplant in non-syndromic CHD (23). A 22q11.2 deletion 
in CHD patients also affects their surgical complication 
rate and survival. Patients with TOF and 22q11.2 deletion 
syndrome were found to have a longer stay in the intensive 
care unit and a worse quality of life (232). A recent study of 
exome sequencing in a large cohort of 2,517 patients with 
CHD demonstrated that 11.7% of patients carried clinically 
significant DNVs and patients with DNVs were more 
likely to have extra-cardiac anomalies (233). This study also 
found that DNVs were associated with lower transplant-
free survival and worse postoperative respiratory outcomes 
such as longer times on the ventilator in patients who 
underwent open-heart surgery. Interestingly, the magnitude 
of the association between DNVs and clinical outcomes was 
shown to be different for patients with versus without extra-
cardiac anomalies. In patients with extra-cardiac anomalies, 
the association of DNVs with worse outcomes was modest 
without statistical significance. In contrast, DNVs were 
strongly associated with adverse outcomes among patients 
without extra-cardiac anomalies. These important findings 
suggest a benefit for genetic testing even in patients without 
extra-cardiac anomalies who are not suspected to have 
genetic abnormalities in routine clinical practice.
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Although only a few HLHS candidate genes have been 
validated by robust genetic and functional studies, several 
genetic factors have been reported to have an impact on 
clinical outcomes in patients with HLHS. Patients with HLHS 
harboring pathogenic CNVs were reported to be associated 
with significantly decreased survival compared to those 
with normal CMA or variants of undetermined significance 
(VUS) (234). In addition, HLHS with risk of poor outcomes 
has been linked to MYH6 variants. Patients harboring 
MYH6 variants had abnormal myocardial physiology 
and reduced right ventricular ejection fraction (192).  
Transplant-free survival was significantly lower in HLHS 
patients with damaging MYH6 variants compared with 
HLHS patients without MYH6 variants (193). Most 
recently, compound heterozygosity for rare damaging 
variants in MYH6 or MYBPC3, encoding myosin binding 
protein C3, was found to be a risk factor for myocardial 
dysfunction in patients with HLHS (194). These findings 
could help identify patients at risk for poor outcomes and 
develop precision medicine approaches tailored to the 
genetic information of each patient in the future. 

Future directions

The increased understanding of genetics of CHD is 
providing new insights into the etiology of CHD as well 
as the impact of genetic variants on clinical outcomes 
in patients with CHD. More accurate detection and 
interpretation of pathologic genetic variants in CHD 
patients will enable clinicians to identify extra-cardiac 
manifestations, predict post-operative course and long-
term outcomes, leading to the improvements of clinical 
outcomes. Further refinement of the clinical variant 
interpretation framework such as ACMG/AMP guidelines 
will construct a more accurate, consistent and transparent 
approach to variant classification. In addition, larger studies 
in well-phenotyped CHD cohorts, including important 
long-term clinical outcomes, will be required to determine 
further genetic factors contributing to the pathogenesis of 
CHD and its associated morbidities.

The ultimate goals are to develop therapies to slow the 
progression or prevent the occurrence of CHD. Current 
advances in sequencing technologies and functional 
genomic models of CHD will allow for the integration 
of genome editing, cardiac bioengineering and cardiac 
organoid models. The maturation of these technologies 
will open the door for new regenerative and preventive 
therapeutic approaches to treat the core disease mechanisms 

in CHD patients in the future.
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